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Towards accurate bird sound recognition
through multi-scale texture-aware

modeling

M| Check for updates

Rui Qin< & Jing Huang

Bird sound recognition poses challenges due to complex, overlapping spectral patterns. We propose
anovel framework that combines multi-scale texture-aware modeling with interpretable deep learning.
Central to our method is the Directional Laplacian of Gaussian Network (DLoGNet), a convolutional
architecture with learnable orientation and scale parameters to capture directional acoustic textures.
Additionally, we design the Frequency Band Recalibrated Spectrogram (FBRS), which adaptively
selects energy-dense sub-bands via wavelet packet decomposition. Experiments on real-world
datasets show that our method outperforms conventional CNNs, RNNs, and attention-based models
in both accuracy and class separability. Visualizations of learned filters and t-SNE embeddings
support its interpretability and effectiveness. This study highlights the importance of directional and
multi-scale features in acoustic signal understanding and offers a robust solution grounded in the
principles of explainable artificial intelligence (XAl), providing interpretable directional features and
visual insights into model decisions for bird species identification.

In recent years, bird sound classification has emerged as a crucial task in
ecological monitoring and biodiversity conservation, playing a vital role
in applications such as species population surveys, habitat assessment,
automatic wildlife monitoring, and environmental impact studies'.
Through initiatives such as Xeno-canto, the Macaulay Library and var-
ious citizen science platforms, the global audio archives of natural
soundscapes continue to grow the ability to automatically and reliably
identify bird species from their vocalizations has transitioned from a
niche research area to a fundamental tool in conservation biology and
ecological research’.

From an acoustic perspective, bird sound classification presents sig-
nificant challenges. Bird vocalizations are not merely simple signals but are
rich, multidimensional phenomena composed of varying frequency mod-
ulations, rhythms, harmonic structures, and species-specific calling
patterns’. These acoustic features can vary dramatically not only across
species but also across individuals, geographic regions, and behavioral
contexts, making bird sound recognition a highly complex pattern recog-
nition problem.

Traditionally, bird sound classification systems relied on hand-
crafted features such as Mel-frequency cepstral coefficients (MFCCs)",
spectral centroid’, bandwidth, and pitch contours®, extracted from
short-time audio frames. Although grounded in acoustic and perceptual
principles, these features are often fed into shallow classifiers such as

support vector machines (SVMs)’, random forests (RFs)'’, or k-nearest
neighbors (k-NN)'". For example, Han et al.”* used MFCC as an acoustic
feature and ECOC-SVM as a feature processor and discriminator to
achieve high-precision bird recognition. Revathi et al."” performed RF-
based decision-level fusion of multiple perceptual features with filter
features of different frequency scales, which significantly improved
recognition reliability. More feature extraction techniques and integra-
tion with machine learning can be found in the review work by Priya-
darshani et al.” However, such approaches struggle to capture the
nonlinear, hierarchical nature of bird vocalizations and often fail to
generalize well across diverse and noisy natural environments. The
advent of deep learning has profoundly transformed bird sound clas-
sification research. Convolutional Neural Networks (CNNs)", Recur-
rent Neural Networks (RNNs)'*, and their hybrids'® have demonstrated
strong capabilities in modeling raw waveforms, spectrograms, and other
signal representations, often achieving substantial improvements over
traditional methods. Recently, newer architectures such as
Transformers'” have also demonstrated competitiveness. Furthermore,
attention frameworks are increasingly being introduced into traditional
architectures to enhance recognition accuracy'®. Das et al.”” point out in
their review that machine learning techniques, including both conven-
tional and deep learning approaches, can reduce noise and identify
species or even individual birds by their calls. However, despite these
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advances, most deep learning models remain inherently opaque, offer-
ing little transparency into the decision-making process.

In ecological applications, scientific validation, interpretability, and
trust are paramount, and this black-box nature of deep learning models
poses significant limitations. Understanding what acoustic features a model
“hears” and “uses” to distinguish bird species is critical, not only for scientific
validation but also for broader adoption in conservation initiatives*’. Models
that provide no insight into their reasoning can undermine confidence,
hinder scientific discoveries, and limit their utility in policy-making or
automated monitoring systems. Moreover, the choice of signal repre-
sentation fundamentally shapes model behavior”'. Bird vocalizations, being
highly nonstationary and structured across multiple temporal and spectral
scales, demand effective time-frequency analysis™. Standard approaches like
the Short-Time Fourier Transform (STFT)”, the Constant-Q Transform
(CQT)*, and the Wavelet Transform (WT)* offer various trade-offs
between time and frequency resolution. While these representations (e.g.,
STFT, CQT, WT) provide mathematically consistent time-frequency
resolution, they lack adaptivity to the energy distribution observed in bird
calls. This can lead to over-representation of irrelevant bands and under-
representation of species-specific acoustic structures, such as modulated
syllables or harmonics concentrated in ecologically important frequency
ranges"”. The challenges of the opacity of deep learning models and the
limited interpretability of standard time-frequency representations high-
light a key gap in current research on bird sound classification: the urgent
need for frameworks that not only provide high classification accuracy, but
also interpretable outputs that are consistent with known ecologically
informative acoustic patterns (e.g., harmonics and frequency contours in
bird vocalizations) through convolutional response and Grad-CAM visual
validation.

To address this issue, we present a novel framework that combines
multi-scale texture modeling with interpretable deep feature extraction.
First, to reduce the opacity of standard deep models, we design direc-
tional filters with explicitly learnable parameters (orientation 6 and scale
0) that can be visualized and interpreted in relation to spectrotemporal
structures in bird calls. Second, instead of relying solely on abstract
feature hierarchies, our model leverages biologically inspired directional
convolution, enabling feature maps that correspond to intuitive acoustic
events (e.g., ascending chirps or horizontal harmonics). Finally, through
parameter visualization and class activation mapping, our model sup-
ports inspection of internal decision logic, thereby advancing explain-
able deep learning in the bioacoustics domain. In parallel, we propose a
new time-frequency representation called the Frequency-Band Recali-
brated Spectrogram (FBRS). This representation leverages wavelet
packet decomposition and energy-guided sub-band selection to con-
struct a sparse yet informative input, aligning the spectral resolution of
the model with the actual energy distribution in bird sounds. Through
the integration of these components, our method offers both high
classification performance and feature-level interpretability. Further-
more, we validate the effectiveness of the proposed approach through
extensive experiments and visualizations, including parameter inspec-
tion, convolutional activation analysis, and t-SNE projection of the
learned embeddings.

Results

Data and pre-processing

The dataset used in this study is sourced from Kaggle, available at https://
www.kaggle.com/datasets/ayush5556/bird-sound-dataset. It  contains
recordings of bird vocalizations from 22 different species. Each audio
sample is non-uniform in length and recorded at a sampling rate of 32 kHz.
For the purposes of this study, we selected a subset of eight bird species: Barn
Swallow (barswa), Black Crowned Night Heron (bcnher), Black Winged
Stilt (bkwsti), Blyth’s Reed Warbler (blrwarl), Common Greenshank
(comgre), Common Kingfisher (comkinl), Common Moorhen (com-
moo3),and Common Rosefinch (comros). These species were chosen based
on the clarity of their vocalizations and their representation within the

Table 1 | Final sample counts for each selected bird species
after segmentation and filtering

Species Number of samples Species Number of samples
Barswa 3000 Benher 3000
Bkwsti 3000 Blrwar1 3000
Comgre 2665 Comkin1 2900
Commoo3 2171 Comros 3000
dataset, ensuring sufficient diversity and complexity for the

classification task.

Previous studies have demonstrated that the use of data augmentation
techniques can effectively enhance classification performance™. However,
the development and exploration of such methods are beyond the scope of
this work. Similar to the work of Evangelista et al.”, in this study, each
original audio sample was segmented into fixed-length clips of 5 s to aug-
ment the dataset and standardize the input size for the model.

Nevertheless, due to the inherent variability in the original recording
durations, the final number of samples per class was not uniform. For
species with abundant recordings, we randomly retained 3000 generated
samples to maintain balance and prevent overrepresentation. For species
with fewer available recordings, all generated samples were preserved. The
final distribution of samples across the selected bird species is summarized
in Table 1. This preprocessing strategy ensures that the dataset remains
sufficiently large and diverse while controlling for extreme class imbalance,
which is critical for reliable model training and evaluation.

Model setup and implementation details

All models were implemented using PyTorch 3.12, and training was con-
ducted on a workstation equipped with an NVIDIA RTX 4060 GPU (8GB).
The proposed DLoGNet was constructed by stacking five directional con-
volutional modules, each containing four learnable orientation-specific
kernels, followed by a global average pooling layer and a fully connected
classifier. The activation function used throughout the network was ReLU,
and batch normalization was applied after each convolutional block to
improve training stability.

As input, we used the proposed FBRS, which was generated from 5-s
audio segments sampled at 32 kHz. The FBRS was resized to a fixed reso-
lution of 128 x 128 before being fed into the network. All comparison
models were trained using the same input representation and under iden-
tical hyperparameter settings for a fair comparison. We trained each model
using the cross-entropy loss function, optimized with the Adam optimizer.
The initial learning rate was set to 0.0001, and a learning rate scheduler with
adecay factor of 0.9 was applied every 10 epochs. Each model was trained for
50 epochs with a batch size of 32. To avoid overfitting, we employed early
stopping based on the validation set accuracy.

To evaluate model performance, we adopted the following four com-
monly used metrics: (1) Accuracy rate (AR): the proportion of correctly
classified samples among all test samples. (2) Precision rate (PR): the ratio of
true positives to the sum of true and false positives, averaged over all classes.
(3) Recall rate (RR): the ratio of true positives to the sum of true positives and
false negatives, averaged across classes. (4) F1-Score (F1S): the harmonic
means of precision and recall, providing a balanced evaluation of both false
positives and false negatives.
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AR(%) = (TP + TN)/(TP + TN + FP + FN)*100% (1)
PR(%) = TP/(TP + FP)*¥100% )

RR(%) = TP/(TP + FN)*100% 3)

F18(%) = 2TP/(2TP + FP + FN)*100% 4)
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where TP, FN, TN and FP represent true positive, false negative, true Table 2 | DLoGNet performance of FBRS with different
negative and false positive respectively. decomposition level
Part I: signal time-frequency analysis EeNsiE g U 2 g
AR (%) 91.12 91.12 91.18 91.18

All time-frequency analyses in this study were conducted using
MATLAB software. Taking the sample XC134349 from the barswa (Barn
Swallow) category as an example, Fig. 1 illustrates the waveform (time-
domain) and its corresponding frequency spectrum (frequency-
domain) within the first 5s. In the time domain, as shown in the left
panel of Fig. 1, the signal exhibits a series of intermittent amplitude
modulations, with relatively low energy at the beginning and gradually
increasing towards the later stages. This pattern is characteristic of
natural bird vocalizations, where sequences of chirps or syllables are
produced at varying intensities. In the frequency domain, depicted in the
right panel of Fig. 1, the energy distribution is predominantly con-
centrated within the range of 0-8 kHz, with a notable peak around
3-5kHz. The spectral amplitude decreases rapidly beyond 8 kHz, and
negligible energy is observed above 10 kHz.

To select the appropriate number of decomposition levels L, we con-
ducted experiments with L =6, 7, 8, 9. Figure 2 illustrates the FBRS results
under different values of L, while Table 2 presents the corresponding clas-
sification accuracy using DLoGNet. The results indicate that while perfor-
mance slightly improves with higher decomposition levels, the accuracy
gains tend to saturate at L = 8. Considering both recognition performance
and computational complexity, we selected L = 8 for this study.

Figure 3 presents a visual comparison between the traditional STFT
(Fig. 3a), CQT (Fig. 3b) and Mel-Frequency Spectrogram (MFS)** (Fig. 3c)
representation commonly used in bird sound analysis and the proposed
FBRS (Fig. 3d). STFT and CQT can hardly characterize valid information,
the energy in the former cannot be focused, resulting in poor frequency

localization, while the latter is limited by the filter distribution to show only
limited time-frequency information. The MFS captures the general time-
frequency structure of the bird vocalizations. However, several limitations
are evident: the overall contrast between signal and background is relatively
low, the energy distribution across different frequency bands appears
blurred, and fine-grained structures (such as the harmonic stacks and rapid
frequency modulations typical of bird calls) are not distinctly highlighted.
This could potentially hinder the ability of deep learning models to extract
meaningful discriminative features.

In contrast, the FBRS representation in Fig. 3d demonstrates several
clear advantages. First, the background noise is substantially suppressed,
resulting in a higher signal-to-noise ratio. The vocal elements, especially in
the 1-8 kHz range where most bird sounds are concentrated, appear more
distinct and sharply defined. Second, the energy patterns across different
frequency bands are better separated and enhanced, allowing for finer
localization of salient acoustic events. Third, FBRS maintains a better bal-
ance between time and frequency resolution, preserving both the temporal
continuity and the spectral richness of the signal. Overall, the FBRS offers a
more informative and cleaner input representation, which is expected to
facilitate more effective feature extraction and classification by downstream
neural networks. These improvements highlight the potential of FBRS to
serve as a superior alternative to conventional MFS-based inputs in bird
sound recognition tasks.
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Table 3 | Recognition accuracy when using different feature Table 4 | Performance of different models
inputs and different network structures
Model AR (%) PR (%) RR (%) F1-S (%)
MFS FBRS DLoGNet 91.18 91.09 91.23 91.16
G el 87.82%  oNN 87.82 87.75 87.82 87.79
DGt LA 91.18%  |sTMm 87.64 87.55 87.64 87.60
CNN-LSTM 90.41 90.30 90.36 90.33
To further validate the superiority of the proposed FBRS, we conducted ~_EfficientNet G Gl S A
comparative experiments using two different network architectures: a ~ VGG-16 90.52 90.43 90.50 90.47
standard 5-layer CNN* and the proposed DLoGNet. For each architecture,  Transformer 91.18 91.05 91.26 91.16
we evaluated the classification performance using both the traditional MFS  ~5e ot 9116 91.09 9113 9111

representation and the FBRS as input features. The corresponding recog-
nition accuracies are summarized in Table 3. When using the standard
CNN, the recognition accuracy with MFS inputs is 85.09%. When the input
is replaced by FBRS, the accuracy improves to 87.82%, representing a
notable increase of 2.73%. Similarly, for the DLoGNet, the recognition
accuracy rises from 87.40% with MFS to 91.18% with FBRS, yielding an
improvement of 3.78%. We also observed that DLoGNet exhibits a con-
sistent performance advantage over CNN even when using the conventional
Mel spectrogram (MFS) as input, achieving an accuracy of 87.40% com-
pared to 85.09%. However, the performance under MFS input remains
inferior to that of other state-of-the-art models reported in Table 4. This
indicates that the full benefit of DLoGNet is only realized when paired with a
more informative representation such as FBRS, which better complements
its directional and multi-scale feature extraction capabilities.

Figure 4 illustrates the two-dimensional t-SNE projections of the
learned high-dimensional representations extracted from the fully con-
nected layers of CNN and DLoGNet under different input conditions. In
Fig. 4c, the CNN model exhibits noticeable class overlap and irregular
dispersion. Several categories (e.g., Class 0, Class 1, and Class 4) are highly
entangled, indicating that CNN struggles to generate distinctly separable
feature embeddings even with FBRS. In contrast, Fig. 4d reveals a sig-
nificantly improved separation between classes in the DLoGNet feature
space. Most clusters (e.g., Class 2, Class 3, and Class 6) form compact and
clearly delineated regions, while the inter-class boundaries are more pro-
nounced. This suggests that the directional filters and frequency-sensitive
architecture of DLoGNet enable more discriminative and geometrically
meaningful representations. Notably, even those classes that were previously
entangled in CNN (such as Class 0 and Class 4) become more distin-
guishable under DLoGNet. To further clarify whether these improvements
are attributed to the model structure or the input representation, we
included Fig. 4a, b, which visualize CNN and DLoGNet with MFS input. A

comparison between (a) and (c), and (b) and (d), demonstrates that the
FBRS input improves clustering quality for both models, indicating its
contribution to better frequency-localized representations. However, the
performance gains are even more prominent when DLoGNet is used,
underscoring the importance of directional feature extraction.

These consistent performance gains across both shallow and deep
architectures highlight the effectiveness of FBRS in providing cleaner and
more discriminative feature representations. In particular, the improve-
ments are more pronounced in the DLoGNet, which is specifically designed
to capture directional and structural features. This suggests that the
enhanced signal clarity and frequency band separation provided by FBRS
can be more effectively exploited by architectures that emphasize local and
orientation-sensitive feature extraction. Overall, these experimental results
demonstrate that FBRS not only improves baseline classification perfor-
mance but also enhances the ability of more advanced models like DLoGNet
to realize their full potential in bird sound recognition tasks.

Part II: analysis of proposed model superiority

In this subsection, we conduct a comprehensive set of comparative
experiments to evaluate the performance of our proposed DLoGNet model
against a variety of well-established baseline and competitive models. The
selected models include: (1) CNN*: a standard convolutional neural net-
work commonly used for time-frequency audio classification tasks. (2)
LSTM™: a recurrent neural network architecture capable of capturing
temporal dependencies in sequential data. (3) CNN-LSTM’: a hybrid
model that combines the spatial feature extraction ability of CNNs with the
temporal modeling capacity of LSTMs. (4) EfficientNet™: a lightweight and
scalable convolutional model known for its efficient parameter usage and
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Fig. 4 | t-SNE visualizations of feature embeddings
under different model and input configurations.
a CNN with MFS input, b DLoGNet with MFS
input, ¢ CNN with FBRS input, and d DLoGNet with
FBRS input. Each point represents a sample in the
fully connected layer output space, colored by its
ground truth label; clearer cluster separation is
observed with FBRS input and DLoGNet
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competitive performance across image-based tasks. (5) VGG-16"": a deep
CNN architecture with uniform convolutional layers, frequently used as a
strong baseline in audio and image classification. (6) Transformer™: a self-
attention-based model that captures global context and long-range depen-
dencies, increasingly popular in audio analysis tasks. (7) MDF-Net™: a recent
network architecture designed for fine-grained acoustic pattern learn-
ing, particularly in bioacoustic or environmental sound classifica-
tion tasks.

Figure 5 presents FBRS spectrograms for eight representative bird
species. The results demonstrate that FBRS adaptively highlights distinct
acoustic patterns in each species, for instance, broadband chirps, tonal
syllables, or harmonic bands, while maintaining a coherent structure across
samples. This species-aware adaptivity reflects the ecological and perceptual
diversity of bird calls, and enhances feature discriminability. These FBRS
will be used as inputs to each of the competition models. All models were
trained and evaluated under the same experimental settings for a fair
comparison, including identical input features, training procedures, and
evaluation metrics. The four primary metrics used for performance
assessment are AR, PR, RR, and F1-S. The experimental results are pre-
sented in Table 4.

DLoGNet achieves the highest overall performance, tying with the
Transformer in terms of AR and F1-Score (91.18% and 91.16%,
respectively), and slightly outperforming all other models in recall and
precision. CNN-LSTM, VGG-16, and MDEF-Net show competitive
results, indicating that both temporal modeling and deep CNN-based
structures are effective for bird sound classification. The Transformer
model, although non-convolutional, performs on par with DLoGNet,
validating the strength of self-attention in handling sequential acoustic
patterns. Standard CNN and LSTM models achieve relatively lower
performance, which highlights the limitations of using either spatial or
temporal modeling in isolation. The consistently high performance of
DLoGNet across all metrics demonstrates the effectiveness of the pro-
posed directional and interpretable convolutional architecture in cap-
turing structured acoustic features relevant for bird vocalization
classification. These results collectively emphasize the utility of DLoGNet
as a robust and interpretable solution for fine-grained acoustic recog-
nition tasks, outperforming or matching even state-of-the-art archi-
tectures across all major evaluation criteria.

Figure 6 presents the confusion matrices of all models evaluated in
this study. These visualizations offer detailed insight into how each model
performs across the eight bird species, beyond aggregate accuracy

metrics. Among all models, DLoGNet (Fig. 6a) shows the most distinctive
diagonal dominance, indicating a strong alignment between predicted
and actual classes. Misclassifications are minimal, and even in classes that
are acoustically similar (such as class 3 and class 7), DLoGNet demon-
strates excellent separation. For example, in class 5 and class 6, which
exhibit overlapping frequency patterns, DLoGNet reduces confusion
significantly compared to other models. This highlights its capacity to
extract localized directional cues and structural patterns in bird vocali-
zations, thanks to the integration of directional LoG kernels. Further-
more, the model appears robust not only in identifying distinct species
but also in maintaining stability across classes with relatively low inter-
class variance.

In contrast, the standard CNN and LSTM models (Fig. 6b, c) exhibit
more dispersed misclassifications, especially in acoustically dense regions
such as classes 4-6. Their reliance on either purely spatial (CNN) or tem-
poral (LSTM) features limits their ability to resolve fine-grained spectral
differences. The CNN-LSTM hybrid model (Fig. 6d) improves upon its
component networks by reducing confusion in several classes, yet still falls
short of DLoGNet’s consistency and precision. EfficientNet and VGG-16
(Fig. 6e, f), while achieving relatively high accuracy, exhibit moderate con-
fusion in classes with subtle vocal differences. This suggests that deeper or
more parameter-efficient CNNs alone may not fully capture the directional
properties of bird sounds. Transformer and MDF-Net (Fig. 6g, h) both show
strong performance, with confusion matrices that resemble DLoGNet’s in
clarity. However, DLoGNet matches or exceeds their classification precision
with a more interpretable and specialized architecture tailored for structured
acoustic signals.

To further investigate the behavior and internal mechanisms of the
proposed DLoGNet, we visualized the learned parameters 6 (orientation)
and o (scale) from each directional LoG convolutional layer. Table 5
summarizes the values of the four directional angles (01 to 64) and the
corresponding scale parameter ¢. Across all layers, the 0 values are dis-
tributed approximately around the canonical orientations of 0, 77/4, 7/2,
and 37/4, with slight variations induced by data-driven learning. This
indicates that although the network was initialized with standard direc-
tions, it effectively fine-tuned the orientation parameters to better align
with the dominant edge or structure directions present in bird vocali-
zation spectrograms. Notably, 01 in deeper layers (e.g., DLoG-4 and
DLoG-5) deviates slightly from 0, suggesting that even low-frequency
directional filters are adjusted to capture nuanced diagonal trends. The
mid-range 6 values (e.g., 02 =0.77, 03 = 1.56) remain relatively stable
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Fig. 5 | FBRS spectrograms of eight representative bird species. a Barswa, b benher, ¢ bkwsti, d blrwarl, e comgre, f comkinl, g commoo3, and h comros. Each FBRS
highlights species-specific acoustic patterns such as broadband chirps, tonal syllables, or harmonic stacks, illustrating the adaptive nature of the representation.

across layers DLoG-2 to DLoG-4, indicating consistent detection of
oblique patterns throughout the hierarchy. These directions likely cor-
respond to typical ascending or descending chirp trajectories in bird
sound spectrograms. The scale parameter o shows a clear increasing
trend from DLoG-1 (1.2955) to DLoG-4 (1.4161), suggesting that higher
layers tend to learn broader receptive fields. This is consistent with the
hierarchical nature of deep networks, where deeper layers are expected to
capture more abstract, large-scale patterns. Interestingly, DLoG-5 exhi-
bits a slight decrease in g, potentially reflecting a refinement stage that re-
focuses on mid-scale frequency modulations. To evaluate the consistency
of the learned orientation and scale parameters, we repeated the training

process five times under identical settings but with different random
seeds. Figure 7 shows the parameter values of the final DLoG layer. The
results indicate that while minor fluctuations occur, the directional
spread (01 to 64) and scale ¢ values remain highly stable across runs,
supporting the reproducibility of the interpretability-related features.
Figure 8 visualizes the convolutional responses from the first DLoG
layer, corresponding to four learnable orientations. Each subfigure
represents the output feature map generated by one of the four DLoG
kernels when convolved with a spectrogram input. As shown in the
figure, each directional filter produces distinct activation patterns,
highlighting different structural aspects of the bird vocalization signal: (1)
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with minimal misclassification, especially in acoustically similar classes, indicating
its superior discriminative capability.

Table 5 | 6 and ¢ values at different number of layers

Layer 01 02 03 04 4

DLoG-1 0.0103 0.8087 1.5711 2.3420 1.2955
DLoG-2 —0.0048 0.7795 1.5627 2.3651 1.3549
DLoG-3 —0.0067 0.7709 1.56597 2.3627 1.3743
DLoG-4 —0.0294 0.7755 1.5782 2.3692 1.4161
DLoG-5 —0.0069 0.6901 1.5937 2.4356 1.3762

Top-left (Direction ~0°): the filter emphasizes vertical structures, such as
sharp onset harmonics or sudden changes in frequency. These features
often correspond to transient events or tone bursts typical of chirps or
short calls. (2) Top-right (Direction ~45°): the convolution output cap-
tures diagonal upward trends, which align well with ascending frequency
modulations frequently observed in species with gliding or rising syllable
trajectories. (3) Bottom-left (Direction ~90°): this orientation highlights
horizontal components and smoother frequency bands. It is particularly
responsive to steady or slowly varying tonal segments, capturing the
sustained portions of bird calls. (4) Bottom-right (Direction ~135°): the
filter reacts to downward-sloping patterns, effectively detecting des-
cending chirps or harmonic decays. These patterns are especially
important for distinguishing certain species with descending syllabic
contours. Importantly, the outputs reveal that each DLoG kernel focuses
on a distinct directional structure in the spectrogram, allowing the model
to comprehensively encode orientation-specific information. This
behavior closely mirrors the principles of biological vision systems, where
orientation-selective neurons in early visual cortices play a critical role in
edge detection.

To further illustrate how the network makes classification decisions, we
present Grad-CAM visualizations for CNN, VGG-16, and DLoGNet in
Fig. 9. The heatmaps reveal that DLoGNet focuses on coherent spectral
structures that align with characteristic vocal patterns, such as chirps or
harmonics, whereas CNN and VGG-16 exhibit more dispersed or less
interpretable attention. This result highlights the decision transparency and
structural awareness enabled by the directional convolution mechanism in
DLoGNet. These interpretability tools allow us to qualitatively assess whe-
ther the model focuses on spectrotemporal regions that are biologically

2.5 ‘:jch;=:’
2
1<
1
0.5
0 — ) 1 Simm | |
01 62 03 04 c
-0.5
test-1 test-2  test-3  test-4 [ test-5

Fig. 7 | Learned directional angles and scale parameters of DLoG kernels across
multiple training runs. Directional angles (61-64) and scale (o) are shown from five
independent training trials. Despite random initialization, the parameters exhibit
consistent convergence patterns, confirming the robustness of directional feature
learning.

meaningful for species identification, such as stable harmonics or high-
energy burst segments.

Discussion

In this study, we introduced a novel deep learning framework for bird sound
recognition that combines multi-scale texture modeling with interpretable
architecture design. Specifically, the proposed DLoGNet incorporates
DLoG convolutions, enabling the network to extract orientation- and scale-
sensitive features from time-frequency representations. Complementing
this, we developed the FBRS, which adaptively highlights informative
spectral bands based on energy distribution from wavelet packet decom-
position. Extensive quantitative experiments validate the effectiveness of our
approach. Compared with baseline models, DLoGNet with FBRS input
achieved the highest classification accuracy of 91.18%, outperforming CNN
(87.82%), LSTM (87.64%), CNN-LSTM (90.41%), and EfficientNet
(89.82%). Additionally, DLoGNet demonstrated competitive or superior
performance compared to VGG-16 (90.52%), Transformer (91.18%), and
MDEF-Net (91.16%) across multiple metrics, including precision, recall, and
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Fig. 9 | Grad-CAM visualizations of class-discriminative regions across different
models. a CNN, b VGG-16, and ¢ DLoGNet. Compared to CNN and VGG-16,
DLoGNet focuses more precisely on structurally salient regions such as harmonics

(o)

and modulated syllables, indicating improved interpretability and alignment with
meaningful acoustic patterns.

Fl-score. Furthermore, t-SNE visualizations of feature embeddings con-
firmed that DLoGNet learns more compact and separable clusters across
classes, while convolutional output maps illustrated the directional selec-
tivity and layer-wise feature refinement achieved through DLoG filters. The
learned parameters (6, o) showed consistent multi-scale behavior, reinfor-
cing the model’s capability for hierarchical texture extraction.

The experimental results and visual analyses presented in the pre-
ceding sections demonstrate the effectiveness and interpretability of the
proposed DLoGNet architecture for bird sound classification. By integrating
DLoG kernels into a deep learning framework, DLoGNet achieves com-
petitive performance across multiple evaluation metrics while simulta-
neously offering transparent and functionally grounded feature
representations. The model not only performs well in quantitative terms but
also exhibits meaningful behavior in parameter visualization and con-
volutional feature mapping, making it more trustworthy for use in ecological
monitoring applications.

Nevertheless, some limitations remain. First, while the directional and
scale parameters enhance model flexibility, they introduce additional
computational overhead compared to standard CNNs. Future work could
explore parameter-sharing strategies or efficient kernel approximations to
reduce the model’s runtime complexity. Second, the current framework
relies heavily on time-frequency representations as inputs, which may not
fully preserve the raw waveform characteristics or temporal dynamics. End-

to-end extensions that learn directly from raw audio or combine time-
frequency and waveform features may further enhance performance and
generalizability. Although the model’s interpretability is demonstrated
through visualization techniques, future work will involve collaboration
with ornithologists to evaluate whether the attention patterns and frequency
emphases identified by the model align with biologically and behaviorally
significant features of bird vocalizations.

Methods

General framework

Figure 10 presents the overall framework of our proposed intelligent bird
sound recognition system. The pipeline begins with acoustic signal collec-
tion, where real-world bird vocalizations are recorded using mobile or field
devices. These raw audio signals are then forwarded to an intelligent signal
processing platform, which forms the core of the system.

Within this platform, the signals undergo time-frequency transfor-
mation, producing spectrogram representations that capture both temporal
and spectral characteristics. The transformed features are subsequently
passed through a specialized deep neural network for feature extraction and
classification. The system outputs the identified bird species, which can be
displayed in real time on user devices. Beyond real-time identification, the
platform also supports expert-guided analysis and model refinement.
Experts can examine model outputs and intermediate feature maps to gain
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Fig. 10 | Schematic diagram of the proposed bird
sound identification framework. The system
includes stages of acoustic signal acquisition, time-
frequency transformation using FBRS, feature
extraction via DLoGNet, and final species
classification.
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biological or acoustic insights. Meanwhile, researchers and developers can
use these insights to iteratively improve the network architecture, thereby
enabling a feedback-driven model optimization loop.

More interpretive time-frequency analysis

Bird vocalizations are inherently nonstationary signals, exhibiting rapid
modulations, temporal discontinuities, and energy concentration in
specific frequency bands. These properties make time-frequency
representations more suitable than raw waveforms for modeling such
signals. In this study, we propose a novel representation, which builds
upon wavelet packet decomposition (WPD) and incorporates percep-
tually guided, energy-driven sub-band selection. Unlike standard WPD
applications, FBRS is tailored to the acoustic structure of bird calls,
adaptively retaining only the most ecologically meaningful frequency
components. The computational flowchart and pseudo-code are shown
in Figs. 11 and 12.

Given an input signal x(t), we first decompose it using an L-level
wavelet packet tree. Each node in the decomposition corresponds to a sub-
band with fixed frequency resolution. For any wavelet packet series D;x(f), it
can be decomposed into the orthogonal sum of the following WPD com-
ponents according to Eq. (5).

Dyj(t) = Y M wy (P =), m = 0,1,..,20 (g
n

where w, € L*(R), n>0, it can be defined as follows:

{

Won = ﬁ ' Zkhk : Wn(Zt - k)

6
W2n+1 = \/E ° Zk(_l)khl,k . W”(Zt — k) ( )

where w, = ¢(t) (scale function), w; = y(t) (wavelet function).
For each terminal node, we define its energy as:

2k—1 2k—1

E,(x(1) = Y E,(cp0) = Y E,(&"(0) @)
m=0 m=0

where x¥ (i) denotes the discrete signal of the subspace signal X, ,,. The
normalized energy is then computed as:

Et’l

2 E,

®)

i

This normalization ensures fair comparison across bands. Subse-
quently, we sort the energy values in descending order to identify the most
relevant sub-bands:

SE, (m) = sort(E) = sort(E,, E,, ..., E,t) 9)
where sort(-) represents the descending sorting operator.

Due to the hierarchical nature of wavelet packet trees, two sibling nodes
(e.g., node 10 and node 11) must be processed jointly. This “symbiotic
constraint” ensures the completeness of inverse reconstruction. When a
child node is selected based on energy, its sibling is simultaneously paired to
form a full-band filter, and their parent is marked as consumed. As shown in
Fig. 11, the iterative procedure involves: (1) Selecting the most energetic
node-pair; (2) Reconstructing their parent signal; and (3) Updating the filter
frequency resolution accordingly. Let the minimum frequency resolution
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Fig. 11 | Computational flow of the proposed FBRS. The top section illustrates the overall architecture from signal decomposition to sub-band selection, while the bottom
section presents an example of wavelet packet-based filter construction under the energy-guided iterative strategy.

after decomposition be:
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Afmin:_

where f is the sampling rate. After each iteration, the active node set
is updated, and filters H,(f), H,(f)... are formed. The maximum

(10)

efficiency.

number of iterations is strictly less than L, improving computational
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Fig. 12 | Pseudo-code of the FBRS algorithm. The

Algorithm: Frequency Band Recalibration Spectrogram

code outlines the iterative procedure for energy-
based sub-band selection and reconstruction within
the wavelet packet decomposition tree, highlighting

Input: Signal X(?); Wavelet packet decomposition level L; Reserved component energy ratio Er

Output: Frequency band recalibration spectrogram FBRS

key steps such as energy sorting, sibling node pair-
ing, and adaptive filter construction.

// Step 1: Signal pre-emphasis
1 PX(t)=X(t) .* H(z); // H(z) is the pre-emphasis filter

// Step 2: Signal windowing

2 WX(n)=PX() * W(n), /| W(n) is the windowing function
// Step 3: Signal power spectrum calculation

3 Compute PSX;(n) for 1 < i < N,,; // Ny, is the number of windows
// Step 4: FBRS filter Frggs calculation

Compute the L layer decomposition components of X(?);
for(i=Lto1)do

Standardize and sort the E,, (t) to obtain SE,,(t);

if (all nodes meet the Symbiotic Relationship) then

break;

10 end if

4
5
6 Compute the component energy E,, (t);
7
8
9

11 Establish the filters with resolution of 2¢ for the component nodes of SE,,(t) = Er, and the
filters for the symbiotic nodes have the same resolution;

12 Reconstruct the node components of the i layer to the i — 1 layer, and nodes with existing
filters do not participate in this operation;

13 end for

// Step 5: Compute FBRS

14 Return FBRS.

Once the signal is passed through the constructed adaptive filter bank
{H;(f)}, we compute the frequency-domain energy response:

ER(j) = Y _P(OH(K),j =0,1,....] (11)
k

where P(k) is the power spectrum matrix of the input signal.

The logarithmic amplitude spectrum compresses the dynamic range of
the frequency-domain signals, equalizes the amplitude differences in the
frequency bands, and also improves the computational stability. The final
FBRS is calculated as follows:

FBRS = log(ER(j)) = log(> _ P(k)H(k)) (12)
k

The advantages over uniform presentation can be summarized as
follows: (1) Weighting of irrelevant or low-energy bands is discarded or
reduced. (2) Band selection follows the actual energy structure of the
signal rather than a fixed frequency partition. (3) Each filter can be traced
back to a wavelet packet node, allowing one to understand the structure
of the resulting spectrogram from a physical point of view. In this study,
the wavelet packet decomposition for FBRS construction is performed
using the Daubechies 16 (db16) wavelet, with the number of decom-
position levels L set to 8. This setting provides a fine-grained spectral
resolution and has shown reliable performance across diverse bird
vocalization patterns.

Deep learning model with more transparency

CNNs are widely used for time-frequency analysis in audio classifi-
cation, learning local patterns related to energy, rhythm, and fre-
quency transitions. However, standard convolutional kernels are
primarily sensitive to intensity, limiting their ability to capture
structural or directional features. To overcome this, we propose the
DLoGNet, which replaces conventional filters with DLoG kernels that

respond to oriented curvature and frequency-edge structures,
enabling both functional specificity and interpretability.

The Laplacian of Gaussian (LoG)* function is a classical image pro-
cessing operator used for blob detection and edge enhancement. It is defined
as the second spatial derivative of a Gaussian-smoothed signal:

LoG(x, y; 0) = V*G(x, y; 0) (13)
where G(x, y; 0) is a two-dimensional Gaussian function defined as:
xZ + y2
Glx,y;0) = 772 P (— oy ) (14)
Combining the 2 equations above gives the full expression:
x2+y2—202 x2+y2
LoG(x,y;0) = {T] exp (— 35 ) (15)

Although the standard LoG performs well in edge detection, its iso-
tropic property (i.e., responds equally to all directions) leads to limitations in
capturing structural changes in specific directions™. For this reason, a
directional derivative version of LoG is proposed in this paper, which makes
the filter more sensitive to gray scale changes in a specified direction by
introducing a second-order derivative operator in any direction. Let the
direction vector be:

n = (cos 6, sin 6) (16)
Then the second order derivative along the direction 7 can be expressed
as:

2

0
DLoG(x, y; 0;0) = —G = nTHGn

on2 (17)
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Fig. 13 | Comparison between isotropic LoG and
directional DLoG convolution kernels. a Standard
LoG kernel responds equally to all directions,
showing circular symmetry; b DLoG kernel at 45°
exhibits strong directional sensitivity, enhancing
edge structures along a specific orientation.

(b) DLoG (0=45°)

where H; is the Hessian matrix of the Gaussian function:

_ X2 xdy
He=12s 2 (18)
dyox 9y’
In summary, the following equation is obtained:
o°G o°G °G
DLoG(x, y; 0; 0) = cos’0 - W-}— sin?6 - B_y2+ 2 sin 0 cos 0 - w
(19)

A schematic comparison of LOG and DLOG is given in Fig. 13. The
DLoG proposed in this paper achieves sensitive enhancement of structural
changes in images in any direction by introducing a controllable direction
second-order derivative operator based on standard Gaussian smoothing. The
method not only possesses good theoretical interpretability, but also enhances
the feature extraction capability in the form of low parametric quantities in
deep neural networks, which is particularly suitable for the recognition task of
directional structures such as edges, patches, and line textures.

More importantly for DLoG, the angle § and scale ¢ parameters can be
set as learnable parameters in the neural network, so that the model can
adapt to the optimal direction and scale during the training process to
improve the feature expression ability and model performance. During the
training process of the neural network, according to the chain derivation
law, ¢ and 6 are updated as follows:

§ =W _ .  _oh_ oDLoG
0 7 90 ~ oh 0dDLoG do (20)
8§, =% _ 9 _oh_ 3DLG
6 — 90 — Oh " ODLoG =~ 00
o<«—o0—1Ir-o
(21)
0«0-—1Ir-0

where Ir is the learning rate.

In the proposed DLoG, the kernel is fully differentiable with respect to
both the orientation angle 0 and the scale ¢ parameter. The derivatives are
explicitly formulated, enabling end-to-end learning of directional and scale-
sensitive features. The partial derivatives of ¢ and 0 in DLOG can be
expressed as follows:

e ’ / 45°

1™\

135°

Frequency

A . > o

Time

Fig. 14 | Mechanism of directional sensitivity in DLoG kernels across multiple
orientations. Each filter is tuned to a specific angle and responds selectively to
spectrotemporal structures aligned with that orientation, enabling enhanced
detection of ascending, descending, vertical, and horizontal acoustic patterns in bird
vocalizations.

Bird vocalization spectrograms often contain curved and sloped
structures that correspond to pitch changes, syllable contours, or harmonic
transitions. Standard convolutional kernels are isotropic and cannot dis-
tinguish between horizontal, vertical, or diagonal patterns. As shown in
Fig. 14, in contrast, the proposed Directional LoG filters act like specialized
“acoustic edge detectors” that can highlight frequency rising patterns (e.g.,
ascending chirps), falling contours (e.g., glides or descents), and even hor-
izontal harmonics. By learning the optimal direction () and scale (o), the
model can adaptively focus on the spectral geometries most relevant to
species identification.

Based on the directional sensitivity and scale-adaptive properties
of the DLoG kernel, we propose a novel network architecture, termed
DLoGNet, for feature extraction and classification tasks. The
DLoGNet is constructed by sequentially stacking multiple basic
DLoG convolution modules (BDCMs) to form a deep hierarchy of
directional and scale-aware feature representations, followed by a
fully connected classifier for decision making.

The structure of BDCM is illustrated in Fig. 15. Each BDCM
consists of four directional branches, corresponding to initial angles
of 0°, 45° 90° and 135°. These angles are not fixed, rather, they are
learnable parameters that are optimized during training, allowing the

0DLoG 2, 090G ., 9G, dG,, network to dynamically adapt to the most discriminative orientations
= Rt SUEPN1 /4 i 2 22
% s 0 o0 +sin’¢ 90 +2sin § cos 6 90 (22) in the data. In each branch, the input feature map X is first processed
by a DLoG kernel with a learnable orientation 6 and scale o, for-
3DLoG mulated as:
890 =—2sin6cos 0-G,, +2sinfcos -G, + 2(cos*6 — sin’6) - G,y
(23) Fg(LT"G = DLoG Kernel(X; 0, o) (24)
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Fig. 15 | Architecture of the basic DLoG con-
volution module (BDCM). Each directional branch

Reduction of low-frequency

. . . . . DLoG
captures features aligned with a specific orientation —_— information loss
(e.g., horizontal, diagonal, vertical), mimicking early o (skip connection)
visual edge detectors. The outputs are fused and \ \w
. 00
processed through a standard convolution layer for 0
higher-level feature integration.
—
y )
L//45°
—— Concat > @ >
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Input /\,) » Channel interactions Output
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—
[ \\\
s
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Subsequently, multiple DLoG features with different orientations are ~ Table 6 | Structural parameters of DLoGNet
spliced to form multiscale texture features, and to reduce the risk of losing
important low-frequency information during directional convolution, we ~—_Laver (type) 2 2D
introduce a skip connection that concatenates the input feature map with ~ BDCM-1 DLoG-1 [-1, 4,128, 128]
the directional DLoG outputs before further processing. This residual Conv-1 (3*3) [-1,64, 128, 128]
concatenation helps preserve fundamental acoustic components and enri-  gatchNorm2d-1 + ReLU- [—1, 64, 64, 64]
ches the combined representation by retaining both unfiltered and direc- 1 4+ MaxPool2d-1
tiona]ly enhanced structures. BDCM-2 DL0G-2 [71’ 256, 64, 64]
DLoG DLoG DLOG DLoG DLoG Conv-2 (3*3) [-1,128, 64, 64]
oG __ 0 0 0 0
F7% = concat(Fo, 5", Foy g, Fos g Foug ) + X (25 BatonNorm2d-2 + ReLU- [—1, 128, 32, 32]
2 4+ MaxPool2d-2
Alfter processirllg through all direfctional branchhes, a sltandard 3x3 BDCM-3 DLoG-3 [-1,512, 32, 32]
I} ion i it DL I nhan n
convo, ‘utlo s app ed .to the DLoG featu es to enhance local context Conv-339) [1,128,32,82]
modeling and nonlinearity. The final output Y is as follows:
BatchNorm2d-3 + RelLU- [-1,128, 16, 16]
DLoG 3 + MaxPool2d-3
_ ol
Y = Convs 5 (F7) (26)  “Bocma DLoG-4 [-1, 512, 16, 16]
. . . Conv-4 (3*3 —1,128, 16, 16
The overall architecture of DLoGNet consists of five consecutive v-4879) [ ]
BDCMs, each responsible for progressively capturing higher-level structura] ~ BatchNorm2d-4 -+ ReLU- [1,1128,8, 8]
. . . 4 4+ MaxPool2d-4
patterns in the input signal. The structure and parameters of the DLoGNet
used in this study are given in Table 6. Mathematically, the output of the i-th ~ BPCM-5 DLoG-5 [-1,512,8,8]
DLoG convolution module can be represented as: Conv-5 (3*3) [-1,64,8,8]
BatchNorm2d-5 + ReLU- [-1,64, 4, 4]
Y; = MaxPooling(ReLU(DLoGConv(Y;_,;6;,0;) + b,)),i = 1,2,...,5 S+ MaxPool2d-5
Fully connected layer-1 [-1,1024]
(27)
Fully connected layer-2 [-1,8]

After passing through the DLoG convolutional stack, the final feature
map Y is globally pooled and fed into a fully connected (FC) layer for
classification:

z = FC(GlobalPooling(Y)) (28)
The predicted class probabilities are then obtained by applying the
softmax function:

y = softmax(z) (29)

The complete DLoGNet thus embodies two key principles: (1) Pro-
gressive directional feature extraction through a deep hierarchy of learnable
DLoG filters. (2) End-to-end learning of orientation and scale parameters (6,

0) alongside classification weights, allowing the network to adaptively
emphasize semantically relevant structures.

The overall training objective is to minimize the standard cross-
entropy loss between predicted and true labels:
c
y==2>_7. log(7.) (30)
c=1
where Cis the number of target classes, y, is the ground truth label, and y.. is
the predicted probability for class c.

Data availability
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Code availability
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