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Integrated respiratory functions predict
myelin status in the mouse brain

Check for updates
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Demyelination is a common pathological feature of central nervous system (CNS) diseases, and its
early detection is important for the diagnosis of neurological disorders; therefore, simple detection
methods are in high demand. In this study, we found that both age-related myelin loss and
demyelination in disease model mice can be predicted through integrative analysis of multiple
respiratory parameters. Changes in some respiratory parameters correlated with myelin levels with
aging; however, integrative analysis using conventional models further enabled the prediction of age-
related myelin changes. In cuprizone-induced demyelination models, average respiratory values did
not differ between demyelinated and control mice. However, the integrative analysis of the respiratory
parameter set successfully distinguished demyelinated mice. Our study showed that respiratory
function data may be used as a non-invasive method to predict brain conditions in mice, although
translation to humans will require further validation. This approach shows promise as a potential
method for early disease prediction and diagnostic support for CNS diseases.

Myelin is a structure formed by oligodendrocytes, a type of glial cell in the
central nervous system (CNS), and is an essential component of neural
circuits. It ensheathes neuronal axons, enabling saltatory propagation that
accelerates neural transmission and contributes to the maintenance of
neural network homeostasis by providingmetabolic and trophic support to
axons. Therefore, alterations in myelin quantity or structure are considered
tohave a direct impact onneural function1.Demyelination, characterized by
the loss or degradation of myelin, is a hallmark pathological change in CNS
diseases such asmultiple sclerosis (MS)2 andAlzheimer’s disease (AD)3,4. In
addition, myelin abnormalities have been reported to be associated with
aging5, excessive physical activity6, and even peripheral, non-neurological
diseases7–9, leading to white matter damage in the brain. Clinically, early
remyelination is crucial for preserving neural function, as prompt myelin
repair is expected to mitigate axonal degeneration and prevent irreversible
neurological deficits10. Thus, accurate assessment of myelin status is con-
sidered beneficial for early diagnosis and timely therapeutic intervention.
However, current methods for detecting myelin status in humans rely on
positron emission tomography (PET) and diffusion magnetic resonance
imaging (MRI)11, both of which have significant limitations in terms of
accessibility, simplicity, and cost-effectiveness. MRI requires prolonged
stillness, while PET involves the administration of radioactive tracers, both
of which impose considerable physical and time burdens on patients.

Furthermore, image analysis demands specialized expertise, making these
methods unsuitable for simple or routine screening.Given these limitations,
there is a growing need, both in clinical and research contexts, for simple,
cost-effective methodologies capable of reliably predicting myelin status.

Myelin content fluctuations are closely linked to the developmental
dynamics of oligodendrocytes. Oligodendrocytes are formed through the
differentiation of their precursor cells, oligodendrocyte precursor cells
(OPCs), which are widely distributed throughout the CNS. Myelination
begins with the proliferation of OPCs, followed by differentiation into
mature oligodendrocytes, and subsequent ensheathment of axons, which
requires extensive lipid synthesis12. Traditionally, research on myelination
mechanisms has been primarily focused on molecular and cellular roles
within the CNS. For instance, leukemia inhibitory factor (LIF) derived from
astrocytes promotes OPC differentiation13, while brain-derived neuro-
trophic factor (BDNF) released from activated neurons stimulates OPCs to
myelinate14. The emphasis on CNS-derived molecular regulation of mye-
lination stems from the long-standing view that the brain, protected by the
blood-brain barrier (BBB), is functionally isolated from peripheral organs.
However, recent advances in inter-organ communication research have
revealed that CNS function can be modulated by systemic physiological
states and peripheral signals. For instance, the gut microbiota, such as
Bacteroidetes andFirmicutes, are linked to cognitive impairment, depending
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on the gut–brain communication15. Obesity, a systemic condition char-
acterized by altered inter-organ communication, may contribute to
impaired cognitive function and an increased risk of dementia later in life16.
Regardingmyelin regulation, we previously reported that peripheral factors
such as leptin17 and fibroblast growth factor (FGF) 2118, promote myelin
repair following CNS injury. Among these factors, apelin—produced
abundantly by the lungs—has been shown to promotemyelin repair in both
age-related and disease-associated demyelination19. Furthermore, accu-
mulating evidence highlights various lung–brain interactions, including
brain inflammation triggered by inhalation of lipopolysaccharide (LPS)20,
the association between aging of respiratory functions and cognitive
decline21, and even depression-like behaviors following lung resection in
non-small-cell lung cancer22. These findings prompted us to hypothesize
that myelin dynamics may be closely linked to the physiological state of
peripheral organs such as the lungs, providing a novel perspective for
understanding and detecting changes in CNS myelination.

In the present study, we aimed to explore whether morphological
changes in myelin could be predicted based on respiratory function. We
found that variations inmyelin content within the corpus callosum could
be predicted through integrative analysis of multiple respiratory para-
meters, including peak expiratory flow (PEFb), respiratory frequency (f),
and pause (PAU), with these metrics emerging as key contributing fac-
tors. The integrative analysis could also be applied to predict demyeli-
nation in the brain of the mice fed cuprizone, a well-established
demyelination reagent. These findings suggest that respiratory para-
meters may serve as a non-invasive and informative proxy for assessing
myelin status in the brain.

Results
Associationbetweenage-dependentchanges inmyelinationand
respiratory parameters
To investigate the relationship betweenmyelinmorphology and respiratory
parameters, we designed an experimental approach to visualize both
developmental changes in myelin and pathological myelin loss, and to
examine their association with respiratory function under each condition
(Fig. 1). In this study, we used partially overlapping, but not identical,
cohorts for respiratory measurements and MBP immunostaining. We first
analyzed developmental changes in myelin content by performing immu-
nohistochemical staining for myelin basic protein (MBP) in brain sections
obtained from mice at different ages (2, 4, 9, and 84 weeks). Quantitative
analysis revealed age-dependent changes in the MBP-positive area of the
corpus callosum (Fig. 2A–C), consistent with previous findings showing
that myelination increases from the early postnatal period up to adulthood,
followed by a gradual decline in older mice5. Subsequently, respiratory

function parameters of the mice (Table 1) were measured at the corre-
sponding ages.Average values of each respiratory parameterwere calculated
over the observation period (Fig. 2D), and correlation analyses were per-
formed between intergroup differences in these parameters andMBP levels
(Table 2). Intergroup variations in parameters such as enhanced pause
(Penh), pause (PAU), end inspiratory pause (EIP), time of pause (TP), and
time of break (TB) showed a correlation with age-related changes in MBP
(Penh, Spearman’s ρ = 0.8, p = 0.2; PAU, Spearman’s ρ = 0.8, p = 0.2; EIP,
Spearman’s ρ = 1,p = 0;TP, Spearman’s ρ = 0.8,p = 0.2; andTB, Spearman’s
ρ = -1, p = 0). These findings suggest that respiratory functionmay be partly
associated with myelin content in the brain.

Predicting myelin development by integrated respiratory para-
meter analysis
Since multiple respiratory parameters were associated with myelin content,
we next explored the possibility of predicting myelin levels through an
integrated analysis of these parameters.We used time-series measurements
of respiratory parameters, treating eachmeasured value obtained during the
observation period as an individual data point, to examine whether
respiratory functionwas associatedwith the state ofmyelination. To classify
the mice into four age groups, three machine learning models, a kernel
support vector machine (SVM), a k-nearest neighbor (KNN) classifier, and
a random forest (RF), trained on the training dataset, were used. Permu-
tation importance analysis for each classifier in the test set (Fig. 3A) iden-
tified PEFb and f as important features for group discrimination. The
decision boundary of eachmachine learningmodel on the test set, retrained
on data reduced to a 2-dimensional UMAP (uniform manifold approx-
imation and projection) space (Fig. 3B), indicated reasonable predictive
performance for each classifier. To quantitatively evaluate the performance
of each classifier on the test set, we calculated the macro averages of pre-
cision, recall, and F1-score (Fig. 3C). These results indicate that integrative
analysis of respiratory parameters may effectively predict age-related
changes in myelin status across all three machine learning models.

Association of pathological demyelination with respiratory
parameters
We next asked whether prediction by respiratory functions of myelin
contents is not limited to thedevelopmental change ofmyelin but alsouseful
for the pathological change of myelin formation. Mice fed cuprizone-
containing diets are widely used as demyelination models because they
exhibit demyelination primarily in the corpus callosum, the largest myeli-
nated region in the brain (Fig. 4A)23. In this study, we first confirmed
demyelination in the corpus callosumof adultmice (9 weeks) fed cuprizone
using MBP staining (Fig. 4B, C). We then measured spontaneous

Fig. 1 | Experimental design. The study consists of two experimental paradigms to
investigate the relationship between myelin morphology and respiratory function.
In the developmental (aging) experiment, mice at different ages were evaluated for
myelin content using immunostaining and respiratory function using whole-body
plethysmography. In the pathological model, demyelinationwas induced by feeding

mice a 0.2% cuprizone (CPZ)-containing diet for 5 weeks. Respiratory measure-
ments and MBP staining were performed after treatment to assess disease-related
changes. Data from each experiment were analyzed to determine correlations
between respiratory parameters andmyelin status. Some elements of thisfigurewere
created with BioRender.com (licensed to our institution).
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respiration in the same animals and recorded each respiratory parameter.
Furthermore, we calculated the average values of each parameter and found
no significant differences in any of the respiratory parameters between the
cuprizone-treated and control groups (Fig. 4D). These findings suggest that
average respiratory parameter values may be insufficient for predicting
demyelination in disease-like conditions.

Predicting pathological demyelination by integrated respiratory
parameter analysis
We assessed whether the respiratory measurements obtained during the
observation period, treated as individual data points, were associated

with the demyelination state. Three commonly used machine learning
models (kernel SVM, KNN, and RF) were trained on the training dataset
to perform binary classification (demyelination vs. control). Permuta-
tion importance analysis of each classifier on the test set (Fig. 5A)
identified PAU as an important feature common to all three classifiers.
The decision boundary of each machine learning model on the test set
showed that all classifiers achieved good discrimination (Fig. 5B). The
receiver operating characteristic (ROC) curves for the three classifiers
showed that RF achieved the highest AUC (area under the ROC curve)
(Fig. 5C). Collectively, these data demonstrate that integrative respira-
tory function analysis may provide a robust prediction of pathology-
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Fig. 2 | Changes in myelin formation and respiratory functions with aging.
AAges (weeks) ofmice used in each experimental group.BRepresentative images of
brain sections from the mice at indicated ages. Sections were labeled with MBP.
C Quantification of MBP expression in the corpus callosum in the indicated age of
mice (n = 4).DQuantification of respiratory function measures in the indicated age
of mice (n = 5-6). Error bars represent mean ± SEM. Statistical analysis was

performed using one-way ANOVA followed by Tukey’s post-hoc test. *p < 0.05,
**p < 0.01. n.s., not significant difference. The correlation between MBP expression
and each respiratory parameter was analyzed using Spearman’s rank correlation
coefficient. Some elements of this figure were created with BioRender.com (licensed
to our institution).
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associated myelin alterations, with predictive utility that transcends
model-specific limitations.

Discussion
In this study, we demonstrated that the integration of respiratory para-
meters enables the prediction of brain myelin status in mice under both
physiological aging andpathological demyelination conditions.Thisfinding
suggests that peripheral physiological outputs, such as respiratory function,

are functionally linked to the structure of central white matter. Although
spontaneous respiration is primarily controlled by brainstem circuits24, it is
also regulatedby descendingmyelinated pathways such as the corticobulbar
and corticopontine tracts that originate in the motor cortex25. These tracts
pass through the internal capsule and cerebral peduncle, serving as conduits
between the cortex and respiratory centers. Thus, changes in their myeli-
nationmay alter signal transmission andmanifest as changes in respiratory
output. In the aging model, we found that the average values of specific
respiratory parameters were correlated with myelin levels, and integrative
analysis further identified “PEFb” and “f” as particularly effective predictors.
These results suggest that combining multiple parameters can enhance
classification accuracy. Interestingly, some respiratory parameters remained
unchanged even in older mice with reduced myelin levels, indicating that
age-related alterations in respiratory parameters are not uniform. As
respiratory function is governed by multiple cell types that undergo both
intracellular and extracellular age-related changes, it is plausible that the
extent of age-associated variation differs by parameter depending on the
balance of contributing factors. This interpretation is consistent with the
previously reported phenomenon of cell–type–specific aging within the
same organ26.

To model demyelination with pathological conditions, we employed
cuprizone-induced demyelination in mice. In this model, while average
values of respiratory parameters did not differ significantly between control
and demyelinated mice, specific parameters such as “PAU” contributed
strongly to classification accuracy via machine learning. This suggests that
pathological demyelination induces changes in respiratory control that are
not reflected inmean values. The differences in respiratory profiles between
the aging and disease models may reflect not only variations in factors
associated with pathological features, such as inflammation, but also dif-
ferences in the rate of demyelination. Gradualmyelin loss during agingmay
allow time for functional adaptation, whereas abrupt pathological demye-
lination may lead to the capacity for neural compensation being exceeded,
unmasking latent dysfunction. AlthoughOPCs are preserved andmaintain
their proliferative capacity in aged animals27, OPC loss has been reported in

Table 1 | Respiratory Function Measurements

Feature Abbreviation Unit Definition Machine learning

Inspiratory time Ti sec Time from start to end of inspiration

Expiratory time Te sec Time from start to end of expiration

Enhanced pause *1Penh N/A Indicator of airway hyperresponsiveness ✓

Pause *2PAU N/A Index of bronchoconstriction ✓

End inspiratory pause EIP ms Pause between the end of inspiration and the start of expiration ✓

End expiratory pause EEP ms Pause between the end of expiration and the start of next inspiration ✓

Time of pause TP % Percentage of breath spent in the pause between expiration and inspiration ✓

Tidal volume TV mL Inhaled volume per breath

Peak inspiratory flow PIFb mL/sec Maximum inspiratory flow rate during one breath ✓

Minute volume *3MV mL/min Product of tidal volume (TV) and respiratory rate

Peak expiratory flow PEFb mL/sec Maximum expiratory flow rate during one breath ✓

Relaxation time Tr sec Time from start of expiration until 70% of tidal volume is expired

Expiratory flow at 50% of tidal
volume

EF50 mL/sec Expiratory flow rate at 50%of tidal volume; an indicator of bronchoconstriction

Time of break TB % Percentage of respiratory cycle spent in the pause between expiration and
inspiration

Respiratory frequency f breaths/min Number of breaths per minute ✓

Ratio of time to peak
expiratory Flow

*4Rpef N/A Ratio of time from start of exhalation to peak expiratory flow divided by
expiratory time (Te)

✓

*1Penh = ((Te/Tr)-1) × PEFb/PIFb.
*2PAU = Te/Tr-1.
*3MV = TV × F.
*4Rpef = Time from the onset of expiration to PEF/Te.

Table 2 | Correlation coefficient betweenMBP expression and
respiratory function

Pearson
correlation
coefficient

Kendall’s rank
correlation
coefficient

Spearman’s rank
correlation coefficient

Ti 0.673 0.333 0.4

Te 0.588 0.333 0.4

Penh 0.921 0.667 0.8

PAU 0.929 0.667 0.8

EIP 0.916 1 1

EEP 0.708 0.333 0.4

TP 0.868 0.667 0.8

TVb −0.321 0 −0.2

PIFb −0.340 −0.333 −0.4

MVb −0.408 −0.333 −0.4

PEFb −0.299 0 −0.2

Tr −0.079 0 −0.2

EF50 −0.298 −0.333 −0.4

TB −0.806 −1 −1

f −0.775 −0.333 −0.4

Rpef −0.267 0 0.2
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disease models28. Moreover, oligodendrocytes contribute not only to mye-
lination but also to BBB maintenance29 and metabolic support for sur-
rounding cells, including neurons30, suggesting that CNS–lung
communicationmaybeaffectedbymechanismsbeyondMBP level changes.
Reports of the “clinico-radiological paradox”, in which demyelination or
axonal damage occurs without overt clinical symptoms31, also support the
idea that compensatory neural mechanisms are at play. Notably, the ability
to predict myelin status from respiratory data in both aging and disease
models highlights the robustness and generalizability of this phenomenon.
Despite differences in the demyelination mechanisms and kinetics, the
consistent classification accuracy across models suggests that respiratory
patterns universally reflect white matter integrity in the brain.

This study has several limitations. First, our machine learning
evaluation primarily reflects within-subject temporal prediction.
Because the train-test split was performed chronologically within each
animal, generalization to completely unseen subjects remain untested,
and themodelsmay capture subject-specific patterns that do not readily

generalize. Second, respiratory measurements and MBP immunos-
taining were conducted in partially overlapping, but not identical,
cohorts. Although animals were matched by age and treatment dura-
tion, the absence of fully paired datasets limits the ability to perform
individual-level correlations between respiratory features and myelin
status. Third, limitations inherent to the cuprizone model should be
noted. Although demyelination is most prominent in the corpus cal-
losum, other white matter regions are also affected, and cuprizone
targets not only oligodendrocytes but also other glial and immune
cells32. Thus, more selective approaches, such as toxin-induced focal
demyelination or oligodendrocyte-specific depletion, would be
required to draw conclusions that are strictly corpus callosum- or
oligodendrocyte-specific. Fourth,MBP immunostaining reflectsmyelin
protein abundance but does not provide detailed information on
ultrastructural morphology. We did not incorporate numerical data
derived from electron microscopy into the current machine learning
models, which were constructed solely based on MBP-derived
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measures. Therefore, it remains unclear whether the samemodels could
accurately predict other indices of myelin integrity. Finally, although
the corpus callosum ROI was defined with reference to a standard atlas,
we cannot completely exclude minor involvement of adjacent white
matter in the MBP quantification, which should be considered when
interpreting the results.

Despite these limitations, our findings provide new evidence sup-
porting the concept of the “lung-brain axis,” in which bidirectional com-
munication between the respiratory and nervous systems plays a functional
role. Notably, the lungs have been shown to regulate brain function via
humoral factors. For instance, the lung microbiome modulates auto-
immune inflammation in the brain in experimental autoimmune ence-
phalomyelitis (EAE), an animal model of MS33. Apelin, a lung-derived
secreted factor, promotes central myelin repair under both aging and
pathological conditions19. In contrast, the present study revealed a func-
tional association between respiratory dynamics and myelin status in the
brain. This finding supports the concept that inter-organ communication is
mediated not only bymolecular signaling but also by systemic physiological
outputs such as peripheral respiratory patterns. The fact that a physiological
and non-invasive parameter like breathing pattern can be used to estimate
CNS white matter status offers significant potential for future clinical

applications. In the future, comparing respiratory data withMRI findings in
elderly individuals or patients with demyelinating diseases such as MSmay
enable the development of simple, non-invasive screening and monitoring
tools. Respiratory parameters may also serve to predict the efficacy of
remyelination therapies, such as clemastine34, and to guide therapeutic
decisions. More broadly, this approach could lead to the development of
generalizable biomarkers applicable to several CNS diseases, including
dementia and depression, with the potential for early diagnosis, disease
monitoring, and therapeutic evaluation.

Methods
Mice
All experimental procedureswere approved by theCommittee on theEthics
of Animal Experiments of the National Institute of Neuroscience, National
Center of Neurology and Psychiatry (2024030R1). Male C57BL/6 J mice
were obtained fromTokyoLaboratoryAnimal Science and JapanSLC.Mice
were housed in an air-conditioned room at 23 ± 1°C with a 12 h light–dark
cycle under specific pathogen-free conditions. They had free access to water
and standard chow throughout the study period. All analyses were per-
formed by investigators blinded to the experimental groups. The experi-
mental unit was a single mouse.
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demyelinationmice. ACondition ofmice used in this experiment.BRepresentative
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each mouse (n = 3). D Quantification of respiratory function measures of each
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Cuprizone-induced demyelination model
Four-week-old mice were fed a diet containing 0.2% (w/w) cuprizone
(Sigma-Aldrich, C9012) for 5 weeks35. The cuprizone-containing diet was
refrigerated and replacedwith fresh food every day. Experimental unitswere
randomly assigned to control and treatment groups by the experimenter.
Throughout the experimental period, body weight was monitored, and the
changes observed were consistent with those reported previously (data not
shown)36,37. Body weight was not included as a covariate in the analyses.

Immunohistochemistry
Mice were transcardially perfused with phosphate-buffered saline (PBS),
followed by 4% paraformaldehyde in PBS. The brains were subsequently
immersed in 20% and then 30% sucrose in PBS, each for 24 hours at 4°C.
The tissues were embedded in Tissue-Tek® O.C.T. Compound (Sakura
Finetek), and serial coronal sections (25 µm thick) were cut in the anterior-

to-posterior direction from bregma −0.13mm to −2.3mm and mounted
on TOMO® Adhesion Microscope Slides (Matsunami Glass). For myelin
basic protein (MBP) staining, sections were incubated in PBS containing
0.3% Triton X-100 and 3% normal donkey serum for 30minutes at room
temperature. The sections were incubated with anti-MBP antibody (1:400,
Abcam, ab7349), followed by Alexa Fluor 488-conjugated donkey anti-rat
IgG secondary antibody (1:500, Thermo Fisher Scientific, A21208) for
2.5 hour at room temperature. Images were acquired using a fluorescence
microscopes (Olympus, BX53, FV3000).

To quantify the MBP-positive area, we used ImageJ (National
Institutes of Health) to calculate the proportion of MBP-positive regions
within the corpus callosum. MBP-positive regions were defined as pixels
exceeding a predetermined signal threshold. The corpus callosum ROI
was delineated with reference to a standard mouse brain atlas, ensuring
that the entire corpus callosum was consistently included across animals.
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For each animal, the mean MBP-positive area was obtained from at least
six coronal sections, each spaced at least 100 μm apart. No explicit
adjustment was made for age-related differences in overall brain size.
Quantification was performed using sections of anatomically matched
coronal levels for all animals. Each section was confirmed to have uni-
form staining quality across samples using Black Gold, an independent
myelin marker (data not shown).

Whole-body plethysmography
Respiratory function was assessed using unrestrained whole-body ple-
thysmography (2-Site System-Mouse, Buxco® FinePointe, DSI) in con-
scious, freely moving mice. Before measurement, mice were acclimated to
the plethysmography chamber for 5minutes, and respiratory parameters
were recorded for 60minutes under roomair conditions. Allmeasurements
were performed during the light cycle at room temperature, and animals
were monitored throughout the procedure to minimize stress. All para-
meters were automatically calculated, collected, and analyzed using the
associated FinePointe Software (DSI). Each parameter was averaged over a
10-second interval, and the mean value from each interval was treated as a
single data point.

Preprocessing of respiratory data
For the respiratory data obtained fromboth aging and demyelinationmodels,
a rejection index (Rinx) was employed to filter out unreliable data points
within continuous time intervals. The Rinx is defined as the ratio of excluded
wave counts to total wave counts within a 10-second interval. Specifically, the
longest interval with a median Rinx ≤ 20% was selected backward from the
final data point, as data collected during later time intervals tend to be more
reliable than those from earlier intervals. Subsequently, among the 20 para-
meters (features) obtained from the system, environmental parameters and
derived features calculated from other features were excluded. Features with
variance < 0.001 across all samples were also removed. For the time-series
analysis, only trendingdatapointswere selected by calculating autocorrelation
for each feature, yieldingamaximumofnine features (Table 1).Missing values
andoutlierswere thenaddressed through linear interpolation.Finally, a sliding
windowof size 10was applied across the entire time interval with a step size of
one to compute themeanandstandarddeviationof each feature.Additionally,
the difference between adjacent data pointswas incorporated as a new feature.
To ensure comparability across features, each feature was standardized. The
total number of data points was 6873 for the aging model and 3043 for the
demyelination model.

Supervised machine learning
Each preprocessed dataset from the two models was split into training and
test sets at a ratio of 70% to 30%, respectively. The training set was tem-
porally positioned before the test set, and stratification was performed to
preserve class label proportions. The main reason for this setting is that our
primary objective is to predict future states/labels from preceding temporal
patterns within the same subject, which reflects the intended real-world
application of our model. In clinical or monitoring scenarios, the model
would be deployed to forecast future outcomes for an individual based on
their own historical data. Therefore, our evaluation focuses on temporal
generalization (predicting unseen time points) rather than cross-subject
generalization (predicting unseen individuals). On the other hand, there are
a few limitations: (1) our current evaluation does not fully address the
model’s performance on completely unseen animals/subjects. The reported
metrics primarily reflect within-subject temporal prediction capability, and
(2) themodelmay capture subject-specific patterns that do not generalize to
new individuals.

We then employed three supervisedmachine learningmodels: a kernel
support vector machine (SVM) with a radial basis function, a k-nearest
neighbor (KNN) classifier, and a random forest (RF) algorithm. The
hyperparameters for each machine learning model were optimized using
grid search with 5-fold cross-validation that accounted for the time-series
nature of the data. To evaluate predictive performance, we used precision

and recall metrics. Precision is calculated as the ratio of true positives to all
positive predictions, and recall is calculated as the ratio of true positives to all
actual positives. In addition, to assessbalancedperformance,weused theF1-
score,which is defined as theharmonicmeanof precision and recallmetrics.

Statistical analysis
All statistical analyses are detailed in the figure legends. Student’s t-test and
one-way analysis of variance (ANOVA) followed by Tukey–Kramer post
hoc test were performed using Prism 10 (GraphPad software). A p-
value < 0.05 was considered statistically significant. Data are presented as
mean ± standard errors of the mean.

Language editing
ChatGPT (OpenAI) was used for language editing. The authors are fully
responsible for the final content.

Data availability
All the data analyzed and presented in this study are available from the
authors upon reasonable request.
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