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The rapid evolution of molecular representation methods has significantly advanced the drug
discovery process. Advances in language models, graph-based representations, and novel learning
strategies have greatly improved the ability to characterize molecules. These AI-driven strategies
extend beyond traditional structural data, facilitating exploration of broader chemical spaces and
accelerating scaffold hopping. This review summarizes key advancements, discusses their
advantages over conventional techniques, and highlights challenges in data quality and real-world
applications.

Molecular representation
Drug discovery is a highly time-intensive and costly endeavor, driving
researchers to continually develop new experimental and computational
methods to accelerate drug development at all stages of drug discovery1. In
recent years, advancements in Artificial Intelligence (AI) have positioned
AI-assisted Drug Design as a prominent area of research. Cutting-edge
methods have emerged for compound druggability evaluation, virtual
screening for hit identification, and molecule generation for novel com-
pound creation, etc1,2. These approachesplay a crucial role in the early stages
of drug development, enabling faster early screening and the identification
of viable lead compounds3–5.

A key prerequisite for developing those methods is translating
molecules into a computer-readable format, known as molecular
representation, which serves as the foundation for training machine
learning (ML) and deep learning (DL) models6. Molecular representa-
tion is a cornerstone of computational chemistry and drug design,
bridging the gap between chemical structures and their biological,
chemical, or physical properties7. It involves converting molecules into
mathematical or computational formats that algorithms can process to
model, analyze, and predict molecular behavior7,8. Effective molecular
representation is essential for various drug discovery tasks, including
virtual screening, activity prediction, and scaffold hopping, enabling
efficient and precise navigation of chemical space9–11.

Advances in cheminformatics andAIhave led to an increasingnumber
of novel approaches to molecular representation (Fig. 1). Traditional
representations rely on explicit, rule-based feature extractionmethods, such

asmolecular descriptors that quantify the physical or chemical properties of
molecules, and molecular fingerprints that typically encode substructural
information as binary strings or numerical values. The most widely used
method for molecular representation is the Simplified Molecular-Input
Line-Entry System (SMILES)11,12, which provides a compact and efficient
way to encode chemical structures as strings. However, despite its simplicity
and convenience, SMILES has inherent limitations in capturing the full
complexity of molecular interactions. As drug discovery tasks grow more
sophisticated, traditional string-based representations often fall short in
reflecting the intricate relationships between molecular structure and key
drug-related characteristics such as biological activity and physicochemical
properties8. Moreover, while traditional methods provide interpretable
features, they often struggle to navigate the vast, nearly infinite chemical
space in search of compounds with desired biological properties. Molecular
representationmust not only encode the chemical structure, but also enable
efficient exploration of chemical space.

In recent years, AI-driven molecular representation methods employ
DL techniques to learn continuous, high-dimensional feature embeddings
directly from large and complex datasets. Models such as graph neural
networks (GNNs), variational autoencoders (VAEs), and transformers
enable these approaches to move beyond predefined rules, capturing both
local and global molecular features13–16. These representations better reflect
the subtle structural and functional relationships underlying molecular
behavior, thereby providing powerful tools for molecular generation, scaf-
fold hopping, lead compound optimization, and other key tasks in drug
discovery17–23.
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Scaffold hopping and its importance
In 1999, Schneider et al. introduced the concept of scaffold hopping as a key
strategy in drug discovery and lead optimization, aimed at the discovery of
newcore structures (backbones)while retaining similar biological activity or
target interaction as the original molecule24. Molecular representation and
scaffold hopping are closely interconnected in drug design and medicinal
chemistry, as the representation of molecules strongly influences the ability
to identify structurally diverse yet functionally similar compounds. In 2012,
Sun et al. classified scaffold hopping into four main categories (Fig. 2) of
increasing degree of hopping, i.e., heterocyclic substitutions, open-or-closed
rings, peptidemimicry, and topology-based hops25. Scaffold hopping plays a
crucial role in drug discovery. On the one hand, existing lead compounds
may have undesirable properties such as toxicity or metabolic instability,
andnewcompounds discovered through scaffold hoppingmayhave further
enhancement in molecular activity and reduction of undesirable off-target
effects, which may lead to improvement in pharmacokinetic and pharma-
codynamic profiles26,27. On the other hand, by modifying the core structure
of amolecule, it canhelp researchersdiscovernovel compoundswith similar
biological effects but different structural features, thus breaking through the
limitations of existing patents27–29. In conclusion, scaffold hopping is an
important method to explore new chemical entities.

Scaffoldhopping relies heavily oneffectivemolecular representation, as
the ability to identify new scaffolds that retain biological activity depends on
accurately capturing and effectively representing the essential features of
molecules. Traditional approaches to scaffold hopping typically utilize
molecular fingerprinting and structure similarity searches to identify
compounds with similar properties but different core structures28–30. These
methods maintain key molecular interactions by substituting critical func-
tional groups with alternatives that preserve binding contributions, such as
hydrogen bonding patterns, hydrophobic interactions, and electrostatic
forces, while incorporating new molecular fragment structures.

However, traditional methods are limited in their ability to explore
diverse chemical spaces due to their reliance on predefined rules, fixed
features, or expert knowledge. Modern methods, especially those utilizing
DL, have greatly expanded the potential for scaffold hopping throughmore
flexible and data-driven exploration of chemical diversity31–33. Researchers
can identify novel scaffolds that were previously difficult to discover by
leveraging advanced molecular representations, such as graph-based
embedding or DL-generated features, which refer to latent embeddings
(e.g., 128-dimensional vectors) learned through self-supervised tasks such as
masked atom prediction, which capture non-linear relationships beyond
manual descriptors31,32. These modern methods can capture nuances in
molecular structure that may have been overlooked by traditional methods,
allowing for a more comprehensive exploration of chemical space and the
discovery of new scaffolds with unique properties33.

In recent years, AI-driven molecular generation methods have
emerged as a transformative approach in scaffold hopping.Techniques such
as VAEs and generative adversarial networks are increasingly utilized to
design entirely new scaffolds absent from existing chemical libraries, while
simultaneously tailoring molecules to possess desired properties32,34,35. This
data-driven shift toward AI-enhanced scaffold generation equips
researchers with advanced tools to explore the vast chemical space more
efficiently, facilitating the discovery of novel bioactive compounds with
enhanced efficacy and safety.

In this review, we chronologically examine traditional molecular
representation methods and summarize modern mainstream AI-based
molecular representation approaches from perspectives including language
model-based, graph-based, as well as the recently popular multimodal
learning and contrastive learning frameworks. Subsequently, we introduce
howmolecular representationmethods are applied to scaffoldhopping tasks
and analyze the challenges that still exist.

Molecular representation: from classical rules to AI-
driven innovation
Traditional approaches for molecular representation
Traditionalmolecular representationmethodshave laid a strong foundation
for many computational approaches in drug discovery. These methods
often rely on string-based formats to describemolecules. Alternatively, they
encode molecular structures using predefined rules derived from chemical
and physical properties, including molecular descriptors (e.g., molecular
weight, hydrophobicity, or topological indices) and molecular
fingerprints36–40.

The IUPAC name was first introduced by the International Chemical
Congress in Geneva in 1892 and established by the International Union of
Pure and Applied Chemistry (IUPAC). Over the following decades,
methods such as Dyson cyphering41 andWiswesser LineNotation (WLN)42

Fig. 1 | Timeline of the initial proposals for various molecular representation methods. Key milestones illustrated with representative icons.

Fig. 2 | Representative strategies for scaffold hopping.
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were proposed. The widely used Simplified Molecular Input Line Entry
System (SMILES)12 was introduced in 1988 by Weininger et al. Subse-
quently, improved versions like ChemAxon Extended SMILES
(CXSMILES), OpenSMILES, and SMILES Arbitrary Target Specification
(SMARTS) were developed to extend the functionalities of the original
SMILES43. In 2005, IUPAC introduced the InChI44. However, since InChI
cannot guarantee the decoding back to their original molecular graphs and
SMILES offers the advantage of being more human-readable, SMILES
remains the mainstream molecular representation method. During this
period, molecular fingerprints gained widespread application in Quantita-
tive Structure-Activity Relationship (QSAR) analyses due to their effective
representation of the physicochemical and structural properties of
molecules.

For instance, extended-connectivity fingerprints36 are widely used to
represent local atomic environments in a compact and efficient manner,
making them invaluable for representing complex molecules. These tradi-
tional representations are particularly effective for tasks such as similarity
search, clustering, and quantitative structure-activity relationship
modeling45,46 due to their computational efficiency and concise format.

Traditional molecular representations have been widely applied to
various drug design tasks. In early studies, for example, Bender et al.
investigated molecular similarity searching and demonstrated that dif-
ferent molecular descriptors could yield distinct similarity evaluations,
highlighting the impact of descriptor choice on virtual screening
outcomes47. In addition, Chen et al. proposed combination rules for group
fusion in similarity-based virtual screening, showing that integrating
multiple molecular fingerprints could enhance screening performance48.
More recently, Shen et al. proposed MolMapNet49, a model that trans-
forms large-scale molecular descriptors and fingerprint features into two-
dimensional feature maps. By capturing the intrinsic correlations of
complex molecular properties, MolMapNet uses convolutional neural
networks (CNNs) to predict molecular properties in an end-to-end

manner. In FP-ADMET and MapLight45,46, the authors combined dif-
ferent molecular fingerprints with ML models to establish robust pre-
diction frameworks for a wide range of ADMET-related properties.
Similarly, BoostSweet represents a state-of-the-art (SOTA) ML frame-
work for predicting molecular sweetness, leveraging a soft-vote ensemble
model based on LightGBM and combining layered fingerprints with
alvaDesc molecular descriptors50,51. The FP-BERT model employs a
substructure masking pre-training strategy on extended-connectivity
fingerprints (ECFP) to derive high-dimensional molecular representa-
tions. It then leverages CNNs to extract high-level features for classifica-
tion or regression tasks52. Additionally, Li et al. proposed CrossFuse-
XGBoost, a model that predicts the maximum recommended daily dose
of compounds based on existing human study data. This approach pro-
vides valuable guidance for first-in-human dose selection53.

However, as the complexity of drug discovery problems increases,
these conventional methods often fall short in capturing the subtle and
intricate relationships between molecular structure and function. This
limitation has spurred the development of more advanced, data-driven
molecular representation techniques that can better address the multi-
faceted challenges of modern drug discovery.

Modern approaches to molecular representation
Recent advancements in AI have ushered in a new era of molecular
representation methods, shifting from predefined rules to data-driven
learningparadigms6,11,43. TheseAI-driven approaches leverageDLmodels to
directly extract and learn intricate features frommolecular data, enabling a
more sophisticated understanding of molecular structures and their prop-
erties. As illustrated in Fig. 3 and summarized in Table 1, these methods
encompass awide range of innovative strategies, including languagemodel-
based, graph-based, high-dimensional features-based, multimodal-based,
and contrastive learning-based approaches, reflecting their diverse appli-
cations and transformative potential in drug discovery.

Fig. 3 | Illustration of the five main AI-based
molecular representation models.
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Table 1 | Summary of molecular representation methods developed in recent years

Type Model Year Link Ref.

Molecular Fingerprints & Descriptors MolMapNet 2021 https://github.com/shenwanxiang/bidd-molmap 73

FP-ADMET 2021 https://gitlab.com/vishsoft/fpadmet 46

BoostSweet 2022 N.A. 50

FP-BERT 2022 https://github.com/fanganpai/fp2bert 52

MapLight 2023 https://github.com/maplightrx/MapLight-TDC 45

CrossFuse-XGBoost 2024 https://github.com/cqmu-lq/CrossFuse-XGBoost 53

Language Model Mol2vec 2018 https://github.com/samoturk/mol2vec 55

Mol-BERT 2021 https://github.com/cxfjiang/MolBERT 57

MOLFORMER 2022 https://github.com/daenuprobst/molsetrep 67

MTL-BERT 2022 https://github.com/zhang-xuan1314/MTL-BERT 58

DeepSA 2023 https://github.com/Shihang-Wang-58/DeepSA 61

MolRoPE-BERT 2023 N.A. 59

t-SMILES 2024 https://github.com/juanniwu/t-SMILES 68

INTransformer 2024 https://github.com/Jiangjing0122/INTransformer 69

Graph GROVER 2020 https://github.com/tencent-ailab/grover 72

Attentive FP 2020 https://github.com/OpenDrugAI/AttentiveFP 71

MolGNet 2021 https://github.com/pyli0628/MPG 73

ReLMole 2022 https://github.com/Meteor-han/ReLMole 74

GEM 2022 https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pretrained_compound/
ChemRL/GEM

76

GraphMVP 2022 https://github.com/chao1224/GraphMVP 75

FunQG 2023 https://github.com/hhaji/funqg 77

MolCAP 2023 https://github.com/wangyu-sd/MolCAP 78

SME 2023 https://doi.org/10.5281/zenodo.7707093 85

HiMol 2023 https://github.com/ZangXuan/HiMol 80

PharmHGT 2023 https://github.com/mindrank-ai/PharmHGT 82

IFGN 2023 http://graphadmet.cn/works/IFGN 83

KANO 2023 https://github.com/HICAI-ZJU/KANO 87

KPGT 2023 https://github.com/lihan97/KPGT 88

MMGX 2024 https://github.com/ohuelab/MMGX 81

R-MAT 2024 https://github.com/gmum/huggingmolecules 89

SMPT 2024 https://github.com/liyishuilys/SMPT 79

TOML-BERT 2024 https://github.com/yanjing-duan/TOML-BERT 90

Gram matrix 2024 https://github.com/xiangwenkai/GRAM 86

GSL-MPP 2024 https://github.com/zby961104/GSL-MPP 84

MolFormer 2024 https://github.com/IBM/molformer 91

High-dimensional Features UniMol 2023 https://github.com/deepmodeling/Uni-Mol/tree/main 20

GeminiMol 2024 https://github.com/Wang-Lin-boop/GeminiMol 2

PhenoModel 2024 https://github.com/Shihang-Wang-58/PhenoScreen 93

Ouroboros 2025 https://github.com/Wang-Lin-boop/Ouroboros 92

Multimodal FP-GNN 2022 https://github.com/idrugLab/FP-GNN 94

ImageMol 2022 https://github.com/ChengF-Lab/ImageMol 103

CLAMP 2023 https://github.com/ml-jku/clamp 97

CGIP 2023 https://github.com/HongxinXiang/CGIP 99

UniMAP 2023 N.A. 101

MoleSG 2024 https://github.com/ShenAoAO/MoleSG 95

MMFDL 2024 https://github.com/AIMedDrug/MMFDL.git 96

COATI 2024 https://github.com/terraytherapeutics/COATI/ 98

DLF-MFF 2024 https://github.com/mamei1016/DLF-MFF 100

VideoMol 2024 https://github.com/HongxinXiang/VideoMol 105

MvMRL 2024 https://github.com/jedison-github/MvMRL 106

PremuNet 2024 https://github.com/A-Gentle-Cat/PremuNet 102

ISMol 2024 https://github.com/Mrzhang1999/ISMol 104
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Language model-based molecular representation
Inspired by advances in natural language processing (NLP), models such as
Transformers have been adapted for molecular representation by treating
molecular sequences (e.g., SMILES or SELFIES) as a specialized chemical
language54. Unlike traditional methods like ECFP fingerprints that encode
predefined substructures, this approach tokenizes molecular strings at the
atomic or substructure level (e.g., individual atom symbols such as “C” or
“N” and bond characters like “=”). Each token is mapped into a continuous
vector, and these vectors are then processed by architectures like Trans-
formers or BERT using self-supervised pre-training strategies, such as
randommasking, to learn the deep semantic relationships withinmolecular
structures. The learned latent embeddings encapsulate critical chemical and
structural information that goes beyond what simpler, rule-based descrip-
tors can offer. Consequently, these representations provide a robust foun-
dation for downstream tasks, such as molecular property prediction, novel
molecule generation, and scaffold hopping, thereby enabling enhanced
performance and generalization in various drug design applications.

An example of NLP-inspiredmethods is the work by Jaeger et al., who
introduced Mol2vec, an unsupervised ML approach inspired by NLP to
represent molecular substructures as dense and information-rich vectors55.
By treating molecular substructures derived from the Morgan algorithm as
“words” and entire molecules as “sentences,” the model leverages the
Word2vec algorithm56 to generate meaningful embeddings. Mol2vec
overcomes limitations of traditional molecular representations, such as
sparsity and bit collisions, and provides a pre-trained model capable of
capturing chemically relevant substructure relationships, making it a valu-
able tool for cheminformatics and drug discovery.

BERT-based models have gained significant attention in molecular
representation, with Mol-BERT, MTL-BERT, and MolRoPE-BERT
standing out as notable examples57–59. These pre-trained models extend
the BERT framework to capture both structural and contextual information
of molecules, demonstrating remarkable utility in drug discovery and che-
minformatics.Mol-BERT, proposed by Li et al. leverages the BERT archi-
tecture to encode molecular structure and context57. By pre-training on a
masked language modeling task using SMILES sequences and fine-tuning
on downstream molecular property prediction tasks, Mol-BERT demon-
strated superior performance compared to traditional and SOTA graph-
based models, showcasing its ability to learn intricate molecular relation-
ships. MTL-BERT takes SMILES as input and applies the Transformer’s
encoder with a multi-head self-attention mechanism to capture both long-
term and short-term dependencies58. This design effectively addresses data
scarcity issues by extracting rich and robust features from molecular
sequences. MolRoPE-BERT incorporates rotational position embeddings
alongside SMILES data to enhance molecular representation59,60. By pre-
training on unlabeledmolecular datasets, it focuses on capturing chemically

relevant substructure information, providing a comprehensive and
improved representation ofmolecular features. In addition to thesemodels,
DeepSA, proposed in 2023, exemplifies the application of BERT-based
frameworks beyond molecular representation61. Designed for high-
throughput prediction of compound synthesis accessibility, DeepSA inter-
grates pre-trained language models such as RoBERTa, DeBERTa, and
ELECTRA18,62–66. It processesmolecular data at token and position levels for
embedding anduses amulti-layer perceptron (MLP) for feature decoding to
output synthetic accessibility scores. These advancements highlight the
adaptability and transformative potential of BERT-inspired methodologies
in cheminformatics and drug discovery.

The Transformer-based MOLFORMER model further advances
molecular representation by combining the chemical SMILES language with
self-supervised learning, leading to significantly improvements in capturing
molecular features67. T-SMILES builds on advanced NLP techniques to
establish a hierarchical molecular representation framework centered on
molecular fragments.This approach enhances the efficiency and rationality of
molecular generation while improving adaptability and generalization,
especially on low-resource datasets68. INTransformer employs a
Transformer-style framework that integrates rawSMILESwithnoisySMILES
for data augmentation. This innovative design not only improves molecular
representationbut alsoaddresses challenges indatadiversity and robustness69.

In general, language model-based molecular representation methods
leverage sequential data to capture the semantic relationships among atoms
and substructures through pre-training and self-supervised learning. These
approaches efficiently extract rich chemical features from large-scale data-
sets, enabling the identification of key structural motifs essential for tasks
such as scaffold hopping. Moreover, their inherent flexibility also supports
efficient fine-tuning across diverse downstream applications, including
molecular property prediction and generation of novel scaffolds or mole-
cules. However, a notable limitation lies in their reliance on linear repre-
sentations, whichmay fail to fully capture the three-dimensional spatial and
topological complexities of molecule structures. Consequently, while lan-
guage model-based methods can generate structurally innovative scaffolds,
incorporating complementary 3D structural information may be necessary
to preserve critical bioactive features. In summary, language model-based
methods offer a powerful and versatile framework for molecular repre-
sentation in scaffold hopping, with further potential unlockedby addressing
the challenges of multi-dimensional molecular encoding.

Graph-based molecular representation
Graph neural networks represent molecules as graphs, where atoms are
treated as nodes and bonds as edges. This graph-based representation is
highly effective for capturing the intricate structural details of molecules,
enabling a more direct correlation with their physical and chemical

Table 1 (continued) | Summary of molecular representation methods developed in recent years

Type Model Year Link Ref.

Contractive Learning GraphCL 2020 https://github.com/Shen-Lab/GraphCL 119

MoCL 2021 https://github.com/illidanlab/MoCL-DK 107

iMolCLR 2022 https://github.com/yuyangw/iMolCLR 109

MolCLR 2022 https://github.com/yuyangw/MolCLR 108

ATMOL 2022 https://github.com/moen-hyb/ATMOL 114

SMICLR 2022 https://github.com/CIDAG/SMICLR 116

3DGCL 2023 https://github.com/moonkisung/3DGCL 112

CasANGCL 2023 https://github.com/Sissizx/CASANGCL 115

FraSICL 2023 https://github.com/ZiqiaoZhang/FraSICL 117

MOCO 2024 N.A. 110

MolFeSCue 2024 https://github.com/zhangruochi/MolFeSCue 111

3D-MOL 2024 https://github.com/AI-HPC-Research-Team/3D-Mol 113

UniCorn 2024 N.A. 118

N.A. represents Not Available.
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properties. GNNsarewell-suited for tasks such asmolecular generation and
molecular property prediction, as they can effectively learn from the rela-
tional structure of atoms within a molecule70. Numerous innovative
approaches have been developed, each emphasizing different facets of
molecular representation to enhance predictive performance.

AttentiveFP, awidely recognizedgraphneural network architecture for
molecular representation, propagates node information from nearby nodes
to more distant ones, effectively capturing the local atomic environment. It
leverages graph attentionmechanisms to account for non-local effects within
the molecule71. This architecture enables Attentive FP to efficiently identify
hidden critical links between nodes while fully considering the molecule’s
intrinsic structure. Another notable approach isGROVER, which constructs
a multi-level molecular graph representation through self-supervised learn-
ing. By pre-training on large-scale unlabeled molecular data, GROVER
enhances the structural expressiveness of molecular representations72. This
model integrates a message-passing network with a Transformer archi-
tecture, allowing it to capture local structural information while simulta-
neously modeling global relationships within the molecule.

MPG, proposed by Li et al., utilizes a self-supervised pre-training
strategy at both the node and graph levels, enabling the model to extract
valuable chemical insights after pre-training on a dataset of 11 million
unlabeled molecules73. This approach results in interpretable and chemically
meaningful representations. Similarly, ReLMole enhances molecular repre-
sentation through contrastive learning by analyzing similarities at both the
atomic layer and functional group levels within molecular graphs74.
GraphMVP emphasizes the alignment and consistency between 2D topo-
logical and 3D geometric views during self-supervised learning, achieving
robust 2Dmolecular graphencodingwithout relyingonexplicit 3Dstructural
information75. Complementing these methods, GEM employs a geometry-
aware graph neural network combined with self-supervised learning strate-
gies to incorporate molecular geometry knowledge into its representations76.

Further advancing graph-based methods, FunQG introduces the
concept of quotient graphs fromgraph theory to condensemolecular graphs
into smaller, more informative representations77. Wang et al. proposed
MolCAP, a chemically informed framework that leverages chemical reac-
tivity knowledge through pre-training and prompted fine-tuning78. Mol-
CAP incorporates self-supervised tasks at both the atom and bond levels,
employing a balanced multi-task learning strategy to generate highly
transferable representations. Similarly, SMPT utilizes a graph isomorphism
network (GIN) architecture to aggregatemolecular features while capturing
molecular spatial geometry at multiple levels, thereby improving the per-
formance of downstream prediction tasks79.

Several models employ hierarchical or multi-layered strategies to
enhance molecular representation.HiMol utilizes a hierarchical molecular
graph neural network paired with multi-layer self-supervised pre-training
tasks for attribute prediction, effectively capturing complex molecular
features80. The MMGX model incorporates multiple molecular graph
representations, including Atom, Pharmacophore, Junction Tree, and
Functional Group views, integrating these perspectives using a dynamic
attention mechanism81. This approach captures complementary molecular
features, enhances interpretability, and achieve SOTA performance across
various prediction tasks. Similarly, PharmHGT targets pharmacophore-
constrained molecular property prediction by encoding chemically rich
features from heterogeneous molecular graphs, providing a tailored
approach for chemically informed tasks82.

Other models focus on novel structural encoding mechanisms and
visualization techniques to enhance interpretability. The IFGN model
employs a multi-step focusing mechanism to pinpoint key atoms con-
tributing significantly to predicted molecular properties83. Coupled with
visualization techniques, this approach offers step-by-step insights into the
prediction process. The GSL-MPPmodel updates node features via graph
convolution to capture structural information within molecules, while
introducing a molecular similarity graph to compute similarities and gen-
erate a similarity map84. This enables better relationship modeling between
molecules, improving property prediction accuracy. The SME model

provides a chemically intuitive interpretation framework for graph neural
networks by analyzing combinations of substructures, addressing limita-
tions of single-mask methods and offering a comprehensive exploration of
structure-property relationships85. Xiang et al. proposed a Gram Matrix-
based approach compresses 3D molecular spatial information into a 2D
representation, facilitating more efficient downstream applications86.
Additionally, KANO utilizes graph-based embedding to extract structural
and functional cues from knowledge graphs, training word2vec models to
enhance molecular representations87. Likewise, KPGT integrates a graph
transformer specifically designed for molecular graphs with a knowledge-
guided pre-training strategy, effectively capturing both structural and
semantic information for improved molecular understanding88.

Innovative pre-training frameworks have emerged to address the
limitations of traditional graph-based methods. R-MAT employs a graph
transformer with a relative molecular self-attention module, enabling the
model to generalize molecular information effectively through pre-
training89. TOML-BERT introduces a two-layer pre-training strategy that
combines node-level self-supervised learning with graph-level supervised
learning, successfully mitigating challenges related to data scarcity90. In
contrast, MolFormer departs from conventional graph-based representa-
tions by treating molecules as collections of atomic invariants, eliminating
the need for explicit graph topology ormolecular geometry91. This approach
enhances flexibility and adaptability across diverse chemical contexts.

Collectively, these graph-based molecular representation models cap-
ture both local chemical environments and global molecular topology in a
natural and interpretable manner, which is critical for identifying and
preserving key scaffold features during scaffold hopping. Their strengths lie
in the ability to directly model structural interactions and incorporate
geometric and hierarchical information. However, these methods also
face challenges, including high computational complexity, sensitivity to the
design of graph construction and message-passing strategies, and some-
times limited scalability when applied to very large or complex molecular
datasets. In summary, collectively, these graph-based molecular repre-
sentation models showcase a wide range of innovations, addressing chal-
lenges such asdata scarcity, interpretability, and the integrationof geometric
and hierarchical information. Their rapid development underscores the
transformative potential of thesemethods inmolecular property prediction
and drug discovery applications.

High-dimensional features-based molecular representation
In addition to the methods mentioned above, incorporating high-
dimensional features (e.g., molecular 3D structure, binding pocket, and
cellular phenotype) has proven to significantly enhance a model’s ability to
represent molecules. Uni-Mol, a general framework for molecular repre-
sentation learning based on 3D molecular structures, leverages large-scale
unlabeled data for pre-training20. The pre-training dataset includes two
extensive 3D datasets: molecular structures and protein pocket structures.
Specifically, themolecular dataset is constructed from several commercially
available databases, comprising approximately 19 million molecules and
210 million 3D conformations. Molecular conformations are generated
efficiently using RDKit in combination with molecular force field optimi-
zation. Pre-training is conducted on large-scale distributed clusters using a
unified model framework and effective pre-training task strategies. Fur-
thermore, GeminiMol introduces the concept of inter-molecular con-
formation space similarity2. During pre-training, pairs of drug-like
molecules are independently encoded using the samemolecular encoder to
generate 2048-dimensionalmolecular representation vectors. These vectors
are then projected into multiple molecular similarity metrics, using 2D
maximum common substructure similarity and conformation space simi-
larity as prediction heads. By capturing conformational space character-
istics, GeminiMol demonstrates balanced and robust performance across
variousdrugdiscovery tasks, including ligand-basedvirtual screening, target
identification, and molecular property prediction. Recently, the authors
further expanded the number of training samples and proposed the Our-
oboros model, which significantly improved the performance of

https://doi.org/10.1038/s44386-025-00017-2 Review

npj Drug Discovery |            (2025) 2:14 6

www.nature.com/npjdrugdiscov


downstream tasks, indicating the effectiveness of this training strategy92. A
more recent development, PhenoModel, builds on this by introducing
information on cell morphological changes induced by chemical
perturbations93. Using contrastive learning, PhenoModel aligns compound
representations with perturbation-induced cell painting images in the fea-
ture space. This alignment allows themodel to simultaneously capture both
molecular conformation and potential activity information, offering a
unique perspective that bridges molecular and phenotypic data.

In summary, incorporating high-dimensional features into mole-
cular representation models has markedly improved the capture of
complex spatial conformations and molecular interactions that are
critical for biological activity. These models exemplify how leveraging
extensive 3D structure data, interaction information between protein
and ligand, potential molecular activity information, and innovative
pre-training strategies can yield robust and predictive molecular
embeddings. These advancements not only enhance performance in
property prediction and virtual screening but also establish a critical link
between molecular conformation and phenotypic response, thereby
paving the way for more informed and effective drug discovery
applications.

Multimodal-based molecular representation
Multimodal molecular representation learning has gained significant
attention in recent years, leveraging complementary information from
diverse molecular modalities to enhance the robustness and interpretability
of molecular property predictions. These approaches integrate representa-
tions such as molecular graphs, SMILES sequences, fingerprints, images,
and even molecular video data, enabling a more comprehensive under-
standing of molecular properties.

One widely adopted method in this domain is FP-GNN, which
combines molecular graph information with molecular fingerprints
through co-training for property prediction94. Similarly, MoleSG,
introduced by Shen et al. in 2024, integrates SMILES and molecular
graph representations using a unified transformer-based backbone95. By
implementing a novel non-overlapping masking strategy, MoleSG
ensures complementary yet independent interactions between these two
modalities, achieving SOTA performance across 14 downstream tasks,
thereby highlighting the potential of multimodal strategies. Lu et al.
proposed MMFDL, which independently processes SMILES, ECFP, and
molecular graphs using Transformer encoders, BiGRU, and GCN,
respectively96. These features are then fused with calculated importance
weights, effectively leveraging complementary information from differ-
ent data sources. MMFDL underscores the value of integrating diverse
modalities to improve prediction accuracy, enhance generalization, and
increase resilience to noise in drug property prediction tasks.

Several approaches emphasize cross-modal contrastive learning to align
and integratemolecular information.CLAMPutilizes amodular architecture
comprising a chemical molecule encoder and a text encoder, pre-trained via
cross-modal contrastive learning to enhance molecular understanding97.
Similarly,COATI combines textual and3Dmolecular representationswithin
a contrastive learning framework to produce unbiased, general-purpose
molecular embeddings that support downstream structural models98.
Extending this concept, CGIP integrates molecular images with explicit
graph information and implicit visual cues, leveraging both intra- and inter-
modal contrastive learning to capture rich multimodal representations99.

Other methods employ multimodal fusion frameworks to achieve
higher precision in molecular property predictions. DLF-MFF processes
molecular fingerprints, 2D and 3D maps, and molecular images using
specialized DL frameworks for each modality, subsequently fusing these
representations for enhanced predictive performance100.UniMAP adopts a
multi-layer Transformer model to decompose molecular graphs into frag-
ments, generating SMILES-based multimodal inputs for deep cross-
modal molecular feature fusion101. PremuNet introduces a dual-
branch architecture, with PremuNet-L capturing low-dimensional
features and PremuNet-H focusing on high-dimensional features,

effectively integrating these representations to improve performance
across diverse tasks102.

Molecular images have emerged as a crucial modality in molecular
representation. ImageMol employs five pre-training strategies to integrate
chemical knowledge and structural information into molecular image
representations, enhancing their utility for predictive tasks103. ISMol com-
bines molecular images and SMILES strings as bi-modal inputs, aligning
and fusing them through a cross-modal attention mechanism using Vision
Transformer and ChemBERTa-77M-MLM encoders104. Extending this
idea, VideoMol leverages Vision Transformer to extract dynamic and
physicochemical information from molecular video data, achieving highly
precise molecular characterization105.

Multiscale and multi-view approaches further enrich multimodal
representations. MvMRL integrates molecular fingerprints, SMILES
sequences, and molecular maps using a multi-scale feature extractor and a
dual cross-attention mechanism to capture both local and global
information106. This design effectively models complex nonlinear relation-
ships between molecular features, improving predictive performance.

By leveraging the strengths of each modality, these methods capture
various aspects of molecular information, ranging from structural topology
to spatial conformation and sequential patterns. This integration enhances
the robustness and interpretability of predictive models, ultimately leading
to improvedmolecular design and property prediction outcomes.However,
effectively fusing these heterogeneous data types poses significant chal-
lenges, including the need for sophisticated alignment strategies to mitigate
potential noise and redundancy. In summary, multimodal molecular
representation methods harness diverse molecular information sources to
develop robust, accurate, and interpretable models for property prediction.
By integrating graph-based, sequence-based, image-based, and other
molecular representations, these approaches pave a promising path for
advancing drug discovery and materials science.

Contrastive learning-based molecular representation
Contrastive learning utilizes positive and negative pairs to learn rich, dis-
criminative molecular embeddings. By contrasting similar and dissimilar
molecules, these models effectively capture the key features that distinguish
molecular activities. This approach is particularly valuable in scenarios with
limited labeled data, as it enables learning from large, unlabeled datasets,
making it a powerful tool for lead discovery and optimization. It has been
widely adopted across various frameworks, each incorporating unique
strategies for data augmentation, molecular featurization, and hierarchical
learning.

MoCL, proposed by Sun et al., introduces a contrastive learning fra-
mework specifically tailored for molecular fingerprinting107. This method
integrates chemical domain knowledge by employing substructure repla-
cement for local-level augmentation and Tanimoto similarity for global-
level guidance. MoCL optimizes molecular graph representations through
hierarchical contrastive objectives, combining multi-view augmentation
with domain-specific insights. This innovative approach delivers superior
semantic understanding and robust performance across downstream tasks.

MolCLR, proposed by Wang et al., employs GNNs to contrast aug-
mented molecular graphs, generating generalized molecular
representations108. The model integrates diverse data augmentation strate-
gies, a non-linear MLP projection head, and the NT-Xent contrastive loss.
By pre-training on large chemical datasets, MolCLR demonstrates excep-
tional scalability, generalization, and transferability, particularly in low-data
molecular tasks. Building uponMolCLR, iMolCLR incorporates aweighted
contrastive loss to address false negatives and learns representations at both
molecular and fragment levels109. Pretrained on approximately 10 million
label-free molecules, iMolCLR exhibits robust performance across various
molecular property prediction tasks. Similarly,MOCO employsmulti-view
molecular featurization by integrating 2D topology, 3D geometry, SMILES
strings, and fingerprints110. Utilizing an attention mechanism for weighted
aggregation and optimizing embeddings with InfoNCE loss, MOCO
achieves superior generalization and transferability.
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Several frameworks extend contrastive learning to address specific
challenges in molecular representation. MolFeSCue combines few-shot
learningwith contrastive learning to tackle issues like data scarcity and class
imbalance111. By integrating sequence-based (ChemBERTa), graph-based
(HuGIN), and JumpingKnowledgeNetworkmodels,MolFeSCue generates
discriminative embeddings using a dynamic contrastive loss function,
enhancing both efficiency and accuracy in molecular property prediction.
Similarly, 3DGCL and 3D-MOL focus on leveraging 3D molecular struc-
tures, utilizing SchNet and hierarchical graph-basedmodels, respectively, to
capture spatial information while preserving molecular semantic
consistency112,113.

Innovative designs in graph contrastive learning further strengthen
model robustness and generalization. ATMOL employs attention-wise
masked graph contrastive learning to enhance molecular attribute predic-
tion through advanced graph enhancement and feature extraction
techniques114. CasANGCL integrates Cascaded Attention Networks with
graph contrastive tasks, effectively capturingboth local andglobalmolecular
representations for improved robustness115.Meanwhile,SMICLR combines
graph neural networks with Long Short-Term Memory, generating aug-
mented positive and negative sample pairs from molecular maps and
SMILES views for comprehensive representation learning116.

Multi-view and fragment-based strategies have also proven effective.
FraSICL generates semantically invariant molecular views by decomposing
molecular graphs into fragment pairs117. Leveraging multi-view fusion
mechanisms and auxiliary similarity loss, FraSICL captures complementary
information fromdifferent fragments. Similarly,UniCorn integratesmultiple
molecular views into a universal contrastive learning framework118, while
GraphCL applies graph-specific augmentations to maximize consistency
across graph views, yielding robust and transferable representations119.

Together, contrastive learning-based molecular representation meth-
ods enhance the discriminative power of molecular embeddings by com-
paringpositive andnegative samplepairs. By contrasting structurally similar
and dissimilar molecules, these models can capture subtle features and
differences that are critical for accurate property prediction and scaffold
hopping. A key strength of this approach lies in its ability to leverage large
volumes of unlabeled data, helping to mitigate challenges like data scarcity
and class imbalance that often arise in chemical datasets. Nonetheless, the
effectiveness of contrastive learning is highly dependent on the strategies
used to construct positive and negative pairs, and training stability can be a
concern. In summary, together, these models exemplify the transformative
potential of contrastive learning inmolecular representation. By addressing
challenges such as data scarcity, class imbalance, andmolecular complexity
through innovative strategies and diverse molecular modalities, they lay a
robust foundation for advancing molecular property prediction and drug
discovery applications.

Scaffold hopping approaches using molecular representations
Early scaffold hopping primarily relied on molecular fingerprints, shape
similarity, pharmacophore modeling, and fragment replacement. Over
time, these methods have evolved into AI-driven approaches that enable
data-driven scaffold exploration with enhanced efficiency and precision.

Traditional approaches for scaffold hopping
Traditional scaffold hopping encompasses a broad range of strategies
designed to identify novel molecular scaffolds while maintaining biological
activity. These methods have been foundational in drug discovery, lever-
aging approaches such as pharmacophore modeling, shape similarity
methods, and molecular fingerprinting. Each technique offers distinct
advantages in exploring chemical diversity and advancing lead
discovery24,120–122.

Pharmacophore modeling, for instance, represents the spatial
arrangement of molecular features critical for biological activity, such as
hydrogen bond donors or acceptors, hydrophobic regions, and charged
groups. This approach identifies molecules capable of fitting into a target
binding site, facilitating the discovery of novel scaffolds with similar

interaction profiles. A significant advancement in this area is NScaffold,
which employs topological pharmacophore graphs (PhGs) to encode
pharmacophoric features as graph nodes and their topological distances as
edges123. NScaffold introduces a rankingmethod that prioritizes PhGs based
on scaffold coverage, enabling the identification of scaffold-independent
pharmacophoric features. Validated across six biological targets, NScaffold
outperformed traditional scoring metrics like Coverage and Growth-rate,
particularly when working with limited scaffold datasets. For example, in
thrombin inhibitors, NScaffold successfully identified key hydrogen
bonding interactions, underscoring its potential for interpretable scaffold
hopping. By providing an explainable and efficient framework for exploring
diverse chemical scaffolds, this approach represents a significant advance-
ment in ligand-based virtual screening.

Shape similarity methods focus on comparing the three-dimensional
shapes of molecules to identify scaffolds structurally similar to known
bioactive compounds. Techniques like ROCS detect molecular volumes
with similar binding properties by leveraging shape overlays124,125. Similarly,
Phase Shape enables flexible ligand superposition and virtual screening,
offering rapid and accurate 3D ligand alignments with high enrichment of
active compounds126. Building on these principles, SHAFTS combines
shape overlay scoring (ShapeScore) with pharmacophore feature matching
(FeatureScore), employing a feature triplet hashing algorithm to enhance
scaffold discovery efficiency127. Retrospective validation on datasets such as
DUD and Jain’s benchmark demonstrated SHAFTS’s superior early
enrichment and scaffold diversity compared to ROCS and ShaEP128. In
prospective studies, SHAFTS identified 16 RSK2 inhibitors, including low
micromolar hits with potent anti-migration activity. By bridging ligand-
based virtual screening and scaffold hopping, SHAFTS exemplifies a robust
tool for chemical space exploration and lead discovery129.

Fingerprints and similarity searches provide computationally efficient
strategies for scaffold hopping, utilizing molecular descriptors like ECFP
and pharmacophore-based approaches. The ErG method abstracts mole-
cular graphs into reduced graphs with pharmacophore-type nodes, cap-
turing biologically relevant features while preserving chemical diversity130.
By incorporating fuzzy incrementation for inter-feature distances, ErG
improves scaffold diversity and retrieval rates over traditional fingerprints
such as DAYLIGHT. Validation across 11 activity classes in the MDDR
database demonstrated that ErG outperformed traditional methods in 10
classes, offering a highly interpretable and computationally efficient alter-
native for ligand-basedvirtual screening.TheWHALESdescriptor provides
a comprehensive 3D representation by integrating geometric, atomic dis-
tance, and molecular property information21. In retrospective screenings
across 182 biological targets, WHALES achieved superior scaffold diversity
compared to benchmark descriptors like MACCS and ECFP. Prospective
validation further identified four novel RXR agonists, including a rare non-
acidic chemotype with nanomolar activity and high selectivity. WHALES’s
ability to navigate uncharted chemical space underscores its potential as a
powerful scaffold-hopping tool.

Applications of modern AI-based molecular representations in
scaffold hopping
Traditional scaffold hopping approaches, while effective, often rely on
predefined libraries, limiting their ability to explore the vast chemical space.
Recent advancements in AI, such as VAE-based, and diffusion-based gen-
erative models (Fig. 4), have revolutionized scaffold hopping by enabling
efficient and diverse scaffold design while preserving biological relevance.
These AI-driven methods (Table 2) offer innovative solutions for over-
coming the limitations of traditional approaches, such as scalability and the
ability to handle complex molecular modifications.

Graph- and VAE-based generative models have established a strong
foundation for advanced scaffold hopping by disentangling molecular
components. GraphGMVAE, for instance, employs a Gaussian mixture
variational autoencoder to encode scaffolds and side chains into separate
distributions, facilitating precise scaffold modifications while preserving
pharmacophoric features131. Validated on Janus kinase 1 (JAK1) inhibitors,
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it achieved a 97.9% success rate in generating novel scaffolds, with several
synthesized compoundsdemonstrating strongbioactivity, including an IC50

of 5.0 nM. Building on this approach, ScaffoldGVAE incorporates multi-
view graph neural networks to capture both scaffold-level and molecular
dynamics features31. It achieves near-perfect success rates across various
kinase targets and has successfully generated novel LRRK2 inhibitors with
high activity.

Multimodal and pharmacophore-guided methods further enhance
scaffold design by integrating diverse molecular data to ensure bioactivity.
DeepHop, for example, combines 3D molecular structures with protein
sequence embeddings, leveraging Transformer architectures to optimize
scaffold generation33. Trained on over 57,000 scaffold-hopping pairs, Dee-
pHopachieved a65.2%success ratewhilemaintaininghigh3Dsimilarity and
generating bioactive scaffolds for previously unseen targets. Similarly,PGMG
encodes pharmacophore features into complete graphs, addressingmany-to-
many relationships between pharmacophores and molecules to generate
bioactive compounds132. This framework excels in scaffold hopping, produ-
cing novel EGFR inhibitors with enhanced bioactivity and drug-likeness.

Diffusion-based models have emerged as transformative tools in
scaffold hopping, providing precise spatial control and enhanced scaffold
diversity.DiffLinker utilizes E(3)-equivariant diffusion models for scaffold
hopping and linker generation, significantly improving scaffold diversity
and molecular connectivity133. Similarly, DiffHopp employs an E(3)-
equivariant graph diffusion model tailored for scaffold hopping, leveraging
conditional probability distributions to generate novel molecular scaffolds
within protein pockets32. By integrating geometric vector perceptron
(GVP)-based encoders and 3D molecular graph diffusion, DiffHopp
enhances scaffold connectivity, diversity, andbinding affinity.Validationon
the PDBBind dataset highlights its superior performance across keymetrics
such as QED, SA, and Vina scores, positioning DiffHopp as a robust fra-
mework for exploring chemical space and advancing protein-ligand inter-
action studies.

DiffSBDD incorporates protein pocket information to enable context-
aware scaffold hopping with optimized molecular properties like binding
affinity and drug-likeness35. It excels at preserving critical substructures
while efficiently generating diverse, chemically plausible scaffolds without
retraining. Experimental validation on the Binding MOAD dataset
demonstrates significant improvements in docking scores and synthetic
accessibility compared to baseline methods like Pocket2Mol134 and
ResGen135. DiffSBDD’s flexibility in scaffold hopping underscores its
potential for exploring uncharted chemical spaces in drug discovery.
Similarly, PMDM introduces dual diffusion strategies to model local and
global molecular dynamics, achieving strong performance in challenging

scaffold hopping tasks for targets such as SARS-CoV-2Mpro and CDK2136.
By accurately capturing protein pocket dynamics, PMDMprovides a robust
framework for structure-based drug design.

Addressing the computational inefficiencies of traditional diffusion
models, TurboHopp introduces an efficient scaffold hopping algorithm
using E(3)-equivariant consistency models and reinforcement learning to
overcome the inference speed limitations of diffusion-based methods137. By
reducing generation steps and incorporating task-specific reward functions,
TurboHopp achieves up to 30× faster scaffold generation while improving
molecular properties like connectivity, binding affinity, and synthesizability.
Validated on the PDBBind dataset, TurboHopp outperforms models like
DiffHopp across key metrics, setting a new benchmark for efficiency and
quality in scaffold hopping and accelerating structure-based drug design.

In addition to these methods, REINVENT 4 is a comprehensive
generative framework that integrates reinforcement learning, transfer
learning, and curriculum learning to facilitate diverse scaffold
modifications138. REINVENT 4 enables scaffold hopping by generating
innovative linkers that bridge key fragments, and inducing novel core
scaffold while optimizing for desired pharmacological properties. Similarly,
Ouroboros adopts a directed chemical evolution strategy within the latent
space of pre-trained molecular encoders92. By mapping molecules into a
continuous latent space, Ouroboros employs iterative “mutation” and
selection processes that guide molecular representations from one
scaffold region to another, thereby achieving scaffold hopping. Thismethod

Fig. 4 | Two typical generative AI approaches for
scaffold hopping. A VAE-based framework and
B diffusion model-based framework.

Table 2 | Summary of AI-based scaffold hopping methods
presented in recent years

Model Year Link Ref.

DeepHop 2021 https://github.com/prokia/deepHops 33

GraphGMVAE 2021 N.A. 131

DiffSBDD 2022 https://github.com/arneschneuing/DiffSBDD 35

DiffHopp 2023 https://github.com/jostorge/diffusion-hopping 32

PGMG 2023 https://github.com/CSUBioGroup/PGMG 132

ScaffoldGVAE 2023 https://github.com/ecust-hc/ScaffoldGVAE 31

DiffLinker 2024 https://github.com/igashov/DiffLinker 133

PMDM 2024 https://github.com/Layne-Huang/PMDM/ 136

REINVENT 4 2024 https://github.com/MolecularAI/REINVENT4 138

TurboHopp 2024 https://github.com/orgw/TurboHopp 137

Ouroboros 2025 https://github.com/Wang-Lin-boop/Ouroboros 92

N.A. represents Not Available.
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leverages the inherent continuity of the latent space to enable controlled and
gradual scaffold transitions while preserving or enhancing target properties.

Collectively, thesemethods demonstrate the convergence of generative
modeling andmolecular representation in scaffold hopping. Each approach
contributes distinct innovations, such as disentangled latent representations
(GraphGMVAE, ScaffoldGVAE, Ouroboros), multimodal learning (Dee-
pHop, PGMG), and 3D-equivariant diffusion (DiffLinker, DiffHopp,
DiffSBDD,DiffPROTACs139). This progression reflects a growing emphasis
on scalability, diversity, and biological relevance in scaffold hopping,
establishing a robust foundation for exploring uncharted chemical spaces in
drug discovery.

Current challenges and limitations
Despite the significant advances in both traditional andAI-drivenmolecular
representation and scaffold hopping approaches, several challenges and
limitations continue to hinder the full potential of these methods.

Overemphasis on benchmark performance
While numerous innovative molecular representation methods have been
developed in recent years, with some extending into experimental appli-
cations, most are evaluated primarily on standard benchmark datasets for
tasks suchasmolecular propertypredictionor virtual screening.Thishas led
to a “leaderboard arms race,” where achieving SOTA performance on
benchmarks is prioritized over addressing real scientific challenges.
Although some methods introduce novel training paradigms or offer
interpretability, they often lack logical consistency from an experimental
perspective. Moreover, AI-driven approaches may sometimes exploit
dataset-specific tricks to achieve high benchmark scores, potentially at the
cost of generalization. In other words, while these methods appear to per-
formwell on benchmark datasets, theymay fail to extend their performance
to new molecules that are not represented in those datasets. Interestingly,
several studies have demonstrated that by effectively combining molecular
graph information with molecular fingerprint features, and by carefully
selecting model architectures along with appropriate parameter tuning,
predictivemodels canalso reachhigh levels of performanceusing traditional
representationmethods140–142. This suggests that thepossible combinationof
AI-based and conventional molecular characterization approaches to
develop a general, adaptive AI architecture, capable of self-adjusting to
various benchmark scenarios, might partially overcome these limitations,
much like recent advances inmolecular interaction and property prediction
have attempted to address similar challenges70.

Dependence on data quality and quantity
AI-driven approaches heavily rely on the quality and quantity of training
data. Issues such as insufficient datasets, batch effects in experimental
data, and biases in data labeling can severely affect model performance
and generalization. Furthermore, acquiring high-quality labeled data for
specific drug targets is expensive and time-consuming. Large-scale
experimental datasets are often proprietary to commercial organiza-
tions, limiting accessibility for the broader research community and
restricting the general applicability of AI-based models. To address these
data challenges, several innovative strategies can be borrowed. For
instance, federated learning enables multiple institutions or companies to
collaboratively train AI models without directly sharing sensitive or
proprietary data143. By aggregating model updates rather than raw data,
federated learning not only alleviates privacy concerns but also leverages
the collective strength of diverse datasets144. Moreover, recent advance-
ments have combined federated learning with knowledge distillation, like
the approach employed by advanced large language models such as
DeepSeek (https://www.deepseek.com/), allowing complex local models
(teachers) to transfer their learnedknowledge into a compact globalmodel
(student). This hybrid strategy enhances the robustness and performance
of AI models, thereby mitigating limitations related to data heterogeneity
and limited generalizability.

Limitations in exploring chemical space
Traditional scaffold hoppingmethods often rely on predefined rules, which
constrain their ability to explore diverse chemical spaces. Evenwithmodern
AI-based approaches, training dataset distributions can cause generated
scaffolds to converge on specific chemotypes, reducing diversity and failing
to explore novel or unconventional chemical structures. Scaffold hopping
requires identifying structurally diverse compounds while retaining specific
bioactivity, and the inability to strike this balance poses challenges for
practical applications. A potentially viable solution is to adopt an attention-
basedmultimodal fusionnetwork that can adaptively learn the relationships
among 2D, 3D, and deep learning-based representations. By designing
dedicated fusion layers to integrate features from different modalities into a
shared latent space, this approach captures a more comprehensive array of
molecular information, thereby enhancing the efficiency of chemical space
exploration and the success rate of scaffold hopping.

Synthetic accessibility and drug-likeness
Although AI-based generative models excel at creating novel scaffolds,
ensuring their synthetic feasibility and drug-like properties remains a sub-
stantial challenge.Many generatedmoleculesmay be difficult or impractical
to synthesize and could exhibit suboptimal pharmacokinetic or pharma-
codynamic characteristics. This often necessitates additional filtering steps
to excludeunsuitable candidates. Striking abalance between exploringnovel
chemical spaces, maintaining synthetic accessibility, and preserving key
activity features is particularly demanding. To address these synthetic fea-
sibility concerns, incorporating synthetic accessibility scores, functional
reaction templates or retrosynthesis prediction algorithms directly into the
reward function of generative models can help prioritize molecules that are
not only novel but also synthetically tractable145,146.

Challenges in multimodal representation integration
Despite the rise of multimodal molecular representation models and
increased focus on cross-modal integration, effectively combining 2D, 3D,
and DL-based representations in the drug discovery workflow presents
substantial challenges. A key concern is interpretability. While graph
neural network models may provide some interpretability by visualizing
node or edge weights, these insights are often system-specific and lack
generalizability. Understanding how specific molecular features influence
predicted activities is inherently difficult, and incorporating multimodal
data further exacerbates this issue, hindering the rational optimization of
molecules.

Scaffold hopping and bioactivity preservation
In scaffold hopping, modifying molecular scaffolds often risks compro-
mising bioactivity. Neglecting target structural features during compound
design can further diminish activity. Capturing complex interactions, such
as protein-ligand binding, and explaining molecular interactions with
protein 3D conformations and dynamics remain critical yet challenging
tasks. While advancements like 3D graph-based models and diffusion
models have made notable strides, they still struggle to effectively handle
flexible and dynamic molecular systems.
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