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Lipid nanoparticles (LNPs) are essential carriers for genetic medicines, yet optimizing their design
remains challenging due to numerous parameters. Computational methods—including molecular
dynamics (MD), computational fluid dynamics (CFD), and machine learning (ML)—offer molecular
insights and predictive power. This perspective highlights recent advances, ongoing challenges, and
the need for multiscale modeling frameworks and standardized experimental datasets to
systematically explore LNP design space and improve the efficacy of next-generation formulations.

Lipid nanoparticles (LNPs) are nanoscale delivery vehicles composed of
amphiphilic lipid components that self-assemble into colloidally stabilized
structures in aqueous environments. They can be designed to encapsulate
and protect genetic cargo such as RNA or DNA until delivery into target
cells. LNPs represent an extremely complex system with nearly infinite
design variables, making traditional experimental approaches alone insuf-
ficient for fully understanding and optimizing their performance. Com-
putational studies provide a powerful complementary tool, allowing
researchers to explore vast chemical and physical spaces efficiently. By
systematically modeling key interactions and predicting functional out-
comes, computationalmethods can accelerate breakthroughs inLNPdesign
that would be impractical or impossible to achieve solely through
experiments.

LNP optimization is plagued by limited design principles, even as the
generation of in vivo data becomes increasingly feasible1. LNPs are the
leadingnon-viralmethod for delivering geneticmedicines involvingmRNA
and DNA, highlighted by the global implementation in COVID-19 mRNA
vaccines. LNPs are produced as colloidally stabilized nanostructures.
Despite being formedby simple oil-water emulsions, a highly complex series
of tasks is required for LNPs to be therapeutically relevant. Performance
relies on (1) encapsulation of nucleic acids, (2) stable particle formation, (3)
stable circulation in the bloodstream, (4) favorable interaction and endo-
somal uptake in the target cells, and (5) endosomal escape to the cytoplasm
for the nucleic acid to access relevant machinery. Each of these tasks is
influenced by subtle, interdependent changes to parameters such as lipid
structure2, lipid composition3, cargo-to-vehicle material ratio, particle fab-
rication process, and surface surfactants. Elucidating design principles

among so much data will require better data structuring and enable ana-
lytical techniques to optimize LNP performance.

Given the multi-scale and multi-parameter complexity of LNPs,
leveraging computational power is essential for rational design and opti-
mization. LNP performance is governed by a hierarchy of structural and
functional determinants, spanningmolecular lipid chemistry, self-assembly
mechanisms, particlemorphology, and in vivopharmacokinetics. Each level
presents unique challenges, requiring different computational approaches
to extract meaningful insights. As illustrated in Fig. 1, these hierarchical
length scales capture the intricacies of LNP behavior, emphasizing the need
for integrative computational strategies. By systematically modeling key
interactions at each scale, computational methods help bridge the gaps
between fundamental molecular properties and therapeutic efficacy,
enabling more precise control over LNP design.

Broadly, computational approaches in LNP research can be categor-
ized into physics-based modeling and knowledge-based data science, both
of which play crucial roles. Physics-based modeling—including computa-
tional quantum chemistry, all-atom and Coarse-grained molecular
dynamics (CG-MD) simulations, and computational fluid dynamics (CFD)
—offers unparalleled molecular and submolecular insights into LNP
behavior4–6. These methods enable researchers to investigate structural
dynamics, lipid-RNA interactions, and endosomal escape mechanisms at a
level of detail inaccessible to experiments. Unlike traditional computer-
aided drug discovery (CADD), which models small-molecule-protein
interactions, physics-based modeling for LNPs must capture the complex-
ities of self-assembly. Lipids are highly flexible molecules with rich phase
behavior, requiring insights from soft-matter physics to understand the
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thermodynamic and kinetic factors that govern LNP formation, stability,
and function. Meanwhile, knowledge-based data science, particularly ML-
driven approaches, has recently emerged as a promising tool for uncovering
complex patterns in LNP formulation and performance. While early ML
applications have shown encouraging results, their full potential remains
untapped due to the scarcity of high-quality experimental datasets needed
for robust model training.

In this perspective, we discuss how these computational approaches—
physics-based modeling and ML-powered data science—can collectively
drive breakthroughs in LNP research. By integrating mechanistic insights
with predictive data-driven models, computational studies hold the
potential to guide rational LNP design, improve therapeutic efficacy, and
ultimately expand the possibilities of RNA-based medicines.

Physics-based modeling
Physics-based modeling refers to the use of molecular-level simulation
techniques grounded in physical laws (e.g., Newtonian or statistical
mechanics) to investigate the behavior, structure, and dynamics of bio-
molecular systems such as lipid nanoparticles. Physics-based modeling of
lipid nanoparticles is a rapidly developing field, especially driven by recent
advances in multiscale modeling and high-performance computing tech-
niques. Complementary to experimental efforts for LNP formulation and
characterization, physics-based modeling is expected to offer molecular-
level insight into the LNP structure and interactions, essential to connect
LNP composition to their activities, which ultimately provides predictive
power to guide LNP design. An increasing number of publications have
begun to demonstrate the effectiveness of physics-based modeling in
explaining experimental observations, the self-assembly process of LNPs,
and interactions with various biomolecules under different conditions. The
goal of LNP physics-based modeling will be to provide accurate, high-
throughput, structure-based virtual screening for LNP development and,
hopefully, reduce the experimental time and cost and the need for extensive
tests of composition variations. Herein, we provide a brief review of current
approaches and their limitations in the physics-based modeling of LNPs,
including all-atom andCG-MD, andCFD simulations, alongwith forward-
seeing perspectives on future directions for advancement.

All-atomMD simulation
MD is a family of computational techniques that model the time-
dependent behavior of atoms and molecules by numerically solving
Newton’s equations of motion. It has been widely used in physics,
chemistry, biochemistry, and related areas to connect the microscopic
structures of molecules to their collective or macroscopic properties,
which enables the computational investigation of systems ranging from
simple argon liquid7 to complex biological systems like coronaviruses8. A
primer text is available for readers who are new toMD9.More specifically,
all-atom (AA) MD is a well-established technology for simulating lipid
membranes and membrane-protein interactions, with numerous appli-
cations primarily aimed at enhancing our understanding of membrane
dynamics10, membrane remodeling processes11–13, and membrane

proteins12,14–16. Recently, AA-MDmodels have also been used to examine
the structure anddynamics of LNPs17–19, although accuratelymodeling the
protonation states of ionizable lipids in various membrane environments
relevant to LNPs remains challenging20–23. Importantly, the protonation
states of ionizable lipids in LNPs—factors that affect the overall charge of
the LNPs as well as their interactions with biological systems—are often
environment-dependent when the pKa values of ionizable sites are near
the pH of the solution. This can significantly influence the overall charge
and interactions of an LNP with cells and surrounding biological media
(e.g., proteins binding to an LNP as part of the biocorona). Due to this
environment-dependent nature of ionizable sites, the protonation states
can also be affected by specificmanufacturing conditions (such as the type
of dialyzing buffer used during LNP production, which is known to
influence the transfection efficiency of LNPs) and the types and con-
centrations of helper lipids surrounding a particular ionizable lipid24,25. To
address these challenges, it is essential to utilizemore precise, constant pH
molecular dynamics (CpHMD) models26–29. Notably, a scalable CpHMD
model has been reported, which performs at comparable speeds to stan-
dard MD models30. This method implements l-dynamics based on the
linear interpolation of partial charges between protonated and deproto-
nated states of appropriately parameterized ionizable sites. The additional
computational cost associated with parameterization is offset by the
substantial increase in performance, which allows for hundreds of
ionizable sites to be modeled simultaneously. We anticipate that these
models will effectively capture environment-dependent effects within
LNPs, similar to how they can model the protonation states of peptides
and permeation enhancers integrating into membranes during oral pep-
tide absorption31. Very recently, scalable CpHMD models have been
implemented for LNPmodeling and were shown to accurately reproduce
the apparent pKa values for different LNP formulations (mean average
error (MAE) = 0.5 pKa units) in which pH-dependent structures are
observed32.

Overall, a key strength of atomistic adaptivemembranemodels is their
accuracy in capturing complex supramolecular interactions, such as the
hydrophobic effect, which dictates membrane self-assembly. Entropy plays
a significant role in these molecular interactions among various lipid
components within the membrane, as well as in the interactions at the
membrane-solvent interface. However, a major challenge associated with
AA-MDmodels is their relativelyhigh computational cost due to theneed to
treat all the atoms in the systemexplicitly, particularly the solventmolecules,
which often represent more than 70% of the total atoms present. Some of
these challenges can be addressed by establishing reduced model systems,
such as bilayer ormultilamellar membranemodels combined with periodic
boundary conditions to approximate larger lipid nanoparticle (LNP)
structures. Furthermore, enhanced sampling techniques—including
umbrella sampling33, metadynamics34, replica exchange MD35, steered
MD36,37, and biasedMD38—can be employed to model events occurring on
timescales that exceed the current capabilities of AA models. These
advanced sampling techniques are specifically designed to improve the
sampling of rare events during MD simulations, which would otherwise be

Fig. 1 | Hierarchical length scales in lipid nanoparticle (LNP) research, illustrate
the complexity of LNP design and performance. Each level—from molecular
structure to in vivo efficacy—captures key determinants of LNP function. Com-
putational approaches, spanning physics-based modeling and machine learning-

driven data science, offer essential tools for navigating this vast design space,
enabling rational optimization of LNPs for improved therapeutic outcomes. Created
in BioRender https://BioRender.com/ubts4t1.
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extremely difficult to observe within the limited timeframes that can be
simulated with classical MD. We anticipate that this enhancement will
ultimately allow AA-MD simulations to model rare events crucial for LNP
function. This includes but is not limited to membrane reorganization
processes that occur during LNPmanufacturing or the endosomal release of
LNP-encapsulated RNA from endosomes6,39,40.

Nevertheless, each collective variable (CV) sampled using enhanced
sampling methods incurs significant additional computational costs. This
limitation restricts the number of CVs that can be efficiently sampled.
Furthermore, defining reasonable CVs for enhanced sampling often
requires a hypothesis about a molecular mechanism, which makes the
simulation outcomes dependent on these initial assumptions. This depen-
dency canhinder the explorationof thepotential energy surface forCVs that
aren’twell-represented in the selected set for enhanced sampling.Toaddress
this issue, it is essential to develop newmultiscale computational techniques
that canbetter bridgemodels at different resolutionshierarchically, enabling
the exploration of systems over larger time and spatial scales without
sacrificing the accuracy of all-atom models. Machine learning (ML) and
artificial intelligence (AI) will be crucial in these efforts, facilitating effective
feature representation and linking various models for coarse-graining and
back-mapping tasks.

Coarse-grained molecular dynamics simulation
CG-MD is a simulation approach inwhich groups of atoms are represented
by simplified interaction sites, allowing for the modeling of larger systems
and longer timescales compared to all-atom MD simulations. MD simu-
lations of coarse-grained (CG) models help understand the detailed mole-
cular structures and mechanisms of LNPs, which are often difficult to
characterize experimentally41. Unlike AA models, there is a variety of CG
models, ranging from the highly CG/low-resolution ones (e.g., 1 to 3 CG
sites per lipid) to relatively fine-grained/high-resolution ones (e.g., over

6 sites per lipid). In the popular Martini-CG model42–45, a typical lipid is
represented by around 10–15CG sites per lipid, with the key principle being
a “four-to-one mapping”where ~4 heavy atoms are represented by a single
CG site. The number of CG sites per lipid can vary slightly depending on the
lipid structure, which can result in heterogeneity in the CG model and the
resulting dynamics. The fine-grained CG models like Martini-CG retain
essential chemical details of LNP and greatly facilitate parameterization and
back mapping to AA models, which are useful to simulate LNPs with
different lipid and nucleic acid compositions45–47. Further reducing the
model resolution, the highly CG models are useful to simulate LNPs on
more relevant temporal and spatial scales, and thus suitable to study the
LNP self-assembly, size dependence, mechanical properties, etc. The highly
CG models are also limited in the chemical details and complexities, and
their parameters are often not transferrable, which requires significant
efforts to develop and validate suchmodels. However,many tools have been
developed to automate CGmodel construction and parameterization46,48–52.

Given the pros and cons of AA and CG models, hierarchical simula-
tions (Fig. 2) that combine multiple models seamlessly may be a way to get
the best of both models, allowing for AA accuracy and CG efficiency.
Current hierarchical simulations have been categorized by how information
is transferred between different resolutions53—in serial or in parallel. (i) The
serial multiscale method carries out modeling at different resolutions in
sequence, which takes advantage of sampling efficiency at lower resolutions
and detailed accuracy at higher resolutions54–56. For instance, one can start
modeling from the least detailedmodel and ultimately obtain a fully atomic
model. This so-called top-down modeling57 is promising to simulate com-
plex systems like LNPs. (ii) The parallel multiscale methods include two
different classes. The “hybrid resolution” methods58–62 combine AA or
united-atom (UA) models of a given subsystem of interest with a CG
representation of the environment. New parameters, however, are often
needed to account for the cross interactions between two resolutions62,63. In
short, these hierarchicalmethods can be useful to study LNPs, butmany key
issues, such as transformations between multiple resolutions, sampling
effectiveness, and simulation protocol optimization, still need to be studied
systematically to advance their applications to systematic LNP simulation
and, eventually, LNP development.

Computational fluid dynamics (CFD)
In the synthesis of LNPs, achieving rapid and uniformmixing is crucial for
producing particles with well-defined sizes and high encapsulation
efficiency64,65. To produce LNPs with low polydispersity via antisolvent
precipitation, the process requires mixing times on the order of 100ms.
Research indicates that confined impinging jet mixers (CIJMs) and multi-
inlet vortex mixers (MIVMs) are effective for facilitating rapid solvent
exchange and nanoprecipitation65–68. CFD simulations can be used to better
understrand fluid flow and mixing dynamics in different mixers.

Microfluidic mixing has played a key role in the self-assembly of LNPs
at the lab scale69. A key challenge in these systems is achieving efficient
mixing at low Reynolds numbers, where turbulence is largely absent,
making diffusion the dominant transport mechanism70,71. Diffusion-based
self-assembly is impractical due to its slow timescales, making hydro-
dynamic mixing essential for rapid nucleation and controlled growth72.
Staggered herringbone mixers have been shown to produce monodisperse
LNPs, but their low throughput presents a challenge72.While parallelization
can increase throughput, it also adds complexity and cost to the system69.
Higher throughput LNPproduction can occur using inertialmicromixers at
higher flow rates69. Among these microfluidic mixers, Dean vortex-based
micromixers are suggested for LNP manufacturing due to their ability to
maintain efficient mixing at high throughput64. Dean vortex-based micro-
mixers use curved microchannels to generate transverse rotational flows,
known as Dean vortices73. These vortices arise due to flow instabilities in
curvedgeometries andactivelymovingfluidbetweendifferent regionsof the
channel, enhancing mixing even at low Reynolds numbers. This passive
design offers effectivemixing without complex structures. There is a critical
transition regime in these devices, which influences the optimal flow

Fig. 2 | Structure-based design of new ionizable lipids and LNP formulations can
be guided by hierarchical physics-based modeling systems. Results from highly
accurate fine-grain systems can be used to improve the quality of less detailed
simulations with the help of machine learning. Improved coarse-grain simulations,
combined with the incorporation of multiscale models, serve to increase the quality
of theoretical systems and improve their ability to predict mesoscopic properties.
The production and characterization of a new LNP formulation can then inform the
design of the next generation of formulations as theoretical methods are further
refined to increase their predictive capabilities. Created in BioRender https://
BioRender.com/po4kp29.
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conditions for LNP formation64. For achieving LNPs with optimal encap-
sulation efficiency, charge, andmonodispersity, it is crucial to operate above
this transition regime, as performance is compromised when operating
within or below it. These insights highlights the importance of computa-
tional fluid dynamics to define the physical parameters necessary for con-
sistent LNP quality.

CFD has been instrumental in analyzing and optimizing mixing,
providing insights into flow behavior and mixing efficiency 74,75. Various
passive micromixer designs have been developed to enhance mixing per-
formance, including split-and-recombine (SAR)micromixers76,77, staggered
herringbone mixers78, and Dean vortex-based mixers79. These designs
enhancemixingby stretching and foldingfluid layers, thereby increasing the
interfacial surface area available for diffusion.

Large Eddy Simulations (LES) and Direct Numerical Simulations
(DNS) have been extensively used to investigate turbulence-driven mixing
in these systems, understanding the role of self-sustained oscillations and
flow structures onmixing uniformity80,81. Studies on confined impinging jet
mixers (CIJMs) suggest that turbulent structures impact mixing and
encapsulation efficiency82.

Computational studies can be used to evaluate mixing dynamics for
different micromixer designs. High-fidelity CFD simulations provide a
detailed understanding of fluid dynamics, mixing efficiency, and nano-
particle size, complementing experimental measurements. Computational
approaches enable researchers to investigate a broad range of design para-
meters, flow conditions, and geometric modifications saving time and
reducing costs. By systematically examining the effects of flow regimes, e.g.,
Reynolds number (the ratio inertial to viscous forces), chaotic flow struc-
tures, and turbulence-drivenmixing, these studies canhelp optimizemixing
platforms for enhanced nanoparticle properties, encapsulation efficiency,
and scalability74,75,78,79,81,82.

Knowledge-based data science
Recent progress and limitations of current machine learning
(ML)-based approaches
ML refers to data-driven computational methods that identify patterns and
makepredictionsbasedon largedatasets. Indrugdevelopment,MLmethods
present opportunities to reduce R&D burden and improve design success
rates. To successfully bring a new drug to market requires substantial
investment of time and resources83. Methods in ML are opportunities for
systematic reduction in the investment burden required for drug discovery,
with the potential to improve probabilities of success aswell as reduce design
cycle times.However,MLmethods require as input existingdata sets that are
representative of the research problemof interest.MLmethods are unable to
overcome problems caused by irrelevant or erroneous research data.

In small-molecule drug discovery, ML methods are mature platforms
withwide deployment and routine use. This is perhaps not surprising asML
methods in small-molecule drug discovery have access to very large data
sets. Additionally,method development has been a focus of intense research
for well over 30 years.

The situation can be very different when one examines more recent
paradigms in drug discovery. For example, the use of ML methods in
support of biologics research is still relatively recent andunder intense active

development. Shown in Fig. 3 is a depiction of platform maturity over four
different paradigms in drug discovery: small molecule, biologics, oligonu-
cleotides, and nanomedicine. In moving from left to right in Fig. 3 we see
decreasing platform maturity, while we also observe increasing complexity
in the data that is generated in the course of research operations. For
research data with high complexity, we expect a greater benefit from ML
methods compared to situations with lower complexity research data.

ML methods for use in nanomedicine research are in their infancy.
Despite this fact, there has been noteworthy progress reported in recent
literature. For example, image-based classification of LNP experimental
readouts, allowing detection of subtle features corresponding to differences
in internal composition84. Another noteworthy advancement is seen in the
recent report for pooled in vitro activity and cell viability data for on 6454
LNP formulations reported across 21 independent studies. This study
examined 11 different molecular featurization techniques (e.g., descriptors,
fingerprints, and graph-based representations), alongside six ML algo-
rithms. The resulting accuracy of >90% was reported85. The authors also
implemented transfer learning to bridge the gapbetween in vitro and in vivo
predictions by integrating basemodel outputs with LNP size, polydispersity
index, and zeta potential. Despite the limited size and class imbalance of the
in vivo dataset, the transfer learning models achieved accuracy >82%85.

Additional reports appear in the literaturewith theprimaryobjectiveof
exploring optimization of the ionizable-lipid component, as it is considered
to be a key variable in LNP property optimization and in vivo tissue
distribution86–88. Another publication reports results for multiparameter
optimization of LNP properties89. The above methods show promise for
acceleration of nanomedicine research. However, it is too early to tell how
transferable thesemethodswill be to other research contexts in nanoparticle
design.

Inherent challenges of nanomedicine research data
The rational design of nanomedicines represents a relatively new research
paradigm for the pharmaceutical industry. Examination of published data
in nanomedicine literature reveals a predominance of sparse data sets that
are not representative of the breadth of the research problem. As described
in the introduction, the parameter space for LNP design is inherently high-
dimensional and is not well understood or even well characterized. Addi-
tional layers of nuance and complexity can be added to the problem for
research projects that require in vivo readouts as the primary assay for
hypothesis evaluation, data interpretation, and design prioritization.

Some noteworthy attempts to develop new approaches for systematic
exploration of LNP design space have been reported recently in scientific
literature90,91. However, progress to date has been limited to custom solu-
tions designed and deployed in-house, which, by necessity, focus on
immediate needs and near-term deliverables with limited impact on
the field.

The LNP design problem has created new challenges for computa-
tional methods, due to the unprecedented underlying complexity of the
problem. Contributing to the challenge is the lack of established scientific
standards for the reporting of nanomedicine research data. A large number
of experimental parameters must be captured during formulation of LNPs
inorder toprovide adequatedetail for theprocedureused toprepare just one

Fig. 3 | Maturity of ML platforms across areas of
active research in the pharmaceutical industry. As
one traverses from left to right the maturity of ML
method development declines, while at the same
time the inherent complexity of research data being
generated increases. MLmethods are just beginning
to be explored in nanomedicine. We expect the
impact of ML methods to be greater when data
complexity increases.
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LNP sample. As described in the introduction, we have encountered quite a
fewsituations inwhich seeminglyminor changes tooneprocess variable can
produce LNP samples with profoundly different readouts from in vivo
experimental assay. These results are robust in that they persist across
replicate preparations and replicate experimental measurements. For a
subset of these cases, the LNP property characteristics in the samples are
measured to be identical by experiment (e.g., size, encapsulation efficiency,
etc.). The implications of this are subtle but significant: the measured
properties of LNPs are not sufficient to distinguish between samples for
in vivo experiment. In order forMLmethods to be relevant to in vivodesign,
the process variables must be captured.

Thus, there is a real need for the development of new data models that
are capable of supporting and even driving advances in the field of nano-
medicine research. A successful datamodel should provide sufficient detail to
adequately capture the parameter space required for rational design of LNPs.
Proposals for new data models should derive from critical discussion in the
nanomedicine experimental and theoretical communities. Solution imple-
mentation should be driven by community consensus and adopted as edi-
torial standards for publication of nanomedicine research. A collective push
toward the common goal of advancing our understanding of nanoparticle
design and enabling the successful development of novel therapeutics.

Lipid nanoparticles (LNPs) have revolutionized the delivery of genetic
medicines, yet their rational design remains an unsolved challenge due to
the immense complexity of their structure-function relationships. Com-
putational approaches—including physics-based modeling and ML—offer
powerful tools to navigate this complexity by enabling molecular-level
insight, multiscale simulation, and predictive optimization of LNP
formulations.

In this perspective, we outlined the current landscape of computational
strategies in LNP research. All-atom and CG-MD simulations provide a
mechanistic understanding of lipid-lipid and lipid-cargo interactions, while
CFDsupports the rational designof scalablemixing systems.ML-baseddata
science offers new ways to mine experimental data, accelerate formulation
screening, and uncover latent design rules—though such efforts remain
limited by the quality and structure of available datasets.

Integration across modeling scales and data modalities is essential to
fully realize the potential of computational tools in LNP development. A
community-wide push toward standardized data reporting, improved data
models, and interdisciplinary collaboration will be critical for building
reliable in-silico platforms that can inform real-world design decisions.
With these advances, computational studies will not only complement
experimental workflows but also drive a new paradigm of rational, pre-
dictive, and efficient LNP engineering for next-generation therapeutics.

Data availability
No datasets were generated or analysed during the current study.
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