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Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large
languagemodels (LLMs) has catalyzed a paradigm shift in artificial intelligence,with growing evidence
supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a
holistic view is still lacking.Many critical aspects remain unclear, such as the diseases and clinical data
towhich LLMshavebeen applied, the LLM techniques employed, and the evaluationmethodsused. In
this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our
review examines the existing literature across various dimensions, including disease types and
associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally,
we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we
assess the limitations of current research and discuss future directions. To our knowledge, this is the
first comprehensive review for LLM-based disease diagnosis.

Automatic disease diagnosis is pivotal in clinical practice, leveraging clinical
data to generate potential diagnoses with minimal human input1. It
enhances diagnostic accuracy, supports clinical decision-making, and
addresses healthcare disparities by providing high-quality diagnostic
services2. Additionally, it boosts efficiency, especially for clinicians mana-
ging aging populations with multiple comorbidities3–5. For example,
DXplain6 analyzes patient data to generate diagnoses with justifications.
Online services also promote early diagnosis and large-scale screening for
diseases like mental health disorders, raising awareness and mitigating
risks4,7–10.

Advances in artificial intelligence (AI) have driven two waves of
automated diagnostic systems11–14. Early approaches utilized machine
learning techniques like support vector machines and decision trees15,16.
With larger datasets and computational power, deep learning (DL)models,
such as convolutional, recurrent, and generative adversarial networks,
became predominant1,2,17–20. However, these models require extensive
labeled data and are task-specific, limiting their flexibility1,19,21. The rise of

generative large language models (LLMs), like GPT22 and LLaMA23, pre-
trained on extensive corpora, has demonstrated significant potential in
various clinical applications, such as question answering24,25 and informa-
tion retrieval26,27. These models are increasingly applied to diagnostics. For
example, PathChat28, a vision-language LLM fine-tuned with comprehen-
sive instructions, set new benchmarks in pathology. Similarly, Kim et al.29

reported that GPT-4 outperformed mental health professionals in diag-
nosing obsessive-compulsive disorder, underscoring its potential in mental
health diagnostics.

Despite growing interest, several key questions remain unresolved:
Which diseases and medical data have been explored for LLM-based
diagnostics (Q1)? What LLM techniques are most effective for diagnostic
tasks (see Box 1), and how should they be selected (Q2)? What evaluation
methods best assess performance of various diagnostic tasks (Q3)? Many
reviews have explored the use of LLMs in medicine30–37, but they typically
provide broadoverviews of diverse clinical applications rather than focusing
specifically on disease diagnosis. For instance, Pressman et al.38 highlighted
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introducing various clinical applications of LLMs, e.g., pre-consultation,
treatment, and patient education. These reviews tend to overlook the
nuanced development of LLMs for diagnostic tasks and do not analyze the
distinct merits and challenges in this area, revealing a critical research gap.
Some reviews39,40 have focused on specific specialties,such as digestive or
infectious diseases, but failed to offer a comprehensive perspective that
spans multiple specialties, data types, LLM techniques, and diagnostic tasks
to fully address the critical questions at hand.

This review addresses the gap by offering a comprehensive examination
of LLMs in disease diagnosis through in-depth analyses. First, we system-
atically investigated a wide range of disease types, corresponding clinical
specialties, medical data, data modalities, LLM techniques, and evaluation
methods utilized in existing diagnostic studies. Second,we critically evaluated
the strengths and limitations of prevalent LLM techniques and evaluation
strategies, providing recommendations for data preparation, technique
selection, and evaluation approaches tailored to different contexts. Addi-
tionally, we identify the shortcomings of current studies and outline future
challenges anddirections. To the best of our knowledge, this is thefirst review
dedicated exclusively to LLM-based disease diagnosis, presenting a holistic
perspective and a blueprint for future research in this domain.

Results
Overview of the scope
This section outlines the scope of our review and key findings. Figure 1
provides an overview of disease types, clinical specialties, data types, and
modalities (Q1), and introduces the applied LLM techniques (Q2) and
evaluation methods (Q3), addressing the key questions. Our analysis spans
19 clinical specialties and over 15 types of clinical data in diagnostic tasks,
covering modalities such as text, image, video, audio, time series, and
multimodal data.We categorized existing works based on LLM techniques,
which fall into four categories: prompting, retrieval-augmented generation
(RAG), fine-tuning, and pre-training, with the latter three further sub-
divided. Table 1 summarizes the taxonomyofmainstreamLLM techniques.
Figure 2 illustrates the associations between clinical specialties,modalities of
utilized data, and LLM techniques in the included papers. Additionally,
Fig. 3 presents a meta-analysis, covering publication trends, widely-used
LLMs for training and inference, and statistics on data sources, evaluation
methods, data privacy, and data sizes. Collectively, these analyses compre-
hensively depict the development of LLM-based disease diagnosis.

Study characteristics
As shown in Fig. 2, the included studies span all 19 clinical specialties, and
some specialties receive particular attention, such as pulmonology and
neurology. While most studies leveraged text modality, multi-modal data,
such as text-image41 and text-tabular data42, are widely adopted for diag-
nostic tasks. Another observation is that various LLM techniques have been
applied to diagnostic tasks, and all have been used with multi-modal data
(Table 1). Additionally, we find an increasing number of LLM-based
diagnostic studies all over the world, reflecting the field’s growing sig-
nificance (Fig. 3a). Among these studies, GPT22 and LLaMA23 families
dominate inference tasks, while LLaMA and ChatGLM43 are commonly
adopted for model training (Fig. 3b). Figure 3c shows that most datasets
originate from North America (50.6%) and Asia (33.9%), and 50.4% of the
studies used public datasets (Fig. 3e). Evaluation methods vary: 66.8% rely
on automated evaluation, 28.1% on human assessment, and 5.1% on LLM-
based evaluation (Fig. 3d). Figure 3f reveals that the included studies
employed large datasets (e.g., 5 × 105 samples) for pre-training diagnostic
models, surpassing those primarily using fine-tuning or RAG. This phe-
nomenon aligns with another observation that over half of pre-training
models used data from multiple specialties.

Prompt-based disease diagnosis
A customized prompt typically includes four components: instruction (task
specification), context (scenario or domain), input data (data to process),
and output indicators (desired style or role). In this review, over 60% (N =
278) of studies employed prompt-based techniques, categorized as hard
prompts and soft prompts. Hard prompts are static, interpretable, and
written innatural language. Themost commonmethods included zero-shot
(N=194), Chain-of-Thought (CoT) (N=37), and few-shot prompting (N=
35). Among them, CoT prompting excels in thoroughly digesting input
clinical cues in manageable steps to make a coherent diagnosis decision.
Particularly, in differential diagnosis tasks,CoT reasoning allows theLLMto
sequentially analyze medical images, radiology reports, and clinical history,
generating intermediate outputs that lead to a holistic decision, with an
accuracyof 64%44. Self-consistencypromptingwasused in a fewstudies (N=
4). For instance, a study combined self-consistency with CoT prompting to
improve depressionprediction by synthesizing diverse data sources through
multiple reasoning paths. This hybrid approach reduced the mean absolute
error by nearly 50% compared to standard CoT methods45.

Box 1 | Terms and Concepts

Disease diagnosis: receiving clinical data, such as patient symptoms,
medical history, and diagnostic tests, as input and identifying which
disease explains the symptoms and signs.
Diagnostic tasks: a type of tasks that generate disease diagnoses or
probability estimates for specific conditions, such as differential diag-
nosis and conversational diagnosis.
Large languagemodels:a typeof AImodels usingdeepneural networks
to learn the relationships between words in natural language, using large
datasets of text to train.
Hallucination: an AI-generated output that is plausible but factually
incorrect or unrelated to the input, arising from limitations in training or
reasoning.
Prompt: an input or instruction provided to an AI model to guide its
response, often designed to elicit specific or task-relevant outputs.
Chain-of-thought: a technique enabling AI to generate multi-step rea-
soning by breaking down complex tasks into sequential steps for
improved accuracy.
Self-consistency prompt: a method that samples diverse reasoning
paths and selects the most consistent solution to enhance the reliability
of outputs in reasoning tasks.

Soft prompt: a learnable embedding added to the input space of a pre-
trained model to guide its behavior without modifying the model’s
parameters.
Retrieval-augmented generation: integrates retrieved data into LLMs,
enhancing responses by leveraging external information for improved
context and accuracy in content generation.
Fine-tuning: the process of adapting a pre-trained model to a specific
task by training it further on a smaller, task-specific dataset.
Supervised fine-tuning: refining a pre-trained model for a task using
labeled data to enhance task-specific performance.
Parameter-efficient fine-tuning: adapting pre-trained models to new
tasks by updating limited parameters (e.g., adapters), reducing compu-
tational costs while preserving performance.
Reinforcement learning from human feedback: a method where
models improve outputs by learning from human-provided feedback,
aligning behavior with human goals through reinforcement learning.
Pre-training: the foundational training phase of a model on a large,
general dataset to learn broad patterns, features, and representations,
which can later be adapted to specific tasks through fine-tuning.
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In contrast, soft prompts (N = 6) are continuous vector embeddings
trained to adapt the behavior of LLMs for specific tasks46. These prompts
effectively integrate external knowledge, such as medical concept embed-
dings and clinical profiles, making them well-suited for complex diagnostic
tasks requiring nuanced analysis. This knowledge-enhanced approach
achieved F1 scores exceeding 0.94 for diagnosing common diseases like
hypertension and coronary artery disease and demonstrated superiority in
rare disease diagnosis47.

Most prompt-based studies (N = 221) focused on unimodal data,
predominantly text (N = 171). Clinical text sources like clinical notes48,
imaging reports49–51, and case reports52,53 were commonly used. These stu-
dies often prompted LLMs with clinical notes or case reports to predict
potential diagnoses54–57. A smaller subset (N = 19) applied prompt engi-
neering to medical image data, analyzing CT scans58, X-rays59,60, MRI
scans58,61, and pathological images62,63 to detect abnormalities and provide
evidence for differential diagnoses62,64–66.

Q: Am I infected with 
any disease?

A: COVID-19. As
you had signs …

Q: Am I infected with 
any disease?

A: COVID-19. As
you had signs …

Prompt (Zero-shot) RAG (Database)

Clinical Data

Data Modality
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…

Fig. 1 | Overview of the investigated scope. It illustrated disease types and the associated clinical specialties, clinical data types, modalities of the utilized data, the applied
LLM techniques, and evaluation methods. We only presented part of the clinical specialties, some representative diseases, and partial LLM techniques.
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With the advancement of multimodal LLMs, 57 studies explored their
application in disease diagnosis through prompt engineering. Visual-
language models (VLMs) like GPT-4V, LLaVA, and Flamingo (N = 37)
integrated medical images (e.g., radiology scans) with textual descriptions
(e.g., clinical notes)67–69. For example, incorporating ophthalmologist feed-
back and contextual details with eye movement images significantly
improved GPT-4V’s diagnostic accuracy for amblyopia64.

Beyond image-text data,more advancedmultimodal LLMs (e.g., GPT-
4o and Gemini-1.5 Pro) have also integrated other data types to support
disease diagnosis in complex clinical scenarios. Audio and video data have
been used to diagnose neurological and neurodegenerative disorders, such
as autism70,71 and dementia59,72. Time-series data, such as ECG signals and

wearable sensor outputs, were used to support arrhythmia detection73,74.
With the integration of tabular data such as user demographics75,76, and lab
test results47,77, the applications have been extended to depression and
anxiety screening45. Omics data has been integrated to aid in identifying rare
genetic disorders78 and diagnoseAlzheimer’s disease76. Some studies further
enhanced diagnostic capabilities by integrating medical concept graphs to
provide a richer context for conditions such as neurological disorders59.

Retrieval-augmented LLMs for diagnosis
To enhance the accuracy and credibility of the diagnosis, alleviate halluci-
nation issues, and update LLMs’ storedmedical knowledgewithout needing
re-training, recent studies79–81 have incorporated external medical

Table 1 | Overview of LLM techniques for diagnostic tasks

Techniques Types Representative studies

Prompting Zero-shot Text196,197, image65,198, audio70,72, text-image52, text-time series73,199, text-tabular200

Few-shot Text25,187, image58, text-image41,201, text-image-tabular153

CoT Text51,202, audio203, time series155, text-image44,204

Self-consistency Text89, audio205, text-image-tabular-time series45

Soft prompt Text206, image207, tabular-time series47,208, text-image-graph59

RAG Knowledge graph Text81, text-time series94

Corpus Text85,87, text-image64,86, text-time series83

Database Text80,93, text-image90

Fine-tuning SFT Text98,209,210, text-image133,211,212, text-video102,112, text-audio111,213, text-tabular42,200

RLHF Text116,117,214, text-image115

PEFT Text98,124,215, text-image104

Pre-training - Text124,129,131, text-image109,133,137, text-tabular135,200, text-video213, text-omics109

SFT supervised fine-tuning, RLHF reinforcement learning from human feedback, PEFT parameter-efficient fine-tuning.

Fig. 2 | Summary of the association between clinical specialties (left), data modalities (middle), and LLM techniques (right) across the included studies on disease diagnosis.
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knowledge into diagnostic tasks. The external knowledge primarily comes
from corpus64,79,82–88, databases74,80,89–93, and knowledge graph81,94, in the
included papers. Based on the data modality, these RAG-based studies can
be roughly categorized into text-based, text-image-based, and time-series-
based augmentations.

In text-based RAG, most studies80,82,84,85,91–93 utilized basic retrieval
methods where external knowledge was encoded as vector representations
using sentence transformers, such as OpenAI’s text-embedding-ada-002.
Querieswere similarly encoded, and relevant knowledgewas retrievedbased
on vector similarities. The retrieved data was then input into LLMs with
specific prompts to produce diagnostic outcomes. In contrast, Li et al.88

developed guideline-based GPT agents for retrieving and summarizing
content related to diagnosing traumatic brain injury. They found that these
guideline-based GPT-4 agents significantly outperformed the off-the-shelf
GPT-4 in terms of accuracy, explainability, and empathy evaluation.
Similarly, Thompson et al.79 employed regular expressions to extract rele-
vant knowledge for diagnosing pulmonary hypertension, achieving about a
20% improvement compared to structured methods. Additionally, Wen
et al.81 integrated knowledge graph retrieval with LLMs to enable diagnostic
inference by combining implicit and external knowledge, achieving an
F1 score of 0.79.

In text-image data processing, a common approach87,91 involved
extracting image features and text features and aligning them within a

shared semantic space. For instance, Ferber et al.91 used GPT-4V to extract
crucial image data for oncology diagnostics, achieving a 94% completeness
rate and an 89.2% helpfulness rate. Similarly, Ranjit et al.87 utilized multi-
modal models to compute image-text similarities for chest X-ray analysis,
leading to a 5% absolute improvement in the BERTScore metric. Notably,
one study fine-tuned LLMs with retrieved documents to enhance X-ray
diagnostics86, attaining an average accuracy of 0.86 across three datasets.

For time-series RAG, most studies focused on the electrocardiogram
(ECG) analysis74,83. For example, Yu et al.83 transformed fundamental ECG
conditions into enhanced text descriptions by utilizing relevant information
forECGanalysis, resulting in an averageAUCof 0.96 across two arrhythmia
detection datasets. Additionally, Chen et al.95 integrated retrieved disease
records with ECG data to facilitate the diagnosis of hypertension and
myocardial infarction.

Fine-tuning LLMs for diagnosis
Fine-tuning an LLM typically encompasses two pivotal stages: supervised
fine-tuning (SFT) and reinforcement learning from human feedback
(RLHF). SFT trains models on task-specific instruction-response pairs,
enabling it to interpret instructions and generate outputs across diverse
modalities. This phase establishes a foundational understanding, ensuring
the model processes inputs effectively. RLHF further refines the model by
aligning its behavior with human preferences. Using reinforcement

Fig. 3 | Metadata of information from LLM-based diagnostic studies in the
scoping review. aQuarterly breakdown of LLM-based diagnostic studies. Since the
information for 2024-Q3 is incomplete, our statistics only cover up to 2024-Q2.
b The top 5 widely-used LLMs for inference and training. c Breakdown of the data
source by regions. d Breakdown of evaluation methods (note that some papers
utilized multiple evaluation methods). e Breakdown of the employed datasets by
privacy status. f Distribution of data size used for LLM techniques. The red line

indicates the median value, while the box limits represent the interquartile range
(IQR) from the first to third quartiles. Notably, pre-trained diagnostic models were
often followed by other LLM techniques (e.g., fine-tuning), yet this figure only
includes studies that primarily used fine-tuning or RAG. Statistics for prompting
methods are not included because: (i) hard prompts generally utilize zero or very few
demonstration samples, and (ii) although soft prompts require more training data,
the number of relevant studies is insufficient for meaningful distribution analysis.
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learning, the model is optimized to produce responses that are helpful,
truthful, and aligned with societal and ethical standards96.

In medical applications, SFT enhances in-context learning, reasoning,
planning, and role-playing capabilities, improving diagnostic performance.
This process integrates inputs from various data modalities into the LLM’s
word embedding space. For example, following the LLaVA approach97,
visual data is converted into token embeddings using an image encoder and
projector, then fed into the LLM for end-to-end training. In this review,
49 studies focused on SFT using medical texts, such as clinical notes98,
medical dialogs99–101, or reports102–104. Additionally, 43 studies combined
medical texts with images, including X-rays102,105–107, MRIs104,107,108, or
pathology images109–111. A few studies explored disease detection from
medical videos102,112, where video frames were sampled and converted into
visual token embeddings. Generally, effective SFT requires collecting high-
quality, diverse responses to task-specific instructions to ensure compre-
hensive training.

RLHF methods are categorized as online or offline. Online RLHF,
integral to ChatGPT’s success113, involves training a reward model on
datasets of prompts and human preferences and using reinforcement
learning algorithms like Proximal PolicyOptimization (PPO)114 to optimize
the LLM. Studies have shown its potential in improving medical LLMs for
diagnostic tasks115–117. For instance, Zhang et al.117 aligned their model with
physician characteristics, achieving strong performance in disease diagnosis
and etiological analysis; the diagnostic performance of their model, Hua-
tuoGPT, surpassedGPT-3.5 in over 60%of cases ofMeddialog118. However,
online RLHF’s effectiveness depends heavily on the rewardmodel’s quality,
which may suffer from over-optimization119 and data distribution shifts120.
Additionally, reinforcement learning often faces instability and control
challenges121. Offline RLHF, such as Direct Preference Optimization
(DPO)122, frames RLHF as optimizing a classification loss, bypassing the
need for a rewardmodel. This approach ismore stable and computationally
efficient, proving valuable for aligning medical LLMs123,124. Yang et al.124

reported significant performance drops on pediatric benchmarks when the
offline RLHF phase was omitted. A high-quality dataset of prompts and
human preferences is essential for online RLHF rewardmodel calibration125

or the convergence of offline methods like DPO126, whether sourced from
experts113 or advanced AI models127.

Since full training of LLMs is challenging due to high GPU demands,
parameter-efficient fine-tuning (PEFT) reduces the number of tunable
parameters. The most common PEFT method, Low-Rank Adaptation
(LoRA)128, introduces trainable rankdecompositionmatrices into each layer
without altering the model architecture or adding inference latency. In this
review, all PEFT-based studies (N = 7) used LoRA to reduce training
costs98,104,124.

Pre-training LLMs for diagnosis
Pre-training medical LLMs involves training on large-scale, unlabeled
medical corpora todevelopa comprehensiveunderstandingof the structure,
semantics, and context of medical language. Unlike fine-tuning, pre-
training enables the acquisition of extensive medical knowledge, enhancing
generalization to unseen cases and improving robustness across diverse
diagnostic tasks. In this review, five studies performed text-only pretraining
on the LLMs fromdifferent sources129–132, such as clinical notes,medical QA
texts, dialogs, and Wikipedia. Moreover, eight studies injected medical
visual knowledge into multimodal LLMs via pretraining109,133–137. For
instance, Chen et al.137 employed an off-the-shelf multimodal LLM to
reformat image-text pairs from PubMed into VQA data points for training
their diagnostic model. To improve the quality of the image encoder, pre-
training tasks like reconstructing images at tile-level or slide-level109, and
aligning similar images or image-text pairs133 are common choices.

Performance evaluation
Evaluation methods for diagnostic tasks generally fall into three categories
(Table 2): automated evaluation138, human evaluation138, and LLM
evaluation139, each with distinct advantages and limitations (Fig. 4).

In this review, most studies (N = 266) relied on automated evaluation,
which is efficient, scalable, and well-suited for large datasets. These metrics
can be grouped into three types. (1) Classification-based metrics, such as
accuracy, precision, and recall, are commonlyused for disease diagnosis. For
instance, Liu et al.133 evaluated COVID-19 diagnostic performance using
AUC, accuracy, and F1 score. (2) Differential diagnosis metrics, including
top-k precision, assess ranked diagnosis lists. Tu et al.140 employed top-k
accuracy to evaluate the correctness of differential diagnosis predictions. (3)
Regression-based metrics, such as mean squared error (MSE)141, quantify
deviations between predicted and actual values142. Despite their efficiency,
automated metrics rely on ground-truth diagnoses143, which may be una-
vailable, and cannot understand contexts, such as the readability of diag-
nostic explanations or their clinical utility144. They also struggle with
complex tasks, such as evaluating the medical correctness of diagnostic
reasoning145.

Human evaluation (N = 112), conducted by medical experts24,138, does
not require ground-truth labels and integrates expert judgment, making it
suitable for complex, nuanced assessments. However, it is costly, time-
consuming, and prone to subjectivity, limiting its feasibility for large-scale
evaluation. Recent studies have explored using LLM evaluation (N = 20),
a.k.a. LLM-as-Judges139, to replace human experts in evaluation and com-
bine the interpretative depth of LLM judgment with the efficiency of
automated evaluation. While ground-truth accessibility is not strictly
necessary99,116, its inclusion improves reliability143. Popular LLMs used for
this purpose include GPT-3.5, GPT-4, and LLaMA-3. However, this
approach remains constrained by LLM limitations, including susceptibility
to hallucinations99 and difficulties in handling complex diagnostic
reasoning146. In summary, each evaluation approach has distinct advantages
and limitations, with the choice dependent on the specific requirements of
the task. Figure 4 guides the selection of suitable evaluation approaches for
different scenarios.

Discussion
This section analyzes key findings from the included studies, discusses the
suitability of mainstream LLM techniques for varying resource constraints
anddatapreparation, andoutlines challenges and future researchdirections.

The rapid rise of LLM-based diagnosis studies (Fig. 3a) might partially
be attributed to the increased availability of public datasets147 and advanced
off-the-shelf LLMs57. Besides, the top five LLMs used for training and
inference differ significantly (Fig. 3b), reflecting the interplay between
effectiveness and accessibility. Generally, closed-source LLMs, with their
vast parameters and superiorperformance143, are favored forLLMinference,
while open-source LLMs are essential for developing domain-specific
models due to their adaptability148. These factors underscore the dual
influence of effectiveness and accessibility on diagnostic applications.
Additionally, the regional analysis of datasets (Fig. 3c) reveals that 84.5% of
datasets originate from North America and Asia, potentially introducing
racial biases in this research domain149.

Most studies employed prompting for disease diagnosis (Fig. 2),
leveraging its advantages, such as minimal data requirements, ease of use,
and low computational demands150. Meanwhile, LLMs’ extensive medical
knowledge allowed them to perform competitively across diverse diagnostic
tasks when effectively applied24,143. For example, a study fed two data sam-
ples into GPT-4 for depression detection151, and the performance sig-
nificantly exceeded traditional DL-based models. In summary, prompting
LLMs facilitates the development of effective diagnostic systems with
minimal effort, contrasting with conventional DL-based approaches that
require extensive supervised training on large datasets2,17.

We then compare the advantages and limitations of mainstream LLM
techniques to indicate their suitability for varying resource constraints,
along with a discussion of data preparation. Generally, the choice of LLM
technique for diagnostic systems depends on the quality and quantity of
available data. Prompt engineering is particularly effective in few-data
scenarios (e.g., zero or three cases with ground-truth diagnoses), requiring
minimal setup24,152. RAG relies on a high-quality external knowledge base,
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such as databases80 or corpora82, to retrieve accurate information during
inference. Fine-tuning requires well-annotated datasets with sufficient
labeled diagnostic cases133. Pre-training, by contrast, utilizes diverse corpora,
including unstructured text (e.g., clinical notes, literature) and structured
data (e.g., lab results), to establish a robust knowledge foundation via
unsupervised language modeling42,153. Although fine-tuning and pre-
training facilitate high performance and reliability133, they demand sig-
nificant resources, including advanced hardware and extensive biomedical
data (see Fig. 3f), which are costly and often hard to obtain24. In practice, not
all diagnostic scenarios require expert-level accuracy. Applications such as
large-scale screenings154, mobile health risk alerts155, or public health
education30 prioritize cost-effectiveness and scalability. Overall, balancing
accuracy with resource constraints depends on the specific use case.

Despite advances in LLM-based methods for disease diagnosis, this
scoping reviewhighlighted several barriers to their clinical utility (Fig. 5).One
limitation lies in information gathering. Most studies implicitly assume that
the available patient information is sufficient for diagnosis, which often
fails156, especially in initial consultations or with complex diseases, increasing
the risk of misdiagnosis157. In practice, clinical information gathering is
iterative, starting with initial data (e.g., subjective symptoms), refining diag-
noses, andconducting further tests or screenings158.Thisprocess reliesheavily
on experienced clinicians140. To reduce this dependence, recent studies have
exploredmulti-round diagnostic dialogs to collect relevant information159,160.
For example, AIME140 uses LLMs for clinical history-taking and diagnostic
dialog, while Sun et al.160 utilized reinforcement learning to formulate disease
screening questions. Future efforts could further embed awareness of infor-
mation incompleteness into models or develop techniques for automatic
diagnostic queries161. Another limitation arises from the reliance on single
data modalities, whereas clinicians typically synthesize information from
multiple modalities for accurate diagnosis44. Additionally, real-world health
systems often operate in isolated data silos, with patient information dis-
tributed across institutions26. Addressing these issues will require efforts to
collect and integrate multi-modal data and establish unified health systems
that facilitate seamless data sharing across institutions162.

Barriers also exist in the information integration process. Some studies
utilized clinical vignettes for diagnostic tasks without fulfilling the SOAP
standard163.While adhering to clinical guidelines is crucial142, limited studies
have incorporated this factor into diagnostic systems164. For example,
Kresevic et al.82 sought to enhance clinical decision support systems by
accurately explaining guidelines for chronic Hepatitis C management.
Besides, the integration and interpretation of lab test results pose significant
value in healthcare165. For example, Bhasuran et al.166 reported that incor-
porating lab data enhanced the diagnostic accuracy of GPT-4 by up to 30%.
A future direction is the effective integration of lab test results into LLM-
based diagnostic systems.

Exploring clinician-patient-diagnostic system interactions offers a
promising research direction167. Diagnostic systems are desired to assist
clinicians by providing Supplementary information to improve accuracy
and efficiency58,168, incorporating expert feedback for continuous refine-
ment. A user-friendly interface is essential for effective human-machine
interaction, enabling clinicians to input data and engage in discussions with
the system. Human language interaction further enhances usability by
allowing natural conversation with LLM-based diagnostic tools168, reducing
cognitive load. Additionally, LLM-aided explanations improve transpar-
ency by providing rationales for suggested diagnoses145, fostering trust, and
facilitating informed decision-making among clinicians and patients.

Most of the studies focused on diagnostic accuracy, but overlooked
ethical considerations, like explainability, trustworthiness, privacy protec-
tion, and fairness169. Providing diagnostic predictions alone is insufficient in
clinical scenarios, as the black-box nature of LLMs oftenundermines trust99.
Designing diagnostic models with explainability is desired145. For example,
Dual-Inf is a prompt-based framework that offers potential diagnoses while
explaining its reasoning143. Besides, since LLMs suffer from hallucinations,
how to enhance users’ trustworthiness toward LLM-based diagnostic
models isworth exploring170. Potential solutions include using fact-checking
tools to verify the output’s factuality171. Regarding privacy, adherence to
regulations like HIPAA and GDPR, including de-identifying sensitive data,
is essential26,172. For example, SkinGPT-4, a dermatology diagnostic system,
was designed for local deployment to ensure privacy protection173. Fairness
is another concern, as patients should not face discrimination based on
gender, age, or race169, but research on fairness in LLM-based diagnostics
remains scarce174.

In the context of modeling, building superior models for accurate and
reliable diagnosis remains an exploration. While pre-training on extensive
medical datasets benefits diagnostic reasoning175, many medical LLMs
generally lag behind general-domain counterparts in parameter scale148,176,
underscoring the potential of developing large-scale generalist models for
disease diagnosis. Besides, LLMs are prone to catastrophic forgetting177,
where previously acquired knowledge or skills are lost when learning new
information. Addressing this issue facilitates the development of generalist
diagnostic models but requires incorporating robust continuous learning
capabilities178. One alternative approach for accurate diagnosis involves
coordinating multiple specialized models, simulating interdisciplinary
clinical discussions to tackle complex cases179. For example,Med-MoE180 is a
mixture-of-experts framework leveraging medical texts and images and
achieved an accuracy of 91.4% inmedical image classification. Additionally,
hallucinations in LLMs undermine diagnostic reliability170, necessitating
solutions such as knowledge editing181, external knowledge retrieval82, and
novel model architectures or pre-training strategies175. Another promising
avenue is longitudinal data modeling, as clinicians routinely analyze EHRs

Fig. 4 | Summary of the evaluation approaches for diagnostic tasks.

https://doi.org/10.1038/s44387-025-00011-z Review

npj Artificial Intelligence |             (2025) 1:9 8

www.nature.com/npjAI


spanningmultiple years to informdecision-making182,183. Besides, modeling
temporal data helps with early diagnosis56,184 to improve patient outcomes.
For example, early detection of lung adenocarcinoma might increase the
5-year survival rate to 52%185. However, challenges like irregular sampling
intervals and missing data persist186, necessitating advanced methodologies
to effectively capture temporal dependencies25.

Another challenge in developing diagnostic models is benchmark
availability147. In this review, 49.6% of the included studies relied on pri-
vate datasets, which were often inaccessible due to privacy concerns82.
Additionally, the scarcity of annotated data limits progress, as well-
annotated datasets with ground-truth diagnosis enable automated eva-
luation, reducing reliance on human assessment143. Hence, constructing
and releasing annotated benchmark datasets would greatly support the
research community147. Regarding performance evaluation, some studies
either used small-scale data57 or unrealistic data, such as snippets from
college books145 andLLM-generated clinical notes147, for disease diagnosis,
while large-scale real-world data can truly validate diagnostic
capabilities182. Besides, the lack of unified qualitative metrics is another
issue. For example, the evaluation of diagnostic explanation varies in
different studies143,187, including necessity187, consistency108, and
compeleteness143. Unifying qualitative metrics foster a fair comparison.
Additionally, many included studies failed to compare with conventional
diagnostic models, while recent studies reported that traditional models,
e.g., Transformer188, might beat LLM-based counterparts in clinical

prediction189. Therefore, future studies should compare with traditional
baselines for comprehensive evaluation.

Regarding the deployment of diagnostic systems, several challenges
warrant further investigation, including model stability, generalizability,
and efficiency. Current studies have highlighted that LLMs often struggle
with diagnosis stability182, fail to generalize well across data from different
institutions190, and encounter efficiency limitations191. For instance, even
minor variations in instructions, such as from asking “final diagnosis” to
“primary diagnosis”, can drop the accuracy 10.6% on cholecystitis
diagnosis182. Addressing these limitations will advance the reliability and
applicability of diagnostic models. Another promising avenue is deploying
diagnostic algorithmson edgedevices192. Such systems could enable the real-
time collection of health data, such as ECG rhythms19, to support con-
tinuous health monitoring95. However, regulatory barriers, including the
stringent approval standards imposed by agencies such as theU.S. Food and
Drug Administration (FDA) and the European Union’s Medical Device
Regulation (MDR)193, remain a significant obstacle to clinical adoption.
Overcoming these challenges will be vital to ensure the safe and effective
integration of LLM-based diagnostics into clinical practice.

In conclusion, our study provided a comprehensive review of LLM-
based methods for disease diagnosis. Our contributions were multifaceted.
First, we summarized the disease types, the associated clinical specialties,
clinical data, the employedLLM techniques, and evaluationmethodswithin
this research domain. Second, we compared the advantages and limitations

Information gathering
� Limited availability of  multi-

modal data 173

� Dependence on expert 
knowledge 140

� Incomplete information 156

� Fragmented and siloed data 26

Information integration
� Deviation from SOAP standard 163

� Non-adherence to clinical guidelines 164

� Neglect of lab result integration 166

Decision-making
� Limited data validation 49

� Absence of ethical considerations 169

� Insufficient real-world evaluation 147

Symptom
presentation Develop care plan

Current Limitations in the Diagnostic Pipeline

Future Directions

Information gathering

� Multi-modal data collection
� Automatic clinical query
� Missing info. awareness
� Unified collection platform

Deployment

� System stability
� Model generalizability
� Model efficiency
� Edge device deployment
� Regulatory hurdle

Ethical consideration

� Trustworthiness
� Explainability and clarity
� Privacy protection
� Equity (e.g., fairness)

Modeling

� Large generalist model
� Continual learning
� Mixture-of-experts
� Knowledge editing
� Longitudinal data modeling

Benchmarks
� Public dataset
� Well-annotated dataset
� Multi-modal dataset
� Unified qualitative metrics
� Comprehensive evaluation

Automatic
diagnosis

Human-machine interaction

� Patient involvement
� Adaptive interaction interface
� Human language interaction
� LLM-aided explanation

Fig. 5 | Summary of the limitations and future directions for LLM-based disease diagnosis.
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of mainstream LLM techniques and evaluation methods, offering recom-
mendations for developing diagnostic systems based on varying user
demands. Third, we identified intriguing phenomena from the current
studies and provided insights into their underlying causes. Lastly, we ana-
lyzed the current challenges and outlined the future directions of this
research field. In summary, our review presented an in-depth analysis of
LLM-based disease diagnosis, outlined its blueprint, inspired future
research, and helped streamline efforts in developing diagnostic systems.

Methods
Search strategy and selection criteria
This scoping review followed thePRISMAguidelines, as shown inFig. 6.We
conducted a literature search for relevant articles publishedbetween January
1, 2019, and July 18, 2024, across seven electronic databases: PubMed,
CINAHL, Scopus, Web of Science, Google Scholar, ACM Digital Library,
and IEEEXplore. Search termswere selected based on expert consensus (see
Supplementary Data 1).

A two-stage screening process focused on LLMs for human disease
diagnosis. The first stage involved title and abstract screening by two
independent reviewers, excluding papers based on the following cri-
teria: (a) articles unrelated to LLMs or foundation models, and (b)
articles irrelevant to the health domain. The second stage was full-text
screening, emphasizing language models for diagnosis-related tasks
(Supplementary Data 2), excluding non-English articles, review
papers, editorials, and studies not explicitly focused on disease diag-
nosis. The scope included studies that predicted probability values of
diseases (e.g., the probability of depression) and the studies in which
the foundation models involved text modalities (e.g., vision-language
models) and utilized non-text data (e.g., medical images) as input. Our
review excluded the foundation models without text modality, such as
vision foundation models, because the scope highlighted “language”
models. Following related works194, we further excluded studies purely
built on non-generative language models, like BERT188 and
RoBERTa195, since the generative capability is a critical characteristic of
LLMs to facilitate the development of the diagnostic system in the era

of generative AI30,31. Final eligibility was determined by at least two
independent reviewers, with disagreements resolved by consensus or a
third reviewer.

Data extraction
Information from the articles was categorized into four groups: (1) Basic
information: title, publication venue, publication date (year and month),
and region of correspondence. (2) Data-related information: data sources
(continents), dataset type, modality (e.g., text, image, video, text-image),
clinical specialty, disease name, data availability (private or public), and data
size. (3) Model-related information: base LLM type, parameter size, and
technique type. (4) Evaluation: evaluation scheme (e.g., automated or
human) and evaluation metrics (e.g., accuracy, precision). See Supple-
mentary Table 1 for the data extraction form.

Data synthesis
We synthesized insights from the data extraction to highlight key themes
in LLM-based disease diagnosis. First, we presented the review scope,
covering disease-associated clinical specialties, clinical data, data mod-
alities, and LLM techniques. We also analyzed meta-information,
including development trends, the most widely used LLMs, and data
source distribution. Next, we summarized various LLM-based techni-
ques and evaluation strategies, discussing their strengths andweaknesses
and offering targeted recommendations. We categorized modeling
approaches into four areas (prompt-based methods, RAG, fine-tuning,
and pre-training), with detailed subtypes. Additionally, we examined
challenges in current research and outlined potential future directions.
In summary, our synthesis covered data, LLM techniques, performance
evaluation, and application scenarios, in line with established reporting
standards.

Data availability
The analyzed data are included in this article. Aggregate data analyzed in
this study is available at https://github.com/betterzhou/Awesome-LLM-
Disease-Diagnosis

Fig. 6 | PRISMA flowchart of study records.
PRISMA flowchart showing the study selection
process.
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