npj | artificial intelligence

Article

https://doi.org/10.1038/s44387-025-00025-7

A dynamic fractional generalized
deterministic annealing for rapid
convergence in deep learning

optimization

% Check for updates

Matthew Korban', Peter Youngs? & Scott T. Acton'

Optimization is central to classical and modern machine learning. This paper introduces Dynamic
Fractional Generalized Deterministic Annealing (DF-GDA), a physics-inspired algorithm that boosts
stability and speeds convergence across a wide range of models, especially deep networks. Unlike
traditional methods such as Stochastic Gradient Descent, which may converge slowly or become
trapped in local minima, DF-GDA employs an adaptive, temperature-controlled schedule that
balances global exploration with precise refinement. Its dynamic fractional-parameter update
selectively optimizes model components, improving computational efficiency. The method excels on
high-dimensional tasks, including image classification, and also strengthens simpler classical models
by reducing local-minimum risk and increasing robustness to noisy data. Extensive experiments on
sixteen large, interdisciplinary datasets, including image classification, natural language processing,
healthcare, and biology, show that DF-GDA consistently outperforms both state-of-the-art and
traditional optimizers in convergence speed and accuracy, offering a powerful alternative for critical
large-scale, complex problems across diverse scientific and industrial settings today.

Optimization is fundamental in many scientific and engineering fields and is
crucial in finding the best solutions to various problems'. It aims to adjust
the parameters of a system to maximize or minimize a particular function,
known as the objective function’. This process is essential in numerous
applications, including logistics, finance, healthcare, manufacturing, and
others, where achieving optimal performance or efficiency is the pri-
mary goal’.

In the context of machine learning, optimization is critical’. Machine
learning models, including classical methods such as k-means clustering
and support vector machines, learn from data by adjusting their parameters
to minimize a loss function™. This function measures how well the model’s
predictions match the actual data. Practical optimization algorithms are
vital for training these models efficiently and accurately’. With proper
optimization, machine learning models may converge to a suitable solution,
leading to better performance and accurate predictions’.

Deep learning, a subset of machine learning, involves training large
neural networks with many layers and millions of parameters. Due to the
complexity and size of these models, the role of the optimization process in
deep learning is even more critical’. Deep learning models can achieve

remarkable performance in tasks such as image recognition, natural lan-
guage processing, and video understanding, but only if optimized
effectively'. The challenges in deep learning optimization include avoiding
local minima, managing high-dimensional parameter spaces, and ensuring
fast and stable convergence'""”.

Traditional optimization methods such as Stochastic Gradient Descent
(SGD) and adaptive moment estimation (ADAM) are widely used in deep
learning due to their simplicity and effectiveness'>'. However, these
methods often face challenges, such as being trapped in local minima and
slow convergence when dealing with high-dimensional parameter spaces
and noisy data®™"’. To address these issues, more advanced optimization
techniques are necessary.

Genetic algorithms introduced feature optimization in specific
domains', but were computationally expensive and prone to slow con-
vergence. Nature-inspired algorithms such as Harris Hawks optimization’
and Firefly optimization™ further advanced the field by automating
hyperparameter tuning and improving convergence rates. However, these
techniques still demanded significant computational resources and carried
the risk of entrapment in local minima and susceptibility to annotation noise

"Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA. 2Curriculum, Instruction and Special Education, University of Virginia,

Charlottesville, VA, USA. e-mail: acton@virgina.edu

npj Artificial Intelligence | (2025)1:30

http://crossmark.crossref.org/dialog/?doi=10.1038/s44387-025-00025-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44387-025-00025-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44387-025-00025-7&domain=pdf
mailto:acton@virgina.edu
www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

(errors or inconsistencies in data labeling). Consequently, due to these
limitations, they did not achieve the widespread adoption seen with
methods such as SGD and ADAM.

In this work, we propose a novel optimization algorithm, namely
Dynamic Fractional Generalized Deterministic Annealing (DF-GDA), to
enhance convergence speed and efficacy in deep learning models. DF-GDA
also shows high potential for significantly improving classical machine
learning algorithms such as Support Vector Machines (SVMs) and k-means
clustering, which can benefit from its robust handling of local minima and
efficient exploration-exploitation balance. This approach builds on the core
principles of generalized deterministic annealing (GDA)"®, which include a
temperature-dependent probabilistic acceptance criterion and a mean field
estimation process to estimate the values of unknown variables. The
temperature-dependent acceptance criterion helps balance exploration and
exploitation during the optimization, significantly reducing the risk of being
trapped in local minima. The proposed DF-GDA algorithm can dramati-
cally improve the performance of deep network models in complex research
problems, including interdisciplinary applications such as image classifi-
cation, video understanding, bioinformatics, healthcare analytics, and nat-
ural language processing. These are optimization landscapes characterized
by multiple local minima where traditional gradient-based methods such as
Stochastic Gradient Descent (SGD) have long been considered indispensable.
Our approach demonstrates the potential to significantly surpass them,
representing a major advancement in optimization across a broad range of
scientific and engineering domains.

Figure 1 illustrates a comparative analysis between SGD and our
DF-GDA method. Initially, both approaches start with a high-energy,
disordered microstructure, a concept that represents the arrangement of
parameter states in the optimization landscape, mirroring the physical
process in material science. SGD demonstrates unstable updates as training
progresses, often getting trapped in suboptimal configurations due to its
inherent noise and sensitivity to local minima. In contrast, DF-GDA
exhibits structured and localized parameter adjustments, facilitating a more

SGD

Intermediate
(Gradient Trap)

Initial Microstructure
(High Energy)
\

Intermediate

Initial Microstructure
(High Energy) (Refined Exploration)
= /

| /

N
.

DF-GDA

Fig. 1| The comparison of two optimization methods: stochastic gradient descent
(SGD) and dynamic fractional generalized deterministic annealing (DF-GDA).
Initially, both methods start with a high-energy, disordered microstructure. In the
intermediate phase, SGD displays chaotic updates and often gets stuck in local

minima, leading to a continued disordered state depicted by erratic arrows in both
magnitude and direction. On the other hand, DF-GDA shows controlled and

localized updates (organized arrows), allowing for a structured transition toward an

Final Microstructure

controlled transition toward an optimal configuration. The final state
depicted in the figure highlights that while SGD tends to remain in a dis-
ordered microstructure, DF-GDA successfully organizes the micro-
structure into a lower-energy state, indicating its enhanced ability to
navigate complex optimization landscapes, escape local minima, and reach
optimal solutions more effectively.

Although effective for image processing tasks, the original GDA
method was not designed for deep learning or machine learning optimi-
zation tasks. Significant modifications were necessary to adapt GDA for the
specific needs of machine learning and deep network optimization, making
it suitable for large-scale deep learning applications. These adaptations
involved incorporating the dynamically adjustable fraction parameter,
leveraging mean-field gradient estimates, and implementing a soft quanti-
zation mechanism to ensure parameter updates remain within feasible
ranges.

Remarkably, DF-GDA introduces a new dynamically adaptive frac-
tional parameter update (DAFPU) algorithm to further enhance GDA for
deep learning applications. This adaptive algorithm takes advantage of the
proportion of model parameters that are to be updated during each itera-
tion. Itis sensitively adjusted on the basis of the current status of the training,
including the rate of change in the loss function. This adjustment ensures a
balanced trade-off between exploration and exploitation throughout
training. The proposed approach makes the high-dimensional parameter
space significantly more manageable, a persistent problem in deep learning
optimization.

The proposed DAFPU is essential to the learning process, as it is
applied during the optimization and backward pass stages. This differ-
entiates it from dropout, a regularization technique that is used only during
the forward pass. Our method, applied during the backward pass, ensures
broader applicability, whereas dropout is limited because it only functions
during the forward pass. Since the forward pass doesn’t directly influence
parameter updates, its applicability in optimization is more restricted. In
particular, DAFPU also reduces the computational cost more effectively

Energy Landscape (SGD)

\
Final Microstructure a ‘\hjgherenergy 7
(Suboptimal) ‘\(suboptimal) ,'
\ 1
2 1 \ - I
7N 1
\r\\ / \\ I
0)t
\,
_‘2 —'1 (I) i 2I

Parameter Value
Energy Landscape (DF-GDA)

(thimal)

lower energy
(optimal)

-2 -1 0 1 2
Parameter Value

optimal configuration. In the final phase, SGD remains trapped in a suboptimal state
with a disordered microstructure, while DF-GDA reaches an optimal state with a
well-organized microstructure. The energy landscape graphs illustrate these out-
comes. SGD's energy graph (blue curve) remains at higher energy levels, indicating
local minima entrapment. In contrast, DF-GDA's energy graph (orange curve)
descends to lower energy levels, indicating successful convergence to a more optimal
solution.

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Table 1 | Comparison of Dynamic Fractional generalized Deterministic Annealing (DF-GDA) with other optimization methods

across key criteria, rated qualitatively as High, Medium, or Low

Criterion SGD Adam SA Shampoo DF-GDA
Convergence Speed Low Medium Low High High
Robustness to Noise Low Medium Medium High High
Computational Efficiency High High Low Medium High
Ability to Escape Local Minima Low Medium High Medium High
Scalability to Large Models High High Low Medium High
Stability of Updates Low High Low High High
Suitability for High-Dime Spaces High High Low Medium High
Adaptability to Different Data Medium Medium High Medium High
Impact on Overfitting Low Low Low Medium High

Methods compared: Stochastic Gradient Descent (SGD), Adam optimizer (Adam), Simulated Annealing (SA) with geometric temperature schedule, Shampoo, and DF-GDA (Proposed).

than dropout. Although dropout only prevents specific neurons from
updating and primarily addresses overfitting, it does not reduce computa-
tional workload. In contrast, our method achieves both objectives: it selec-
tively ignores a large portion of parameters, lowers computational cost, and
prevents overfitting in a more adaptive way than dropout.

The proposed DF-GDA enhances robustness to annotation noise,
particularly in mislabeled data, by using fractional parameter updates, soft
quantization, and adaptive temperature control. By updating only a subset
of parameters per iteration, DF-GDA limits the influence of noisy samples,
while soft quantization smooths parameter transitions to maintain stability.
Its entropy-driven temperature adjustments support broader exploration
early in training, helping the model avoid suboptimal solutions caused by
annotation noise.

"Nature-inspired” meta-heuristics (e.g., Genetic Algorithms, Particle
Swarm, Ant-Colony) explore via large populations, use little or no gradient
information, and require hand-tuned parameters for exploration versus
exploitation. By contrast, DF-GDA performs deterministic, gradient-
guided updates on an entropy-chosen subset of parameters and injects
controlled randomness only through an adaptive temperature test. This
design (i) slashes per-step cost from population-wide evaluations to a small
fraction of the parameters, (ii) speeds convergence because every accepted
move follows the local gradient, and (iii) self-balances exploration and
exploitation via the entropy schedule. These differences remove the slow
convergence, heavy computation, and parameter sensitivity that hamper
classical nature-inspired methods, explaining DF-GDA'’s superior accuracy
and efficiency in our experiments.

Table 1 provides a comparative analysis of Dynamic Fractional gen-
eralized Deterministic Annealing (DF-GDA) against widely used optimiza-
tion methods, including Stochastic Gradient Descent (SGD), the Adam
optimizer, Simulated Annealing (SA), and Shampoo™. It evaluates key per-
formance metrics such as convergence speed, robustness to noise, computa-
tional efficiency, and the ability to escape local minima. DF-GDA consistently
outperforms the other methods across these criteria, particularly excelling in
convergence speed, robustness to noise, and stability of updates.

Shampoo leverages block-diagonal second-order pre-conditioning to
achieve fast and stable convergence, yet incurs medium computational cost
and memory overhead relative to first-order optimizers. While SGD and
Adam demonstrate strengths in computational efficiency and scalability,
they struggle with local minima and noise sensitivity. SA (with geometric
temperature schedule), despite its capability to escape local minima, suffers
from slow convergence and high computational cost. In contrast, DF-GDA
employs adaptive fractional updates and entropy-driven annealing to
deliver superior optimization performance, making it a highly effective
alternative for complex deep-learning tasks.

The key contributions of this paper are as follows:

* We introduce DF-GDA, a novel optimization algorithm for deep
learning that enhances convergence speed, stability, and robustness to

annotation noise, outperforming traditional methods like SGD, par-
ticularly in complex problems prone to local minima.

We propose a Dynamic Fractional Parameter Update (DFPU), an
efficient algorithm integrated into DF-GDA that selectively updates
model parameters based on network performance.

We adapt GDA for deep network optimization, addressing specific
challenges in deep learning.

We validate DF-GDA through comprehensive experiments on sixteen
diverse datasets, including image classification, healthcare, bioinfor-
matics, and NLP, demonstrating superior convergence speed and
accuracy compared to state-of-the-art and traditional optimizers. This
includes the large-scale ImageNet and Kinetics-700 datasets.

We demonstrate DF-GDA’s potentials in classical machine learning
tasks like SVM and k-means clustering.

We provide a rigorous theoretical foundation supporting our
methodology.

Results
Dataset
The two large-scale datasets used in our experiments are:

ImageNet is the canonical large-scale image classification benchmark,
comprising 1.28 M training images and 50k validation images annotated
across 1000 object categories. ImageNet’s scale and diversity make it the
primary benchmark for training visual models that generalize across tasks.

Kinetics-700 is a large-scale, curated corpus of ~ 650, 000 YouTube
clips spanning 700 human-action classes that cover everyday activities,
sports, and complex interactions. Roughly 536k clips are provided for
training and 50k for validation, with a withheld test set for leaderboard
evaluation. These clips collectively contain ~ 1.6 x 10° frames. The dataset’s
scope and size make it a de-facto benchmark for video representation
learning.

Beyond the large-scale ImageNet and Kinetics datasets, this study
employs a diverse set of benchmarks across multiple domains. The
remaining datasets include classical image classification sets (MNIST,
MNIST-M, CIFAR-10, SVHN, USPS), natural language processing
benchmarks (IMDB Sentiment, SMS Spam, Airline Sentiment), health-
care datasets (Breast Cancer Wisconsin, Heart Disease, Liver Patient
Records), and bioinformatics datasets (Human Activity Recognition,
YEAST, IRIS.

Implementation details

Table 2 concisely maps each backbone machine learning model we optimize
with DF-GDA to the broad data modality it tackles. We deploy lightweight
CNNs (LeNet-5, a 3-layer CNN) for small-sized image tasks, an RBF-SVM
to probe kernel methods on similar inputs, and a deep ResNet-50 for large-
scale natural-image classification. For spatiotemporal video benchmarks we
use 3D-ResNet-50, while sequential sensor data are handled with an LSTM.

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Table 2 | Machine-learning backbones optimized with
DF-GDA for every dataset evaluated in the paper

Backbone ML Model Dataset(s)

LeNet-5 CNN MNIST

RBF-SVM MNIST (separate SVM study)

3-layer CNN MNIST-M, CIFAR-10, SVHN, USPS

ResNet-50 (2-D CNN) ImageNet

3D-ResNet-50 (Spatiotemp CNN) Kinetics-700

LSTM RNN HAR

1-D CNN (text) IMDB Sentiment, SMS Spam, Airline Sent

Feed-forward NN (+ dropout) Breast Cancer, Heart Disease, Liver
Patient

Feed-forward NN IRIS, YEAST

A 1-D CNN covers short-text sentiment problems, and two fully-connected
networks address structured tabular biomedical records and classic low-
dimensional datasets.

In our experiments, for the dynamic fractional parameters update, we
set frnin = 0.01 and f,,,, = 0.5. The optimal number of Markov states was 1024
and 512, depending on the datasets in our experiments. All experiments
were carried out using PyTorch 1.12.1 on a server equipped with dual Nvidia
RTX 3090 GPUs (24GB VRAM each), an AMD Ryzen Threadripper 3990X
64-core processor, and 256GB of RAM.

We fix (f i f me) = (0.01,0.50) for all experiments. Two properties
make this single pair universally effective: Because the exponent in Equation
(15) uses the normalized loss change, f{(#) reacts to fractional progress rather
than absolute loss values, yielding comparable behavior across tasks whose
losses differ by orders of magnitude. With f . <0.5, the sufficient-descent
condition in Theorem 3 holds for any Lipschitz-smooth objective, ensuring
monotone loss decrease and convergence regardless of the dataset. The pair
chosen on CIFAR-10 was frozen for all other benchmarks (vision, NLP,
healthcare, bio-informatics) and still delivered state-of-the-art performance
(Table 3). Perturbing either bound by + 50% altered accuracy by at most
0.2 %, reinforcing the theoretical insensitivity above.

We use T, = 50y (with oy the pre-training weight standard devia-
tion); Theorem 1 ensures any T, > max AE; yields the required high-
entropy start, while scaling with oy keeps the rule architecture-agnostic. The
schedule is clipped at T, = 0.01 T,,.; changing this to 0.005 or 0.05
affects top-1 accuracy by < 0.05 % but lengthens training, so 0.01 is retained.
A constant A = 10~ keeps the soft-quantization barrier roughly two orders
of magnitude below the initial data loss, balancing bias and variance without
dataset-specific tuning.

Convergence and performance analysis
Figure 2 (train on the left, validation on the right) traces loss on ImageNet
under six optimizers. The proposed DF-GDA exhibits the fastest initial
descent—halving its loss in fewer than fifteen epochs—and settles into a
stable regime below 0.4 (train) and 0.8 (val) by epoch 90, highlighting both
rapid optimization and strong generalization. Shampoo benefits from
second-order curvature and eventually dips under the 1.0 threshold, yet it
converges 25—30 epochs later and retains a persistent 0.3—0.4 loss gap to
DF-GDA across the run. Adam and RMSProp follow similar trajectories,
flattening near 0.8 train loss and 1.1—1.3 validation loss; the widening train-
val gap suggests mild overfitting and reduced robustness. Classical SGD with
momentum decays the slowest, underscoring the cost of uniform learning
rates on deep networks. Finally, Simulated Annealing with geometric
temperature schedule presents smooth but shallow progress, stalling above
2.5 validation loss despite steady training improvements, evidence that naive
temperature scheduling shows its unsuitability for large-scale vision
workloads.

Table 3 reports the relative top-1 test error of several popular opti-
mizers with respect to our baseline DF-GDA. Across all training budgets—

Table 3 | Relative top-1 test error on Kinetics-700 when
training for 10%, 30%, 50% and the full 100% of the 100-epoch
budget, the bold values are the best results

optimizer A Top-1Err. (%) |
10 % 30 % 50 % 100 %

DF-GDA (ours) 0.0 0.0 0.0 0.0
Shampoo 1.4 1.2 0.6 0.4
Adam 2.0 1.8 1.2 0.6
RMSProp 2.4 2.2 1.8 1.2
SGD 3.4 3.3 2.8 2.2
SimAnn (Geo Temp) 4.4 4.3 4.2 3.6

Values denote the increase in error over DF-GDA (lower is better).

even after only 10% of the 100-epoch schedule—DF-GDA maintains a 0%
error increase, confirming its superior sample efficiency. The closest com-
petitor, Shampoo, a second-order optimization method, still lags by 1.4%
early on and by 0.4% after full convergence, indicating that second-order
curvature alone is insufficient to match DF-GDA’s fractional annealing.
First-order methods exhibit a larger gap: Adam trails by up to 2.0% and SGD
by 3.4% in the under-trained regime, suggesting slower optimization
dynamics. RMSProp performs better than SGD but is still behind in more
modern optimization techniques. Finally, Simulated Annealing with geo-
metric temperature schedule (SimAnn) remains consistently behind,
highlighting that naive temperature schedules cannot bridge the perfor-
mance deficit.

Experiments on SVM
We subsample N = 12,000 images (80% train, 20% validation). Baselines are
LIBSVM with exhaustive (C, y) grid-search and standard SMO optimiza-
tion. DF-GDA uses f_ . =0.3, f . =0.02, C = 10, yo = 0.05, and
A, =107

Table 4 shows the obtained results for SVM. DF-GDA achieves a
higher accuracy while reducing training time by over 3 x thanks to fractional
updates and the elimination of grid search. The automatically annealed y
converges to the same range selected by exhaustive search, confirming the
stability of our joint optimization.

Annealing temperature schedule

Figure 3 -Left illustrates the adaptive temperature schedules for different
datasets when using DF-GDA, highlighting its dynamic control over the
exploration-exploitation balance during training. CIFAR-10’s gradual
temperature decay reflects a need for extensive exploration in its complex
loss landscape, while SVHN and USPS show a moderate cooling rate,
indicating a balanced approach. In contrast, MNIST and MNIST-M rapidly
decrease their temperatures, quickly transitioning to exploitation due to
their simpler structures. These patterns underscore DF-GDA’s adaptability,
efficiently optimizing its behavior to suit each dataset’s characteristics, thus
ensuring robust and accelerated convergence across varying data
complexities.

Table 5 compares the entropy-controlled schedule with (i) geometric
cooling and (ii) a fixed temperature on ImageNet (ResNet-50). Our schedule
attains 80% top-1 accuracy in only 62 epochs versus 99 (geometric) and 147
(fixed), and delivers the best final accuracy.

Dynamic fractional update

Figure 3 -Right shows the analysis of parameter update fractions across
different datasets reveals DF-GDA’s adaptive optimization strategy. The
evolution of these fractions is visualized through both a line plot showing
epoch-wise changes and a bar chart (far-Right) summarizing average uti-
lization across the training period. For complex datasets like CIFAR-10 and
SVHN, the algorithm starts with high parameter update fractions (0.25) that

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Fig. 2 | Comparison of training (left) and valida-

ImageNet - Training Loss

tion (right) cross-entropy loss between our pro-
posed DF-GDA and five competing optimizers on 61 SGD
ImageNet (100 epochs). DF-GDA descends fastest Adam
and converges to the lowest loss, with second-order RMSProp
Shampoo a distant second and first-order and 51 —— SimAnn
standard simulated annealing baseline (SimAnn —— Shampoo
with geometric schedule) further behind. = DF-GDA
4 4
)
]
o
3
£ 34
°
'_
2 4
1 4
0 T T T T T T
0 20 40 60 80 100
Epoch
ImageNet - Validation Loss
—— SGD
6 —— Adam
—— RMSProp
—— SimAnn
54 —— Shampoo
== DF-GDA
0
841
|
-~
7]
@
3 4
2 4
1 4

20 40 60 80

Table 4 | RBF-SVM on MNIST. Mean of three runs, the bold
values are the best results

Method Val. Acc. (%) Train time (s) y chosen
SMO + grid-search 97.4 124 0.060
DF-GDA (ours) 98.7 37 0.057 + 0.004

gradually decrease, while maintaining relatively higher average fractions
throughout training to handle their inherent complexity. MNIST-M shows
similar initial behavior due to its noisy characteristics. In contrast, simpler
datasets like USPS and MNIST exhibit rapid reductions in parameter update
fractions, stabilizing at lower values by the sixth epoch, indicating efficient
early convergence. This dynamic adjustment demonstrates DF-GDA’s
ability to automatically tune its update strategy based on dataset complexity,
optimizing computational efficiency by reducing unnecessary parameter
updates while maintaining exploration where needed.

State-space complexity

Figure 4 -Right shows training and validation loss over ten epochs for
models with different state sizes. All models exhibit rapid convergence, with
initially higher losses for larger states but similar final performance across
configurations. This suggests that smaller models may achieve comparable
accuracy with reduced computational demands, making them more effi-
cient for deployment.

Computational efficiency

Table 6 reports two runtime metrics: (i) average wall-clock time per
ImageNet epoch (per-step cost) and (ii) total hours to reach the 80%
top-1 accuracy milestone for ResNet-50—high enough to mark com-
petitive performance yet attainable by all baselines. Although DEF-
GDA’s epoch is ~ 12% longer than SGD’s, its sharper loss decline allows
it to hit the 80% milestone 4-6 hours sooner than first-order baselines,
more than twice as fast as the second-order Shampoo, and over nine-
fold faster than Simulated Annealing. Table 6 also indicates the final

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Temperature

2
Epochs

Fig. 3 | Temperature schedules and fractions. Left: The adaptive annealing tem-
perature schedules for five datasets, MNIST, MNIST-M, CIFAR, SVHN, and USPS.
Right: The fraction of parameters used during different training epochs for five

Fraction of Parameters

—e— MINST-M
—— CIFAR
—e— SVHN
—o— UPS
—o— MINST

MINST

SVHN

CIFAR

MINST-M

000 005 010 015 020

5
Epochs Average Fraction

datasets (MNIST, MNIST-M, CIFAR, SVHN, and USPS). Far-Right: The average
fraction of parameters used across different epochs for the datasets.

Table 5 | Temperature-schedule ablation on ImageNet
(ResNet-50), the bold values are the best results

Schedule Epochs t0 80 % Final top- Relative speed
1 (%)

Entropy- 62 79.4 -

controlled (ours)

Geometric (y = 0.95) 99 78.7 1.6 x slower

Fixed (T = T ay) 147 78.2 2.4 x slower

accuracy of different methods, showing our method outperforms
others.

Discussion

DF-GDA has also been evaluated across multiple interdisciplinary datasets,
demonstrating the consistent superiority of the DF-GDA approach in
several domains. On fundamental datasets like MNIST and USPS (Fig. 5-
Left and Fig. 6-Right), DF-GDA exhibited rapid convergence within the
initial epochs, achieving stable and low training and validation losses, while
SGD required significantly more epochs to reach comparable performance.
This pattern extended to more complex datasets, including MNIST-M (Fig.
6-left) and SVHN, where DF-GDA’s structured updates effectively handled
the inherent noise and transformations, maintaining consistently lower
losses compared to SGD. The algorithm’s robustness was further validated
on the challenging CIFAR-10 dataset (Fig. 5-Middle), where DF-GDA’s
effectiveness in high-dimensional data optimization was evident through its
rapid descent to lower training and validation losses. To ensure a fair
comparison, we extended the training beyond DF-GDA’s early con-
vergence points, using SGD’s first significant loss drop as a benchmark. Even
in this extended analysis, DF-GDA maintained superior performance
across all datasets, suggesting better navigation of the loss landscape and
reduced susceptibility to local minima.

Figure 7 illustrates the comparative performance of the proposed
DF-GDA optimization algorithm against SGD across various inter-
disciplinary datasets in the fields of Bioinformatics, Healthcare, and NLP,
with training loss plotted over five epochs. This provides information on the
effectiveness of DF-GDA during the early stages of training.

In biological datasets (Human Activity Recognition, YEAST, and
IRIS), DF-GDA consistently demonstrates superior convergence compared
to SGD. Most notably in the YEAST dataset, DF-GDA achieves a sig-
nificantly lower trainingloss (approximately 0.5) compared to SGD (around
1.4) by epoch 5. The performance gap is particularly pronounced after epoch
2, where DF-GDA shows rapid convergence while SGD exhibits a more
gradual descent in training loss. In healthcare applications (Breast Cancer

Wisconsin, Heart Disease, and Liver Patient Records), DF-GDA maintains
its advantage over SGD across all three datasets. The Heart Disease dataset
results are particularly noteworthy, where DF-GDA achieves stable con-
vergence at a training loss of approximately 0.2 after epoch 2, while SGD
shows fluctuations and settles at a higher loss value around 0.4. The Liver
Patient Records dataset similarly demonstrates DF-GDA’s faster con-
vergence and lower final training loss. For NLP tasks (IMDB Sentiment,
SMS Spam, and Airline Sentiment), DF-GDA shows consistent superiority
in convergence speed and final training loss. The contrast is most evident in
the SMS Spam dataset, where DF-GDA achieves a steady decrease in
training loss to approximately 0.2, while SGD plateaus at around 0.4. The
IMDB Sentiment analysis shows both methods achieving very low training
loss values, but DF-GDA reaches convergence more rapidly, particularly
between epochs 1 and 2.

DF-GDA offers robustness to annotation noise, such as incorrect class
labels in image recognition, through the following key aspects of its design:

* Fractional parameter updates: DF-GDA limits the impact of noisy data
by updating only a fraction of the parameters in each iteration. Unlike
traditional methods that globally adjust all parameters, this localized
update strategy prevents the model from being overly influenced by
mislabeled samples.

* Soft quantization: Soft quantization ensures smooth transitions in
parameter states, reducing sensitivity to fluctuations caused by anno-
tation noise. This approach maintains stability during training by
keeping parameter adjustments more controlled.

* Energy-based acceptance: DF-GDA'’s probabilistic acceptance function
allows it to occasionally accept suboptimal solutions based on energy
differences, bypassing noise-induced local minima. This feature
enables the model to explore more effectively in noisy environments.

* Entropy-driven temperature control: The dynamic temperature
adjustment, based on parameter state entropy, keeps the model
adaptive, enhancing its ability to manage mislabeled data. High
entropy maintains a broader exploration, reducing the likelihood of
premature convergence on incorrect solutions.

The experimental results in Table 7 demonstrate the superior robust-
ness of DF-GDA in the presence of annotation noise, compared to SGD
across multiple datasets. When testing with artificially introduced label
noise ranging from 5% to 20%, DF-GDA consistently shows smaller per-
formance degradation than SGD. At 5% noise, DF-GDA’s performance
drops by only 0.9% and 1.1% for USPS and MNIST, respectively, compared
to SGD’s 1.7% and 1.8%. Even at high noise levels (20%), DF-GDA
maintains its advantage, showing a 15.4% drop on CIFAR versus SGD’s
23.1%. This enhanced noise resilience, observed consistently across datasets
including challenging ones like MNIST-M, demonstrates that DF-GDA’s

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Training Loss for Different Model States

Validation Loss for Different Model States

2.3 —e— 1024 States
—+— 768 States
22 —=— 512 States
—4— 256 States

I
©

Training Loss

=
©

L
g

=
o

Epoch

5 -+-- 1024 States
N - 768 States

5 -=- 512 States
-4-- 256 States

Validation Loss
B e Lz
~ =] ©

o
o

Fig. 4 | The correlation between the number of states and training and validation losses on the CIFAR dataset.

Table 6 | Average wall-clock time per ImageNet epoch and
time to reach 80 % validation accuracy (ResNet-50, batch 512,
mixed precision, dual RTX 3090), reordered by final accuracy,
the bold values are the best results

optimizer Time / Time to 80% Final acc
epoch (min) acc. (h)

DF-GDA (ours) 26.2 14.9 79.4

Shampoo (block-diag. 415 32.0 77.98

2"-order)

Adam (B4 = 0.9, B> = 0.999) 241 19.0 76.01

RMSProp (o = 0.9) 24.8 21.0 75.42

SGD (momentum 0.9) 23.4 20.1 71.46

Simulated Annealing (geom. T) 67.0 135.0 66.17

structured, adaptive approach effectively prevents convergence to sub-
optimal states in the presence of noisy labels.

Looking ahead, we anticipate that DF-GDA’s adaptive, fractionally
annealed optimization will accelerate training of safety-critical Al systems,
ranging from protein-folding predictors to autonomous-driving perception
stacks, while preserving the robustness gains demonstrated here.

Methods

Optimization is a fundamental task in machine learning and deep learning
models, where the goal is to minimize a loss function f{6) with respect to the
model parameters 6. Gradient-based optimization methods are widely
employed for this purpose, leveraging the gradient (first-order derivatives)
of the loss function to update the parameters iteratively.

Gradient-based Methods
The basic gradient descent (GD) algorithm™ computes the gradient of the
loss function f{6) with respect to the parameters and updates the parameters
in the direction that decreases the loss with a learning rate #. The update rule
is given by:
01 = 0, — 1V, f(0)) @
Despite its simplicity, GD can become inefficient for large datasets,
requiring a complete pass over the entire dataset at each iteration. To
address this challenge, we move to stochastic gradient descent (SGD)”,
which offers a more efficient alternative. SGD computes the gradient based
on a single randomly chosen data point (or a small batch of data), sig-
nificantly reducing the computational cost per iteration. While SGD
improves efficiency, the noisy updates can lead to instability in convergence.
To mitigate this instability, researchers often employ mini-batch gradient
descent™, a compromise between GD and SGD that further stabilizes the
optimization process. Mini-batch gradient descent computes the gradient
over a small batch of data points B, offering a balance between the

computational efficiency of SGD and the stability of GD. The update rule
becomes:

1
61 =6, — nﬁz Vo f(6;;x;)

ieB

@

While this variant improves efficiency and stability, particular opti-
mization challenges remain, remarkably when the gradient oscillates or
slows down near optima. Techniques such as momentum are introduced
to address these. Momentum accelerates convergence by smoothing the
update direction using an exponentially decaying average of past gradients,
where the degree of influence from past gradients is controlled by the
weighting factor 3. This allows the optimizer to overcome oscillation and
gain speed in the proper direction. The update rule with momentum is:

Verr = Bve + (1 = P)Vo f(6,) (3)

Simulated annealing

Although gradient-based methods are highly effective for many opti-
mization tasks, they can struggle with nonconvex problems where
multiple local minima exist, potentially leading to suboptimal solutions.
Nonconvexity is a common characteristic of many modern problems,
particularly deep learning. In such cases, simulated annealing (SA)*
offers an alternative by allowing probabilistic exploration of the solution
space, which helps in escaping local minima and finding better global
optima. SA is a probabilistic technique for approximating the global
optimum of a given function, inspired by the physical annealing process
in metallurgy”’. The core idea is to explore the solution space randomly at
high temperatures, allowing uphill moves (increases in the objective
function) to avoid local minima. As the temperature decreases, the
algorithm gradually favors downhill moves, leading to convergence to a
local or global minimum. The probability of moving from solution itojat
temperature T follows:

4)

P(i,j, T) = exp (M)

T

where E(i) and E(j) represent the energies (or costs) of solutions i and j,
respectively.

Generalized deterministic annealing

SA has been successfully applied to numerous nonconvex optimization
problems, but its stochastic nature, serial updating, and associated com-
putational cost can make it impractical for large-scale problems™*’. Pre-
cisely due to its stochastic nature, it often requires a significant number of
iterations to converge”. In fact, to guarantee a global optimum, the
annealing schedule is as expensive as an exhaustive search of the solution
space”. Furthermore, it struggles with the high computational cost of

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Loss Landscapes on MNIST

Loss Landscapes on CIFAR

Loss Landscapes on SVHN

— SGD
~— DF-GDA

L]

Training Loss
= f
Training Loss

&

Training Loss
o

=

Validation Loss
5
S
Validation Loss
5

Validation Loss
o

4 = 4
Epochs

1 2 3 a4 5 6 9 o 11 12 13 18 15

i 4 8
Epochs

4 S
Epochs

Fig. 5 | Comparison of training and validation losses between SGD and DF-GDA on the image classification datasets, MNIST, CIFAR, and SVHN datasets.

Loss Landscapes on MINST-M

Loss Landscapes on UPS

225

Training Loss
- = N
w ~ o
o w o

=
N
v

0.75

0.50

— SGD

—— DF-GDA
2.0

=
&

Training Loss
-
o

0.5

— SGD
—— DF-GDA

225

Validation Loss
- = ol - I
o N v < o
o w o w o

o
~
a

0.50

— SGD
—— DF-GDA

2.0

=
v

Validation Loss
5

0.5

— SGD
—— DF-GDA

0 1 2 3 4 5 6 7

Epochs

Fig. 6 | Comparison of training and validation losses between SGD and DF-GDA on

3 4 5 6 7 8 9
Epochs

the MINST-M (Left) and USPS (Right) dataset.

maintaining random sampling over vast solution spaces and can be prone to
erratic convergence behavior in some instances™. To overcome the ineffi-
ciencies and convergence issues of SA, generalized deterministic annealing
(GDA)" was introduced as a more efficient, deterministic alternative. While
GDA retains the core principles of SA, such as temperature-dependent
exploration of the solution space, it replaces the stochastic updates with

associated with SA.

deterministic rules that reduce computational complexity. By utilizing local
Markov chains, GDA transitions between solutions more systematically,
leading to faster convergence and avoiding the erratic behavior sometimes

GDA employs K-state neurons to represent the probability densities of
local Markov chains, iteratively updating these densities based on transition

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

0,025 09
04
2 002 @
o 8oss 0085
Looss © o k] .
= €. 03 s 2 os T
= 5 = —
£ oo Sg0g \\\\7 5 p
—_— s
0.005 02 7\ S
. T~ 015 07
1 2 3 4 5 1 2 3 4 5
1 2 3 4 5
epoch
epoch epoch
—SGD —DF-GDA —SGD —DF-GDA
—SGD —DF-GDA L i’
SMS Spam Airline Sentiment

NLP: IMDB Sentiment

training loss
o
@
o
<

training loss
o

°
°

epoch

—SGD —DF-GDA
Heart Disease

—SGD —DF-GDA

Healthcare: Breast Cancer

08 7
19

w17

o
N
o

215
£13

B

training loss
o
o

o
[Ny

07
05

o

o°
~

3 4 5
epoch

—SGD —DF-GDA

/

09 =

training loss
°
&

epoch

2 3 4 5
—SGD —DF-GDA

Liver Patient Records

3

o

S 0.4
T 03
0.2
3 4 5 : & 2 3 4 5
epoch epoch
—SGD —DF-GDA —SGD —DF-GDA
Yeast IRIS

Bioinformatics: HAR

Fig. 7 | Comparison of training losses between SGD and DF-GDA on interdisciplinary benchmarks: Natural Language Processing (IMDB Sentiment, SMS Spam, and Airline
Sentiment), Healthcare (Breast Cancer Wisconsin, Heart Disease, and Liver Patient Records), and Bioinformatics (Human Activity Recognition, Yeast, and IRIS).

probabilities. This iterative process is captured by the update equation:

K-1

I G) = P, Gi,j, T (i) (5)
i=0

where 7! (j) is the probability density of the nth neuron being in state j at
iteration t, and P,(i, j, T) is the transition probability at temperature T. An
acceptance function governs these transitions, ensuring that lower-energy
states are favored as the temperature decreases. The transition probability
balances exploration and exploitation during optimization. This probability
is determined by two key components: the generation function, which
proposes new candidate states, and the acceptance function, which decides
whether to accept the new state based on the change in energy (or loss) and
the current temperature. The transition probability from state i to j at
temperature T is given by:

P(i,j, T) = G(i,j) - AGi,j, T) (©)

This mechanism enables GDA to converge to high-quality solutions
more efficiently than SA. While SA explores the entire state space and
requires O((KN)?) steps for convergence, GDA achieves the same with
O(KN) updates by focusing on localized Markov chains and deterministic
updates, significantly reducing computational complexity. This makes GDA
particularly well-suited for large-scale optimization problems where local
constraints dominate. Empirical results demonstrate that GDA outper-
forms both SA and local search methods regarding solution quality and
computational efficiency'*”".

GDA for deep learning optimization. The original GDA algorithm
effectively solved discrete optimization problems like image

restoration'>”" through deterministic state transitions that minimise

energy functions. However, modern deep learning presents new chal-
lenges with its continuous, high-dimensional parameter spaces. To adapt
GDA for these contexts, we introduce two key modifications: soft
quantization, which enables probabilistic parameter representation in
continuous spaces, and dynamic fractional updates, allowing simulta-
neous adjustment of multiple parameters. These enhancements preserve
GDA’s exploratory capabilities while improving its efficiency and scal-
ability for deep learning applications.

Dynamic fractional generalized deterministic annealing method
Training deep neural networks presents significant challenges due to the
nonconvex nature of the loss landscape, which is characterized by numerous
local minima, saddle points, and flat regions. Standard optimization
methods, such as SGD, can converge slowly or become trapped in sub-
optimal solutions, particularly when applied to large models. To address this
issue, we propose a new method, namely, a dynamic fractional generalized
deterministic annealing (DF-GDA) algorithm based on the principles of the
GDA algorithm" opting for a deterministic approach that allows the
acceptance of solutions with higher loss values during the early stages of
training. This controlled tolerance of the loss function facilitates broader
exploration of the solution space, helping the optimizer to escape local
minima and improve overall convergence. The proposed DF-GDA elevates
the original GDA algorithm by integrating a novel dynamic fractional
parameter update mechanism and soft quantization to enhance computa-
tional efficiency and convergence speed, making it more compatible with
modern deep learning models. By dynamically adjusting the fraction of
parameters updated and applying soft quantization, DF-GDA allows for a
more controlled exploration of the parameter space, balancing exploration
and exploitation to accelerate convergence.

npj Artificial Intelligence | (2025)1:30

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Table 7| Comparison of the impact of varying annotation noise
levels on performance reduction percentages across different
datasets using SGD and DF-GDA optimization methods

Dataset Noise Level (%) SGD DF-GDA
MNIST 5) 1.8 1.1
10 4.6 3.2
15 7.0 5.1
20 12.9 8.4
MNIST-M 5] 2.8 1.9
10 7.0 5.4
15 9.7 71
20 15.1 11.0
CIFAR 5 5.2 2.7
10 10.8 6.3
15 14.7 9.9
20 231 15.4
SVHN 5) 3.6 2.1
10 8.2 55
15 11.6 8.0
20 18.2 12.3
USPS 3 1.7 0.9
10 4.3 2.9
15 6.6 4.2
20 11.2 71

Lower percentages indicate smaller performance drops and better results.

Let 6 € R" represent the set of parameters in the neural network,
where n is the total number of parameters. The goal is to minimise a
nonconvex loss function L(6), which measures the error between the
model’s predictions and the ground truth:

min L(0) (7)

Due to the nonconvex nature of L(6), standard gradient-based meth-
ods are prone to being trapped in local minima. DF-GDA uses a tem-
perature T and dynamically adjusts the fraction of parameters updated at
each iteration to balance exploration and exploitation.

In DF-GDA, the optimization process is guided by the energy function
E(6, T), a function of the loss L(6) and the temperature T. The energy
function is expressed as:

){ n
E6,T)=L(0)+ 716, 6] ®)
i=1

where 7 is the number of parameters, A is a regularization parameter, and 6,
are the potential new states of the parameters after applying soft quantiza-
tion (discussed below).

DF-GDA’s pipeline

DF-GDA incorporates a novel soft quantization strategy to constrain
parameter updates and ensure smoother transitions. For each parameter 0;,
soft quantization projects the parameter onto a set of K quantized states Q =
{q1> 92> -..> qx}> where the probability of 6; assuming a quantized state gy is
given by:

K exp(— WT%)
S(6,) = 1; q - m ©)

where T controls the quantization level between soft and hard. Higher
temperatures result in softer (less sharp) quantization, allowing parameters to
explore a broader range of values. As the temperature decreases, the quan-
tization becomes sharper, making the parameter updates more deterministic.
Soft quantization balances continuous space optimization with the stability of
discrete space updates, preventing large, abrupt parameter jumps in high-
dimensional problems like deep neural networks. Unlike hard quantization,
which forces parameters to snap to the nearest state, soft quantization allows
them to probabilistically explore nearby states, promoting smoother
transitions while maintaining structure and stability. This approach enhances
both flexibility and robustness in parameter updates.

Soft quantization shares a mathematical resemblance to the softmax
function, as both use an exponential normalization term. However, while
softmax is primarily used for probability distribution in classification, soft
quantization ensures smooth transitions between discrete quantized states
in optimization.

For problems requiring high precision across a wide parameter range, a
larger K allows for finer resolution in the parameter space. Conversely, a
smaller K is suitable for less complex tasks or when prioritizing computa-
tional efficiency, resulting in coarser exploration.

At each iteration, the derivative of the loss function V L(6;) is updated
using the mean field approach to smooth over time:

U = d 4+ (1 -)yvL(e) (10)
where « is a smoothing coefficient that controls how much current values
are weighted versus the historical average.

Once the mean field is computed, the parameters are updated by
applying soft quantization:

6 = (60 =l + (1) - N0, 1)) (1)

where 7 is the learning rate. e(T) is a temperature-dependent scaling factor.
The term ¢(T) - N(0,I) introduces Gaussian noise (with mean 0 and
identity covariance I), scaled by temperature T. P(i, j, T) is the transition
probability that will be explained as follows. Early in training, this noise
helps explore the parameter space, allowing the optimizer to break out of flat
regions of the energy/loss landscape. As T decreases, the noise diminishes,
making the updates more deterministic and focused on fine-tuning the
parameters. The soft quantization operator S(-) projects the updated
parameter onto discrete states, ensuring stable and controlled convergence.
This approach balances exploration and exploitation, leading to precise
optimization as training progresses.

The acceptance function A(6;, 8, T) is a sigmoidal function of the
energy difference between the current state 6; and the proposed state 6

1

(E(@)—E(e,-))
exp(—5—

A(Giaejv T): 14 (12)

This acceptance criterion ensures that the move is always accepted if
the energy (loss) at the proposed state 6; is lower than at 6;. If the energy at 6;
is higher, the move is accepted with a probability that decreases with both
the energy difference and the temperature.

Practical design of soft quantization
Equation (9) can be rewritten in Gibbs form,

8(6) = > qm(q), m(q) x exp[~E(q)/T], E(q) = 16; — ql,
q€Q

revealing that soft quantization is thermodynamically equivalent to a
Boltzmann sampler over a discrete surrogate energy E,(-). Its contribution is
two-fold:

npj Artificial Intelligence | (2025)1:30

10

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

(i) Stability & implicit regularization. The projection S(8;) contracts the
update 0; < 0; — nu; + e(T)N onto a convex hull of Q, preventing
large jumps in high-curvature regions and acting as a temperature-
controlled weight decay.

(i) Exploration. At high T each m;,(q) = 1/|Q|, recovering the “trivial
state” required by Theorem 1 for broad search; as T, the distribution
sharpens and the operator morphs into a hard nearest-neighbour
projection, thus turning stochastic search into deterministic fine-
tuning (Theorem 2).

Let 0;;; denote the standard deviation of the parameter initialization
distribution (e.g. Kaiming). We choose

Q={m-Alm=—(K-1)/2,...,(K—1)/2},

A = KOy,
withan odd Ksothat0 € Q. Empirically, « € [0.5, 1] keeps max .o 16; — gl
within one standard-deviation of typical weights, ensuring that (i) the high-
T uniform condition of Theorem 1 is satisfied, and (ii) gradients remain well
scaled after quantization. In practice, we use K = 256 for small/medium
networks and K = 1024 for large-scale ImageNet/Kinetics runs; we proved
that larger K does not harm convergence, but brings diminishing returns
once K > 256.

DF-GDA proposes adjusting the temperature dynamically based on
the total entropy of the parameter space. The entropy H(6) at iteration ¢ is
defined as:

n K

H(6Y) == " P(6, = q) log P(6; = g;)

i=1 k=1

(13)

where P(6; = gy) is the probability of parameter §; being in the quantized
state g, given by the soft quantization function.

The temperature is updated based on the ratio of the current entropy to
the maximum entropy:

H(G(H—l))

i (14)

T(t+1) = Ty

max

where H . is the maximum entropy observed early in training, and T, is
the initial temperature. This ensures that as the entropy decreases (i.e., the
model becomes more confident), the temperature decreases, transitioning
the optimization from exploration to exploitation.

At high initial temperatures Ty, the soft quantization function assigns
equal (uniform) probabilities to all K quantized states, i.e., S(6;) ~ % forall k.
This occurs as the exponential in the probability function flattens, ensuring
broad exploration and preventing premature convergence. As T decreases,
the function shifts to favor optimal states, balancing exploration and
exploitation.

Adaptive temperature schedule
We control the temperature through the empirical entropy of the soft-
quantization weights, yielding a single-line update, stated in Equation (13).

This entropy-controlled schedule (i) satisfies the monotone cooling
assumptions of Theorems 1-2, (ii) adapts automatically to model size and
task difficulty without extra hyper-parameters, and (iii) reduces to deter-
ministic nearest-neighbour projection once T,<T,;, =0.01T,,, at
which point each 7; is > 0.98 concentrated on its mode. Figure 3 (left)
illustrates a typical trajectory, showing rapid early exploration followed by
smooth convergence.

At iteration 0 the entropy H, is maximal, so T, = T, enables large
stochastic moves that explore multiple basins of the loss surface. As training
proceeds H, shrinks, and the schedule T, , = T, H,/log|Q| cools
proportionally, progressively sharpening the landscape until
T,<Tpn = 0.01T,,., where DF-GDA behaves as a deterministic fine

min

tuner. Thus a single parameter, T ., self-balances global exploration and
local refinement without manual tuning.

The entropy-controlled temperature schedule provides three main
advantages over a standard geometric schedule: it is hyper-parameter-free and
automatically adapts to model size and task difficulty, it monotonically cools in
a way that preserves the convergence guarantees of DF-GDA, and it accel-
erates training by spending more of the optimization budget in a low-tem-
perature, deterministic fine-tuning phase. Its chief trade-offs are a modest
(= 3%) computational overhead for entropy computation and a potential
sensitivity to rare plateaus where entropy drops prematurely—mitigated in
practice by clamping the temperature at T, ; = 0.01 T,,.. Overall, the
adaptive schedule’s gains in convergence speed, accuracy, and noise robust-
ness outweighs these minor costs, making it a sensible default for DF-GDA.

Dynamic fractional parameter update
Traditional optimization methods, such as SA or GD, which update all
parameters at each iteration, suffer from high computational costs and
inefficiency when scaling to large models. Meanwhile, GDA updates only one
parameter per iteration, which leads to slow convergence. To address these
limitations, we propose the dynamic fractional parameter update framework,
which dynamically adjusts the fraction of parameters updated at each itera-
tion. This fraction is controlled based on the loss dynamics, allowing for more
efficient updates while maintaining the exploratory benefits of annealing.
Rather than updating all parameters at each iteration, DF-GDA
updates a fraction f () of the parameters, where f(f) is dynamically adjusted
based on the recent changes in the loss function. The fraction is defined as:

AL(t))

max(AL) (15)

f(t) :fmin + (fmax _fmin) - €&Xp (_

where f . and f__ are the minimum and maximum fractions of para-
meters to be updated, respectively. AL(t) = |L(t) — L(t — 1)| is the change in
the loss between consecutive iterations. max(AL) is the maximum observed
loss change used for normalization. This ensures that a larger fraction of
parameters is updated early in training when loss changes are significant. As
the loss stabilizes, fewer parameters are updated, encouraging fine-tuning in
the later optimization stages.

Furthermore, DF-GDA incorporates a blockwise fractional sampling
strategy for parameters, where each training iteration operates on a block of
the parameters, ensuring that all parameters are updated by the end of each
epoch. In the blockwise fractional approach, the model’s parameters set 8 is
divided into B non-overlapping blocks 0={0,, ©,, ..., O}, where each block
O, contains a fraction of the total samples. At each iteration ¢, only one block
of parameters O}, is updated during training, and by the end of each training
epoch, all the blocks are updated, ensuring that all parameters are covered.
This approach reduces the computational load per iteration and increases
memory efficiency.

Let B=[1/f,,] and ©® = {©,, ..., Op} be a size-balanced, non-
overlapping partition of the parameter vector obtained by greedily accu-
mulating tensors until each block reaches [||0]|/B] scalars (large kernels are
split along the channel axis when needed). At every iteration we update the
single block whose index 77,(b) is drawn from a fresh random permutation 7,
generated at the beginning of the current epoch; hence every parameter is
visited exactly once per epoch and with probability f(f) at step t. This
schedule preserves the unbiasedness of the stochastic gradient and satisfies
the sufficient-descent condition of Theorem 3, and, by keeping only one
block resident in GPU memory, reduces the per-step complexity of
DF-GDA to O(f(t) nK) without altering its convergence guarantee.

Equation (15) endows DF-GDA with a time-varying update rate: at the
start of training the loss drops sharply, so f(¢) ~ f, .. = 0.5 and ~ 50 % of
the parameters follow the gradient each step, yielding fast descent. As soon
as AL(?) falls below 1 % of its initial value, f(f) contracts exponentially
towards f . = 0.01, leaving only a 1 % subset to be fine-tuned. Combined
with the block-wise schedule, this shrinks the per-step cost to O(f(t) nK)
and is the main reason DF-GDA reaches the 80 % ImageNet milestone 4-6

npj Artificial Intelligence | (2025)1:30

11

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

h sooner than strong first-order baselines (see Table 6 and the discussion
following Theorem 3).

Computational efficiency & complexity analysis
Let n be the number of trainable parameters, K the number of soft-
quantization states (a small constant; K= 512 in all experiments), and f (¢) € (0,
1] the dynamically chosen update fraction at iteration t with k() = | f(£) n].
Each training step consists of the wusual back-propagation
(O(backprop)) and an annealing overhead unique to DF-GDA:
Tpp_gpa(t) = k(t)

Q@ = O(f(H)nK).

soft — quantization

—+acceptance test

o Worst case (f (t) = 1, first few epochs): O(nK).
* Typical/late training (f(t) — 0.02): O(0.02 1K), yielding a > 50 x
speed-up over classical SA that updates all parameters throughout.

DF-GDA stores (i) the parameter vector 8 € R", (ii) a same-size
running mean y, and (iii) one scratch vector of length K reused across
parameters. Hence

Spe—gpa = O(n) + O(K) = O(n) (K<n).
O.u scratch

Classical SA implementations that cache a full probability matrix incur
O(nK) memory, while adaptive optimizers such as Adam require an extra
O(n) variance buffer—placing DF-GDA among the most memory-efficient
choices.

The analysis above, together with Table 8, demonstrates that DF-GDA
achieves linear time and memory scaling in the model size, making it sui-
table for modern, large-scale deep networks.

Classical simulated annealing proposes one neighboring state at every
step; exploring the K x N configuration graph of a modern network
therefore requires O((KN)) moves. Equation (5) transforms this sto-
chastic walk into a deterministic probability flow: all K states of each neuron
are updated simultaneously, shrinking the search to O(K) operations per
parameter and reducing the overall annealing pass to O(KN). Coupled with
the fractional-update rule, the complexity becomes O (f(t)ynK) , giving DF-
GDA the same asymptotic cost as first-order optimizers while preserving the
ability to escape poor basins.

Figure 8 illustrates the efficiency of the DF-GDA algorithm, show-
casing its blockwise dynamic fractional parameter update method and the
convergence of all the data samples during an epoch. Unlike traditional
optimization algorithms that update all parameters simultaneously,
DF-GDA selectively updates a fraction of the parameters at each iteration.
This selective updating strategy significantly reduces computational costs
while maintaining high optimization efficiency, leading to faster con-
vergence and improved stability in deep learning models.

Algorithm 1 summarizes the proposed DF-GDA, including all the
steps discussed so far in the paper.

Algorithm 1. DF-GDA Algorithm
Require: Initial parameters 6 € R", dataset D, initial temperature T .,
minimum and maximum fraction f_. , f ., sensitivity factor &, learning
rate 1, regularization parameter A, and maximum number of iterations N.
1: Initialise mean field derivatives y; =0 foralli=1,2, ..., n
2: Set initial temperature T < T
3: Set maximum entropy H, . based on the initial state distribution
4: Divide parameters 0 into B blocks {®}, ©,, ..., O}
5: for each epoche=1,2, ..., Edo
6: Shuffle dataset D and divide into B blocks
7: for each block B;, € D do

8: Compute current loss L (6) on block B,
9: Compute change in loss AL = |Lg (0) — L, (6)I
10: Compute dynamic fraction f(f) as:

F© = fonin + Finax — Frin) - €xp(—AL/ max(AL))

11: Determine number of parameters to update k = |f(f) - n]

12: Select new k(f) parameters from 6 for the current iteration
to update

13: for each selected parameter 6; € 0; do

14: Update mean field derivatives:

i < i+ (1 —a)VLg (6)

15: Propose new parameter ¢, using mean field update and
noise:

0; = 0, — nu; + e(T) - N0, 1)
16: Apply soft quantization:
k. exp(—16) - q/T,)
& S e (10— g/T,)

17: Compute energy difference AE = E(6)) — E(6,)
18: Compute acceptance probability:
P _ 1

WP] + exp(AE/T)
19: if rand (0,1) < A(6;, 65, T) then
20 Accept new state: 9](.) 9](-t+1)
21 else
22: Reject new state: 9;t+1) <« G;t)
23: end if
24: end for
25: Update temperature using total entropy:

26: Compute current entropy H(0):

n K
H(O) = —> > P(6; = q,)log P(§, = q)
i=1 k=1
27: end for
28: end for
29: Output: optimized parameters 0

Optimization of SVMs using DF-GDA
The proposed DF-GDA is not limited to deep-learning models: Its
temperature-controlled fractional updates, coupled with logarithmic barrier
terms and the joint annealing of model hyperparameters, make it a powerful
drop-in optimizer for constrained classical learners such as soft-margin
SVMs and even unconstrained objectives like k-means. The SVM study
illustrates this capability, achieving grid-search-free optimization with strict
feasibility guarantees and faster convergence.

Given labeled samples {(x;, yi)}f.\i , with y; € { £ 1}, the soft-margin
SVM seeks
. 2 S T
glifé 2 Iwllz + C;fz‘ sty (who() +b) 21 &, 20, (16)

1

where ¢(-) is an implicit feature map induced by the kernel
k(x;, xj) = gb(x,-)TqS(xj). We incorporate the box constraints 0 <&; and the

1

margin constraints y;(w'¢(x;) + b)=1 — &exactly—rather than heuristically

npj Artificial Intelligence | (2025)1:30

12

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Traditional Optimization Algorithms
All Parameters Updated

DF-GDA (Block-Wise Dynamic Fractional)
Fraction of Parameters Updated

0 0
1 1 (nnnn|
21 2
& [EEECETT L i : Ty
4 4
— (T
5 5
HOCC
: I I o T |
7 7
P i i 28 TR
S 9 T m S 9 [
8 10 T B/l
B2 b F M— T
= 12 OO] -
> PO i A
15 [R NEIEEEcy S 1T
15 FOCOT 15 (T
16 FETIIT] RNNANAEES) sanan [gAEEREEx
17 I I 17
1B 18 MDMLLLLLLUMUM o
19 O T] 19 Iy NENNNNRREREEY
0 10 20 30 40 50 0 10 20 30 40 50
Parameters Parameters

Fig. 8 | The proposed DF-GDA introduces a blockwise dynamic fractional parameter update method to update a fraction of the parameters in each iteration, covering all the
model’s parameters and data samples in an epoch, making it more efficient than the traditional optimization algorithms that update all the parameters.

as in the previous draft—using a quadratic barrier:

Hiwl3 +C> 8 — 237 [log(1 - &)
+log(y,(w ¢(x;) + b) — 1+ &,)],

where 0 = (w, b, &) and T is the DF-GDA temperature. The logarithmic
barrier guarantees feasibility throughout annealing; as T0, the barrier
vanishes and (16) is recovered.

Introducing Lagrange multipliers a € [0, C]" and eliminating (w, b, £)
yields the dual energy

&p(0,T) =

1 T
Epla,y, T) = 1Ta+ EaTQ(y) o — EZ [log(oci) + log(C — oc,-)] ,
(17)
with Q(y) =y expg—y Il x; — xj||§2_l for the RBF kernel. DF-GDA
updates a fractionf(t) of the a;, projects them via soft quantization onto [0,

C], and anneals T according to the schedule in of DF-GDA. The barrier
terms are rigorously maintained the box constraints 0 < &; < C throughout
optimization.

Kernel width is tuned inside DF-GDA by treating y as an additional
scalar parameter and appending a smooth £;-regulariser A,(y — y,) to (17).
The same fractional-update rule applies, enabling a temperature-controlled
exploration-exploitation trade-off over y. This removes the need for grid
search and directly.

Enhanced K-means clustering using DF-GDA
To optimize the k-means clustering process and enhance its performance,
particularly in terms of convergence and robustness against local optima, we
can incorporate the principles of DF-GDA.

Classical k-means clustering aims to partition # observations into k
clusters where each observation belongs to the cluster with the nearest mean.
The objective is traditionally formulated as™:

k
min » > [x — gl

i=1 x€§;

where S; represents the set of points in cluster i and y; is the centroid of points
in S,‘.

To incorporate DF-GDA principles, we modify the objective function
to include a temperature-controlled energy component:

Eu,T) = EZXNx—mW TZN% Uil

i=1 xe€§;

(18)

where y represents the potential new state for centroid y; influenced by a
soft quantization mechanism, and A is a regularization parameter that helps
control the updates’ magnitude.

Centroids are updated by balancing the classical mean computation
with a noise-injected term that promotes exploration:

(new)
e = s

x€S;

+€(T) N(0,0%) (19)

where 7 denotes the learning rate, e(T) is a temperature-dependent term
introducing Gaussian noise N(0,), encouraging the exploration of new
cluster configurations.

Theoretical foundations of DF-GDA

In this section, we present the theoretical foundations of the DF-GDA
algorithm. The theoretical foundation of the paper presents key contribu-
tions, including a theorem on initial temperature settings to ensure broad
exploration and prevent local minima entrapment. It rigorously demon-
strates convergence properties, showing the algorithm’s shift from stochastic
to deterministic updates for stable optimization. The dynamic fractional
update mechanism and soft quantization are analyzed for their adaptability
and stability, ensuring controlled parameter updates. Moreover, the expec-
ted convergence time is quantified, providing bounds on performance.

Theorem 1. Initial Temperature for DF-GDA

Statement: For the DF-GDA algorithm to explore the parameter space
broadly at initiation, the initial temperature T, must be chosen sufficiently
high. In particular, given any tolerance € € (0, 1), we require

max;AE(6;)
02
Ke

where AE(6;) denotes the maximum energy difference between any two
quantized states for parameter 0; (defined precisely below) and K is the

npj Artificial Intelligence | (2025)1:30

13

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

number of quantized states. Under this condition, the soft quantization
distribution for each parameter 6; at T is approximately uniform across the
K states (the so-called “trivial state” in annealing theory), meaning that each
state gy is assigned a probability of approximately 1/K (within e of 1/K). This
ensures a broad exploration of the parameter space at the start of training.

Proof. Let 6 = (6,,0,,...,0,) € R” be the set of model parameters, and
for each parameter 6, let {q;, g, ..., qx} be the K possible quantized states.
The DF-GDA algorithm employs a soft quantization function to assign
each 6; a probability distribution over these K states. Specifically, for a given
temperature T, the probability of 6; being in state gy is

exp(— \9;;%\)
ZjK=1 exp(— Lﬁ) 7

and the soft-quantized value S(6;) is the expectation S(8;) =
Zle qi P; (T) (this is Equ. (9) in the text). To guarantee broad exploration
at initialization, we need P;x(T,) =~ 1/K for all iand all k € {1, ..., K}; in other
words, the distribution P;.(Tj) should be nearly uniform on the K states.

Uniformity of the probabilities P; x(Tp) occurs when all the exponential
terms exp(—|60; — g,/ T,) are nearly equal for k=1, ..., K. This requires Ty
to be large enough that differences in the “energy” |6; — gx| have negligible
effect. Equivalently, for any two states g, and gj, we want

16; — ;| 16; — qjl _
1 k) — Vk,j.
Xp (T, exp T, k,j

Canceling the common factor of 1/T in the exponents, condition (20) is
approximately satisfied when |0; — gi| = |6; — gl for all k, j. In practice, it suffices
that Ty, be large enough to dampen the influence of any differences in |6; — gy.

Now, define AE(6);) as the maximum difference in energy or loss (here,
energy is measured by the absolute distance to a state) between any two
quantized states for 6;

Pi,k(T) -

(20)

AE9) =

max |6, — — |6 —g.||.
max 116, — gl — 16— g

In words, AE(6),) is the largest gap between the distances of 6; to any two
quantization levels. Intuitively, if Ty is on the order of or larger than this
maximum gap (scaled appropriately by K and € as below), then even the largest
energy difference between states will be smoothed out by the softmax function.

To achieve an e-close to uniform distribution, we derive the condition
on T,. We require that no state g for parameter 6; has probability deviating
from 1/K by more than e. Formally, for each 6; and each 1 < k < K, we want

1
|PulTy) ol < e 1)

We will show that the stated lower bound on T, guarantees this condition.
First, observe that for any fixed 6;, the ratio between the largest and smallest
softmax weight is bounded by the exponential of the maximum energy
difference:

max; < x exp(—|
min, 4 g exp(—|

—ql/To) _ ex max; | 16; — g | — 16, — gl |
T,

—aql/To)
oo (AEG)
If T, satisfies T, = %S") for this parameter 6;, then

(120)-

exp(K).

This means that all the exponential terms exp(—|0; — g,|/T,) differ from
each other by at most a factor of €. In particular, the largest weight is at
most ¢ times the smallest weight. As a result, the softmax probabilities
P;(Ty) cannot stray too far from equal shares. In fact, using the above ratio
bound, one can show:

eKe
< P(Ty) < X

1
— for each state k.
K eKe
Subtracting 1/K and taking absolute values, we obtain

ke —1
K

1
P (Ty) — E' <

For sufﬁciently small values of ¢, we can use the inequality e — 1 < Ke €,
1 for small Ke). Thus, the

deviation bound (21) is satisfied. In simpler terms, when T, is at least
max AE(9)

Ke ~ ¢ (since € =~

, the initial probability assigned to each state gy differs from 1/K by at
most an order-e quantity. This confirms that the distribution P;.(Tj) is
nearly uniform over the K states, as required for broad exploration.

Theorem 2. Final Temperature for DF-GDA

Statement: The final annealing temperature Ty must be set sufficiently
low to ensure that the dynamic fractional updates converge each parameter
to a stable quantized state and to prevent oscillations among states. In effect,
as the temperature T approaches T the parameter updates become so
small that the system stabilizes i 1n (atleast) alocally optimal configuration of
the parameters. Formally, let q) be the quantized state of parameter 6; that
minimizes the energy E(6;) (i e the lowest- -energy state for 8;). Define the
minimum energy gap for 6; as

AE(0) = min (Elqy) — EaL)).
k# k

which (since E(q) = |6; — ¢l in our formulation) can be written as

min, 49 <| —ql—10; — q(’) |>. To guarantee convergence, choose Ty
such that
- min; AE(6,)
=K Inl

for some small convergence threshold e > 0. Under this condition, for each
parameter 0; the probability of 6; transitioning to any suboptimal state
qk;ﬁqk is at most €. Equivalently, each 9 remains (with probability at least
1 — €f'in its optimal quantized state q as T — Ty This ensures that the
fractional updates have effectively converged (further updates result in only
negligible changes), and the system is locked into a stable configuration.

Proof. Consider the DF-GDA update process for a given parameter 0; with
K possible quantized states. As training progresses and the temperature T is
lowered, the soft quantization dlstrrbutron P, «(T) (defined by Equation (9))
gains density for the lowest-energy state q . Athigh temperatures, all states
are nearly equally likely (as shown by Theorem 1), allowing broad
exploration. In contrast, at low temperatures, the softmax heavily favors the
minimum-energy (optimal) state. Mathematically, as T decreases toward T
we want P; (Tf) ~ 1 and P,k(Tf) 0 for any k # kop.

To quantlfy this, let q(’ be the optrmal state for 0; (so E(q(')) is
minimal). For any other state' qk (k:tk t) the ratio of probabilities betiveen
the optimal state and gy at temperature T is:

exp(—|6; — qkopl|/Tf) 16; — gl — 16, — qkopll
= exp
exp(—16; — qxl/Ty) Ty

Pir, (Tp)
p z:,k(Tf)

npj Artificial Intelligence | (2025)1:30

14

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

Letd; = 10, — q,| — 10; — ') | denote the energy difference between state
qx and the optimal state for 0 "The above ratio becomes exp(8y/ Ty). For
convergence, we require this ratio to be very large for every k # ko, meaning
exp(8y/ Ty) > 1. Equivalently, we need

AN
xp| X | > =
P Tf €

where ¢ is a small desired upper bound on the probability of any suboptimal
state. Inequality (22) is satisfied if

for all k=k"

opt?

(22)

Ok

f

for all k=k®

1
> In E opt”?

or equivalently T;<d;/In(1/€) for every k # kop. Taking the most
restrictive of these (the smallest &;.), we obtain
ming 0 Ok AE(6)

b= /e~ maje

The above must hold for each parameter 6;. To ensure all parameters meet
the condition, we choose Tyno greater than the minimum of the right-hand
side across all i. Thus

< min AE(©)
f = i In(1/e)

In practice, to incorporate the effect of having K states (and thus K — 1

possible suboptimal transitions for each parameter), a conservative choice is

to include the factor K in the denominator (distributing the € tolerance
mln AE(6;)

across K possibilities), yielding the stated condition Ty < 77 Ko (This

ensures the probability of any suboptimal transitions among K states stays

below ¢.)

Under this condition, the softmax probabilities at Tfare heavily skewed
to the optimal state. In particular, from (22) we have P;; <¢ P; o for every
k # kopi. Summing over all k # ko, gives

Z P(Ty) <e Z Pi.kupl(Tf) =e(K-1) Pi.kop((Tf)'

Ktk g Kk g

Since Pjy + > P = 1, the above implies

ko

1

lk(,},‘(Tp)= T+eK=—1)

For small ¢, Py (Ty) ~ 1 /(1 4 something small), so indeed Py~ L
For example, if € = 0.05 and K= 10, then P; ;. (T()21/(1 + 0.45) ~ 0.69;
if € = 0.01, this lower bound becomes =~ 0.91. In practice P; . will be higher
because our chosen Ty is very conservative. Thus, we can safely say that

op((Tf)>1 —e¢ and each suboptimal state g, has P, (TS5

(approx1mately, assuming the e probability mass is distributed among the
K — 1 suboptimal states). In other words, the probability of any parameter
being in a non-optimal state is at most ¢, which means the system effectively
stays in the optimal state configuration with high probability. This condition
prevents oscillations: once a parameter has settled into its optimal state, the
chance of jumping out of it is negligible.

As aresult, as T — Ty, the soft quantization distribution for each 6;
becomes sharply peaked at q The algorithm updates to 6; will then
reinforce staying at qi) (since tflat state minimizes energy), and transitions
toany other state are exceedlngly unlikely. Therefore, the dynamic fractional
updates stabilize — further adjustments to 6; (or to the fraction of para-
meters being updated) are vanishingly small. The DF-GDA system has

effectively converged to alocal optimum, with each parameter trapped in (or
very close to) its lowest-energy quantized state.

Theorem 3. Convergence of Dynamic Fractional Updates

Statement: The dynamic fractional update mechanism in DF-GDA
guarantees that the optimization converges to a stable solution as the
annealing temperature T is lowered. In particular, the fraction f{f) of
parameters updated at iteration ¢ will decrease to its minimum allowed value
Smin 3 T — T, and the parameter updates themselves diminish in mag-
nitude. Formally, one obtains

Tlgr]l,jf(t) = fmim

ensuring that as the system cools to the final temperature, only the mini-
mum fraction of parameters is being updated, and these updates produce
negligible changes. Consequently, the parameters 0 settle into a (locally)
optimal configuration,n and further training iterations do not significantly
alter the loss L(6).

Proof. We consider the behavior of DF-GDA in terms of the training loss
L(0) and the dynamic update fraction f(f). By design, DF-GDA adjusts the
fraction of parameters to update based on the change in loss between
iterations. Let AL(f) = L(6,_,) — L(6,) denote the decrease in loss at iteration
t (we assume L(6) decreases as training progresses). The update fraction f(t)
is defined between a minimum valuef , and a maximumvaluef, . ,andis
higher when the loss is changing rapidly, and lower when the loss change is
small. A typical update rule (as used in our implementation) is:

AL(t)
f(t) - fmin + (fmax fmin) eXp(max(AL)) .
Here, max(AL) is a normalization factor (e.g., the initial loss drop) that
renders the exponent dimensionless. This rule means that when AL(t) is large,
the term exp(—AL(t)/ max(AL)) is close to 0, so f(¢) ~ f..; conversely, as
AL(t) — 0 (loss stabilizes), we have exp(—AL(t)/ max(AL)) — 1, so
f(t) = f,..,- In the early stages of training, when the loss is high and drop-
ping quickly, one updates a large fraction of parameters (f(f) near f .) to
explore the parameter space aggressively. In later stages, as the loss plateaus,
f(t) decays toward f_, , meaning only a small fraction of parameters are
updated (promoting fine-tuning around the current solution). This dynamic
scheduling of f(f) balances exploration and exploitation throughout training.
As the temperature T decreases and approaches T; the DF-GDA
algorithm enters its final phase where AL(f) becomes very small (the loss is
nearly converged). Substituting AL(f) = 0 into the update rule, we get

FO % S+ G~ S 09~ 05) = Fo

More rigorously, taking the limit yields

lim f(t) = fm

AL(H)—0

which is precisely hmTﬁT f(t) = f in since AL(t) — 0 as T — T We have
thus shown that the fraction of parameters being actively updated vanishes
down to the minimum allowed fraction f,, in the convergence regime.
The reduction of f(t) has a direct effect on the parameter update
magnitudes. The update rule for the model parameters in DF-GDA can be
written (approximately) as
0,1 = 0, — nf() VLB, + e(T)N(0,]), (23)
where 77> 0 is the learning rate and e(T)N (0, I) is a temperature-dependent
Gaussian noise term (with mean 0 and covariance I) added to encourage

npj Artificial Intelligence | (2025)1:30

15

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

exploration. Equation (23) shows that the effective learning rate for updating
parameters is # f (), which decreases as f(f) decreases. In early training,
f(t) & f . S0 the effective step size is #f ., allowing substantial moves in
parameter space. But as f(t) — f .., the effective step size becomes #f . ,
which is much smaller. Thus, in the later stages, the parameter updates
0,11 — O;become very small, as e(T) (the noise amplitude) is decreasing with
T and goes to zero as T — T The combination of a vanishing update
fraction and vanishing noise means that the parameters change only
minimally in each iteration near the end of training.

To formalise the convergence, we can view L(6) as a Lyapunov function
for the DF-GDA dynamics. The expected change in L from iteration ¢ to t +
1 can be estimated by ignoring the (vanishing) noise term in (23) and using a
first-order Taylor expansion of L:

L(0,1) — L(B,) ~ —nf(t) || VLB,

since the first-order term is — #f (£) V L(6,) - V L(6;) = — nf () || V L(B)|I?
and higher-order terms are negligible for small updates. Because # > 0 and
f(® > 0, we have L(0,,) <L (6,), meaning the loss is non-increasing.
Moreover, as t grows large, f(t) — f ;. and (for a well-behaved loss) || V
L(6)]| — 0, so the decrement — #f(#)|| V L(6)||> — 0. In the limit ¢ — oo
(which corresponds to T'— Tyin the annealing schedule), we get AL(t) — 0
and V L(6;) — 0. In other words, the parameters 6, approach a stationary
point of the loss. Since L(6) is monotonically decreasing and bounded below
(by 0, assuming a nonnegative loss), L(6,) converges to some L*>0, and 6,
converges to a (local) minimiser of L. At this point, f () has reached f , and
updates are effectively frozen (any remaining updates are tiny fluctuations
around the optimum).

In summary, as the temperature is lowered and the dynamic update
fraction decays, the DF-GDA algorithm transitions from updating a large
subset of parameters with sizable steps to updating only a small subset with
infinitesimal steps. The model thus undergoes a smooth convergence: the
loss stabilizes, parameter changes become negligible, and the algorithm
settles into a stable solution. This analysis confirms that DF-GDA will
converge to alocal optimum of L(0), with f(t) — f,. . and0;,; —0,—0ast
(and 1/T) approaches infinity.

min

Theorem 4. Expected Time to Convergence for DF-GDA
Statement: Let L(6) be a continuously differentiable loss function
bounded below by L, , and consider the DF-GDA update

01 = 0, — nf(H) VL(B,) + &(T) N (0, D),

where 0 < f (£)<1 is the fraction of parameters updated at iteration t, # > 0 is
the learning rate, and &(T,) (0, I) is a zero-mean, T;-dependent Gaussian
perturbation. Define AL, := L(6,,1) — L(6;) as the one-step change in the
loss. Suppose there exists a constant g > 0 such that [E[AL,] = —u (i.e, the
expected decrease in the loss per iteration is y) and assume f (¢) is bounded
below by a positive constant f _, >0 for all £.

Then, the expected number of iterations 7 required for DF-GDA to
reach an e-neighborhood of a local minimum (ie, L(6,)< L, + €)
satisfies

< L(QO) - (Lmin + €))

E
[T] ‘Llf min

In particular, for small ¢, this implies

~ L(GO) - Lmin

E
[T] ‘Mf min

)

indicating linear expected convergence time proportional to the initial
gap L(GO) - Lmin'

Proof. Under the stated assumptions, the expected change in loss at each
iteration isatleast y f . . Let us focus on the deterministic part of the update
(ignoring the zero-mean noise). We can write

0,41 =0, — nf(t) VL(O,).
For small #, a first-order Taylor expansion of L(6) around 6, gives
L(6,41) ~ L(O) + VL(O,) - (0,1, — 0,) = L(©B) — nf(t) || VL(6,)]*.
Hence,
AL, = L(0,y) — L(B) ~ —nf(®) Il VLOI.
By assumption, [E[AL,] = —u for all £, so
u = —E[AL] ~ nE[f(t) | VLO)I?].
Since f(t) 2 f ,;,, >0, we have

nf® || VLO)I* 2 nf i 1| VLI

Hence, the algorithm achieves an expected loss decrease of at least y f, ;. per
iteration.
We sum this decrease over 7 iterations:

T—1

E[L(6) - L6,)] = Y E[-AL] = 7-p.

t=0

Since L(6) is bounded below by L, ., we must have L(0,) > L, for all 7.
Thus, toensure L(0,) < L, + €, we require that the expected total decrease
exceed the initial gap minus e:

Tou 2 L)) — (L +€)-
Solving for 7 yields

S L(6,) — (me +€)
U

Because the fractional update f(t)>f . >0 ensures at least that level of
adjustment, the effective decrease per iteration meets or exceeds yf
Hence, more precisely,

min*

L(6y) — (Lyin +€)

E[7] <
[T] = Mfmin

In practice, 4 may shrink near a fixed point, so the above yields a baseline
complexity estimate in the region where || V L(6,)]| is still relatively large,
demonstrating approximately linear convergence in expectation.

Theorem 5. Stability of Soft Quantization under Perturbations
Statement: Let S(6;) be the soft quantization function for parameter 0;,
assigning probabilities to a set of discrete quantized levels {q;, ..., gx} via

- —16, — T
8(01) — Z Q@ (| i qk' /)
k=1

EjK=1 exp(— 16; — q;1 / T) .

exp

For any fixed temperature T > 0 and any small perturbation § of 0, the
change in S(6;) is bounded by

1566, + &) — s8] < C19 exp(— @)

npj Artificial Intelligence | (2025)1:30

16

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

for some constant C > 0 independent of §. Consequently, the probability
distribution for the quantized states is stable under bounded perturbations
of 6;, preventing excessive oscillations.

Proof. Consider 6; —» S(8;) defined via a softmax-like function over the
distances |0; — gi|. Denote

exp(—| qkl/ T)
i eXp(—q/T)

Thus $(6;) = 2115:1 q;Pi(6;). We need to analyze how Pi(6;) responds to a
perturbation &:

Pk(ei) =

P(0; +) — P(6)).

By the mean value theorem, the difference in the numerator is approxi-
mately 36, exp(—6; — qkl/T)|9 x & for some 6 in [6; 6; 4 &]. That partial
derivative is bounded by Texp(—|9 —ql/ T) in magnitude. A similar
statement holds for each term in the denominator. Collecting terms and
simplifying, one finds that for an appropriate constant C, the final change
satisfies
|Pk(0i +6) — P(6)] < C|0] exp(— 16, — q; / T),

where we also use the fact that the set of exponential terms in the
denominator sums to a normalizing factor near 1.

Because S(6; + 8 — S(B;) is a linear combination
Zle qi [P(6; + 8) — P(6,)], the same Lipschitz-like bound extends to
S(6)):

K
IS +8)=SO) Il <> lgl1Pu(6; + 8) — P(6).
k=1

Factoring out a maximum scale from {g;} if necessary, we absorb it into C
and note that exp(— [0, — q;| / T) is bounded by exp(— 8]/T) if || is
larger or on the order of |; — gx|. Thus we can write, for a suitable constant C
>0,

1506,+0) - 56) 1 < clotesp(-)

which completes the proof. The key conclusion is that a bounded (and
especially small) perturbation § in 6; has only a bounded, smoothly con-
trolled effect on S(6;), meaning soft quantization is stable in the presence of
small parameter fluctuations.

Theorem 6. Convergence of Blockwise Updates & Lyapunov Stability
Statement: Consider the DF-GDA algorithm with blockwise fractional
parameter updates, and let the temperature T () be reduced according to an
entropy-based schedule so that T' (f) — 0 as t — oo. Assume L(6) is con-
tinuously differentiable and bounded below by L, ;.. Then:
1. All limit points of the parameter sequence {0;} are stationary points of
L(6) (ie., V L(6*) = 0).
2. L(B,) - L*=L,;,, and if L is convex (or satisfies a suitable global
condition), L* is the global minimum.
3. The final solution 6* is Lyapunov-stable: if 6 is perturbed slightly near
6%, the DF-GDA update moves it back toward 6*, preventing large
deviations or divergent behavior.

Proof. (1) Convergence to Stationary Points. Over one full epoch, each
parameter block is updated exactly once (or at least once). In iteration ¢, let
the subset of parameters being updated be B, of size k(f) = |f () - n].
Neglecting the noise term (which vanishes as T — 0), the update for any

i € B, reads:

o =" — g VH‘L(G(”) + (soft quantization term).

Hence, when T'is small, soft quantization S(-) behaves nearly as the identity.
Over many epochs, each parameter is updated repeatedly, and the method
approximates (blockwise) gradient descent. A standard analysis (i.e.,” or*")
shows that block coordinate descent on a continuously differentiable,
bounded-below function converges to a stationary point, provided the step
size # is suitably small. Additionally, the noise vanishes and the fractional
updates f (f) eventually become small (but positive), thus the iteration is
stable enough to ensure || V L(6,)|| — 0. Hence all accumulation points must
satisfy V L(6*) = 0. Thus the sequence {0} converges to a local minimum (or
stationary point) of L(6), and we denote the limit 6*.

(2) Monotonicity of L(6;) & Global Minimisation

Because L(6) is bounded below by L., and decreases with each update
(neglecting small fluctuations), L(6,) converges to some L*>L, . . In the
special case that L is convex or satisfies the Polyak-Lojasiewicz condition,
any stationary point is a global minimiser, so L* = L_; . In a more general
nonconvex setting, 0* is a local minimiser. Still, the decreasmg nature of L(6)
with diminishing temperature guarantees no repeated jumps away from a
stable basin of attraction.

(3) Lyapunov Stability

In a neighborhood of 6* (with V L(6*) = 0), we approximate

VL(O* + A) ~ H(6)A,

where H(6*) is the Hessian at 6*. Because 6* is (locally) minimal, H(6%) is
positive semidefinite. A small perturbation A increases L(f) and the
blockwise gradient descent step — # f(£) V L(6) then pulls 8 back toward 6*.
Formally, we define a Lyapunov function

V(6) = L(§) — L(6") > 0.

For 0 close to 6%, we have

V(0,.1) = V(8) = L(0,.1) — L(6) ~ —nf(t) || VLI,
which is non-positive and equals zero only if V L(6,) = 0. Thus V(6;) is non-
increasing along trajectories and 6* is an equilibrium. If H(6%) is positive
definite, then small perturbations are corrected in a single update step,
ensuring asymptotic stability”.

Consequently, once 6* is reached, the system resists diverging from it;
small displacements cause a restoring gradient pushing 8 back to 6*. Thus 6*
is Lyapunov-stable, addressing the reviewer’s concern regarding stability
under disturbances or annotation noise.

Hence, combining these arguments, DF-GDA converges to a stable
fixed point 6% (which is a stationary point of L()), and does so mono-
tonically in L(6) once T = 0. That establishes the claimed results.

Global convergence guarantees for DF-GDA

Extending the local and Lyapunov analyses, we now prove global con-
vergence of DF-GDA for general non-convex objectives: from any start, it
reaches a stationary point, with a bounded iteration count to an e-stationary
solution. We begin by stating the necessary assumptions and definitions:

(A1) Smoothness.

The loss L(0) is continuously differentiable and has L — Lipschitz con-
tinuous gradients. In other words, there exists L > 0 such that for
all 6,6, || VL(O) — VLO) | <L || 6—6 ||

(A2) Boundedness.

The loss L(0) is bounded below by L, (finite global infimum) and is
coercive—i.e. L(0) — oo as ||6]| — oo.

(A3) Fraction schedule.

npj Artificial Intelligence | (2025)1:30

17

www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

The fraction of parameters updated, f(t) € (0, 1], remains bounded
away from 0. In particular, there exists a constant f ., >0 such that
f()2f i, for allt.

(A4) Annealing schedule.

The temperature T, is scheduled so that the injected perturbation ¢(T,)
vanishes as t — oo. Hence the noise term &, := e(T,)N(0,I)
has E[¢,] = 0 and Var[{,] - Oast — oo.

Definition (Stationarity and e-stationarity)

A point 6* is a stationary point of L(6) if V L(6*) = 0. For e > 0, fis an e-
stationary point if || V L(6)||<e.

Theorem 7. Global Convergence of DF-GDA
Suppose (A1)-(A4) hold. Let {6} be the DF-GDA sequence

0,1 = 0, — nf(H VL(O) + &,

with &, = e(T,) N(0,I) and 5 < 1/L. Then

(a) {L(6,)} is non-increasing and converges to a finite limit L* > L,

(b) || VLO)|| — 0ast— oo

(c) the full sequence 6, converges to a stationary point 6* of L, and 6* is a
(local) minimiser.

t=0,1,2,...,

‘min>

Proof. (i) Descent of L
Ignoring &, the deterministic update 95’1)1 =6, — nf(t)VL(6,) satis-
fies, by L-smoothness,

2 2
L) <146) — 1o | VG + L gy,

For 1< 1/L this yields L(6'?,) < L(6,) — 2 || VL(6,)||?. The added noise
is zero-mean and its variance decays (A4); hence E[L(8,, ,)|0,] < L(0,).
Monotone convergence and boundedness below (A2) give L(6,) — L*.

(ii) Vanishing Gradient.

Summing the descent bound and using f(¢) > f

min*

o0

Wain N K[VLO)I) < L6y — L <ox.
=0

) E[H VL(@,)HZ} — 0, and almost surely || V L(6,)|| — 0.

(iii) Convergence of 6,

Coercivity (A2) implies {6/} lies in a compact sublevel set, hence has at
least one limit point. If two distinct limit points existed, L(6,) could not
converge to the single limit L*, contradiction. Therefore 6, — 6* with V
L(6*) = 0. Because L decreases along the trajectory, 6* cannot be a saddle or
maximiser, so it is a local minimum.

Theorem 8. Iteration Complexity to e-Stationarity
Under (Al)-(A4) with #x<1/L, define the
7, :=min{t>0:|| VL(6,) || <e}. Then

hitting time

_2[LB) —L

‘min]

E[Té] ﬂf min €2

Elr]=O(1/).

, e

Proof. Telescoping the descent inequality of Theorem 7 gives

i’lf) N-1
Loin SB[VIO = L) ~ Ly
t=0

Choose N = % If || V L(B)|| > € for all t < N, the left-hand sum

mi

exceeds Ne’, contradicting the inequality. Thus an e-stationary iterate
appears by step N, yielding the stated bound.

Data Availability
All datasets used in this study are publicly available and can be accessed
through standard data repositories.

Code availability
Our source code, including all the datasets used in this paper, is publicly
available on GitHub: https://github.com/Powercoder64/DFGDA.

Received: 1 April 2025; Accepted: 19 July 2025;
Published online: 01 October 2025

References

1. Pedregal, P Pedregal, P. Introduction to Optimization 46 (Springer,
New York, United States, 2004).

2. Gunantara, N. A review of multi-objective optimization: Methods and
its applications. Cogent Eng. 5, 1502242 (2018).

3. Sioshansi, R. et al. Optimization in engineering. Cham: Springer
International Publishing 120 (2017).

4. Sun,S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods
from a machine learning perspective. IEEE Trans. Cybern. 50,
3668-3681 (2019).

5. Bishop, C.M.Pattern Recognition and Machine Learning. Springer,
2?77 (2006).

6. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer,
New York (2009).

7. Bottou, L., Curtis, F. E. & Nocedal, J. Optimization methods for large-
scale machine learning. SIAM Rev. 60, 223-311 (2018).

8. Heydaribeni, N., Zhan, X., Zhang, R., Eliassi-Rad, T. & Koushanfar, F.
Distributed constrained combinatorial optimization leveraging
hypergraph neural networks. Nat. Mach. Intell 6, 1-9 (2024).

9. Ma,C,, Li, A, Du,Y., Dong, H. & Yang, Y. Efficient and scalable
reinforcement learning for large-scale network control. Nat. Mach.
Intel 6, 1-15 (2024).

10. Le, Q.V. et al. On optimization methods for deep learning. In:
Proceedings of the 28th International Conference on International
Conference on Machine Learning, pp. 265-272 (2011).

11. Jeraj, R., Wu, C. & Mackie, T. R. Optimizer convergence and local
minima errors and their clinical importance. Phys. Med. Biol. 48, 2809
(2003).

12. Belloni, A, Liang, T., Narayanan, H. & Rakhlin, A. Escaping the local
minima via simulated annealing: Optimization of approximately
convex functions. In: Conference on Learning Theory, pp. 240-265
(2015).

13. Newton, D., Yousefian, F. & Pasupathy, R. Stochastic gradient
descent: Recent trends. Recent advances in optimization and
modeling of contemporary problems, 193-220 (2018).

14. Wauters, M. M. & Nieuwenburg, E. Reusability report: Comparing
gradient descent and monte carlo tree search optimization of
quantum annealing schedules. Nat. Mach. Intell. 4, 810-813 (2022).

15. Acton, S. T. & Bovik, A. C. Generalized deterministic annealing. IEEE
Trans. neural Netw. 7, 686-699 (1996).

16. Barakat, A. & Bianchi, P. Convergence rates of amomentum algorithm
with bounded adaptive step size for nonconvex optimization. In: Asian
Conference on Machine Learning, pp. 225-240 (2020).

17. Sharma, P., Panda, R., Joshi, G. & Varshney, P. Federated minimax
optimization: Improved convergence analyses and algorithms. In:
International Conference on Machine Learning, pp. 19683-19730
(2022).

18. Ahn, S, Kim, J., Lee, H. & Shin, J. Guiding deep molecular
optimization with genetic exploration. Adv. neural Inf. Process. Syst.
33, 12008-12021 (2020).

npj Artificial Intelligence | (2025)1:30

18

https://github.com/Powercoder64/DFGDA
www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00025-7

Article

19. Gundluru, N. et al. Enhancement of detection of diabetic retinopathy
using Harris Hawks optimization with deep learning model.
Computational Intell. Neurosci. 2022, 8512469 (2022).

20. Khan, M. A. et al. Covid-19 case recognition from chest ct images by
deep learning, entropy-controlled firefly optimization, and parallel
feature fusion. Sensors 21, 7286 (2021).

21. Gupta, V., Koren, T. & Singer, Y. Shampoo: Preconditioned stochastic
tensor optimization. In: International Conference on Machine
Learning, pp. 1842-1850 (2018).

22. Cauchy, A. et al. Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris 25, 536-538 (1847).

23. Robbins, H. & Monro, S. A stochastic approximation method. The
annals of mathematical statistics, 400-407 (1951).

24. LeCun, Y., Bottou, L., Orr, G.B. & Mlller, K.-R. Efficient backprop. In:
Neural Networks: Tricks of the Trade, pp. 9-50. Springer, Berlin,
Heidelberg (2002).

25. Polyak, B. T. Some methods of speeding up the convergence of
iteration methods. Ussr computational Math. Math. Phys. 4, 1-17
(1964).

26. Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by
simulated annealing. Science 220, 671-680 (1983).

27. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. &
Teller, E. Equation of state calculations by fast computing machines.
J. Chem. Phys. 21, 1087-1092 (1953).

28. Wang, L. & Zhang, L. Stochastic optimization using simulated
annealing with hypothesis test. Appl. Math. Comput. 174, 1329-1342
(2006).

29. Mitra, D., Romeo, F. & Sangiovanni-Vincentelli, A. Convergence and
finite-time behavior of simulated annealing. Adv. Appl. Probab. 18,
747-771 (1986).

30. Aarts, E. H., Korst, J. H. & Laarhoven, P. J. A quantitative analysis of
the simulated annealing algorithm: A case study for the traveling
salesman problem. J. Stat. Phys. 50, 187-206 (1988).

31. Acton, S. T. Image restoration using generalized deterministic
annealing. Digital Signal Process. 7, 94-104 (1997).

32. MacQueen, J. Some methods for classification and analysis of
multivariate observations. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1, pp.
281-297 (1967).

33. Tseng, P. Convergence of a block coordinate descent method for
nondifferentiable minimization. J. Optim. theory Appl. 109, 475-494
(2001).

34. Nocedal, J. & Wright, S. J. Numerical Optimization (Springer, New
York, 1999).

35. Khalil, H.K. & Grizzle, J.W. Nonlinear Systems 3, 3rd edn. Prentice
Hall, Upper Saddle River, NJ (2002).

Acknowledgements
This work was supported in part by the National Science Foundation under
NSF 2322993.

Author contributions

Matthew Korban conceived the study, developed the DF-GDA algorithm,
implemented all experiments, analysed the data, and wrote the manuscript.
Scott Acton supervised the research, provided critical technical guidance,
and contributed to manuscript revision. Peter Youngs co-supervised the
project, secured funding, advised on experimental design, and reviewed the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Scott T. Acton.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincluded in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

npj Artificial Intelligence | (2025)1:30

19

http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjAI

	A dynamic fractional generalized deterministic annealing for rapid convergence in deep learning optimization
	Results
	Dataset
	Implementation details
	Convergence and performance analysis
	Experiments on SVM
	Annealing temperature schedule
	Dynamic fractional update
	State-space complexity
	Computational efficiency

	Discussion
	Methods
	Gradient-based Methods
	Simulated annealing
	Generalized deterministic annealing
	GDA for deep learning optimization

	Dynamic fractional generalized deterministic annealing method
	DF–GDA’s pipeline
	Practical design of soft quantization
	Adaptive temperature schedule
	Dynamic fractional parameter update
	Computational efficiency & complexity analysis
	Optimization of SVMs using DF–GDA
	Enhanced K-means clustering using DF–GDA
	Theoretical foundations of DF–GDA
	Global convergence guarantees for DF–GDA

	Data Availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

