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Combining real-time AI and in-person
expert instruction in simulated surgical
skills training-Randomizedcrossover trial
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Traditional surgical training has significant limitations, lacking objectivity and standardization.
Deploying AI tools with conventional expert-mediated teaching may uncover areas where AI could
complement experts and enhance surgical training through real-time performance assessment and
feedback alongside risk mitigation. This randomized crossover trial assessed learning outcomes in
two training sessions involving in-person expert instruction and real-timeAI feedback using previously
validated tumor resection simulations. Receiving expert feedback before real-time AI instruction led to
greater performance improvement in trainee performance scores compared to the opposite order,
with a mean difference of 0.67 95%CI [0.43–0.91], p < 0.001. Diminishing returns were observed with
human expert feedback, which were not seen with AI feedback, such as increased injury and bleeding
risk. In surgical procedural training, AI feedback may efficiently maintain peak performance after an
initial learning phase led by human experts. AI-integrated surgical curricula should consider the
relative benefits of both AI and expert feedback.

In the modern paradigm of surgical apprenticeship, trainees practice with
multiple mentors and develop their competencies through ongoing self-
reflection and feedback. This learner-focused model offers trainees the
opportunity to learn themultifacetedskillsofbeingasurgeonfromadiverse set
of instructors each with their unique style of practice1. Technical skills con-
stitute one domain of expertise that requires attaining a level of proficiency2,3.
However, traditional methodologies fall short in objectively measuring trai-
nees’ technical capacity, real-time quantifying key parameters that may
influence patient outcome, and efficient delivery of the feedback instruction4,5.
Meanwhile, thefield of surgery is experiencing awave of growing technologies
capable of performance data acquisition and analysis. In this scene, artificial
intelligence (AI) has become the new tool to not only discern trainees’ com-
petency but also offer real-time personalized instructions from data-driven
insights5,6. Virtual reality simulators provide unique advantages through real-
time data collection from surgical performance during realistically simulated
tasks, enabling real-time AI assistance while trainees practice skills.

Learners could now gain a further active role in their skills acquisition
by practicing with intelligent tutoring systems5–7. Previous studies have

compared the efficacy of learning from an intelligent tutor with that of
remote and in-person instructors in simulation training8. These findings
demonstrate clear advantages of using AI to teach basic skills to novice
learners, such as significantly reduced instructor time for achieving a sig-
nificantly higher performance score8,9. However, relying on these limitedAI
settings led to unintended learning outcomes that negatively affected per-
formance, notably in operative efficiency andmovement10. Such limitations
highlight the multifaceted nature of surgical technical skills and suggest
shifting AI’s role from replacing to augmenting surgical instructors within
the training paradigm. Moreover, the concept of hybrid intelligence, which
aims to optimize the complementary strengths of humans and AI, is par-
ticularly relevant in surgical training11. Because of the difference in con-
textual information available to each mode of instruction12, human-AI
collaboration can enhance surgical skills and decision-making, ultimately
resulting in safer and more efficient surgical interventions.

This study investigates the combined effect of in-person human
instruction with real-time AI tutoring by comparing the effect of two
sequences of hybrid training on medical students’ skill acquisition in a
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crossover randomized trial. We hypothesized that early exposure to AI
tutoring will result in a higher performance and receiving human instruc-
tion later will provide an additional significant boost. Our discussion
examines the relative strengths and limitations of both AI and in-person
expert feedback and explores the developments for integrating real-time AI
into realistic settings such as the operating room.

Results
Participants
Twenty-five students (mean age [SD]: 21.6 [3.2], 12 [%48]women), currently
enrolled in four medical (MD) programs across Canada, participated in this
study (Table1).Theexclusioncriteria includedparticipation inprevious trials
involving the NeuroVR (CAE Healthcare) neurosurgery simulator.

Performance assessment using the ICEMS score (Fig. 1a)
Performance was assessed using the ICEMS’s composite score, which was
also evaluated for alignment with the OSATS rating (Objective Structured
Assessment of Technical Skills). An average score was calculated for each
task, and the improvement throughout the practice tasks and the transfer of
skills to the test task was assessed.

There was a statistically significant interaction between the groups and
trials on the ICEMS composite score for the second training session, F(2.72,
62.47) = 15.34, p < 0.001, partial η2 = 0.40. However, there was no sig-
nificant interaction for the first training session, F(4, 92) = 1.81, p = 0.134,
partial η2 = 0.07. AI2EXPERT improved significantly on the ICEMS score
at the fifth repetition of the task compared to the baseline, 0.39, 95%CI
[0.09–0.69], p = 0.008 (mean difference, 95%CI [lower bound upper
bound], p-value). AI-assisted learning demonstrated a significantly greater
improvement compared to human-mediated learning in the first training
session. Specifically, AI2EXPERTachieved a significantly higher score at the
end of this session (0.23, 95%CI [0.002–0.45], p = 0.049) when compared to
EXPERT2AI. Unexpectedly, students’ performance declined in the second
session when they received human expert-mediated training after the AI
session. In particular, the ICEMS score for AI2EXPERT significantly
declined at the fifth repetition of the task compared to the baseline (−0.42,
95%CI [−0.67 – (−0.18)], p < 0.001). Real-time AI-mediated training sig-
nificantly improved students’ performance in the second session, after their
exposure to human-mediated training in the first session, which yielded no
significant improvement. EXPERT2AI showeda significant increase in their

score at the end of the second session (0.51, 95%CI [0.15–0.86], p = 0.003).
During the second training session, EXPERT2AI had significantly higher
scores compared to AI2EXPERT in both the fourth and fifth repetitions of
the task with a mean difference of 0.44 (95% CI [0.11, 0.76], p = 0.011), and
0.67 (95%CI [0.43, 0.91], p < 0.001), respectively. These results demonstrate
superior learning outcomes with AI-mediated training compared to
human-mediated training.

Learning transfer to the test task (Fig. 1b)
EXPERT2AI achieved a higher ICEMS score in the test subpial resection
task compared toAI2EXPERTat the endof the second training session, 0.06
95%CI [0.01–0.11].p = 0.013.Both groups showed significant improvement
in their scores in the second training session compared to thefirst, regardless
of the intervention order. AI2EXPERT and EXPERT2AIs had significantly
higher scores at the end of the second session when compared to their
performance at the end of the first session in the test task 0.31 95%CI
[0.14–0.48], p = 0.002, 0.41 95%CI [0.21–0.61], p < 0.001, respectively.

Skill retention
No statistically significant changes were observed in the ICEMS score from
the end of the first session to the beginning of the second session for
AI2EXPERT (0.01, 95%CI [−0.26–0.28], p = 0.96) and EXPERT2AI (0.04,
95%CI [−0.11–0.18], p = 0.60). These results may indicate that students
were able to retain the information they have acquired when moving on to
the second session regardless of the instruction they received.

OSATS outcomes (Fig. 2a)
The OSATS ratings on the test task at the end of each training session were
analyzed and compared between groups and within groups between ses-
sions. An average score of the two raters was calculated for each task.
Superior learning outcomes were observedwith the AI feedback in terms of
Respect for Tissue, Hemostasis, Economy of Movement, Flow, and the
Overall Score in the first session compared to the human-mediated feed-
back. These significant differences disappeared in the second session, when
students who initially received human-mediated feedback also began
receiving AI feedback. In the Overall score, students who received real-time
AI feedback in the first session (median, 5.25) achieved significantly higher
OSATS ratings compared to those who received in-person expert instruc-
tion (4.5), with a median difference of 0.75, z =−2.56, p = 0.01. This

Table 1 | Demographics

AI2Expert (n = 12) Expert2AI (n = 13) All Participants (n = 25)

Number of weeks between training sessions Median (range) 6.5 (6–14) 7 (4–9) 7 (4–14)

Mean age ± SD (range) 21.3 ± 3.7 (19–27) 21.8 ± 2.8 (18–31) 21.6 ± 3.2 (18–31)

Male/Female 5/7 8/5 13/12

Handedness (Right/Left/Ambidextrous) 11/1/0 12/0/1 23/1/1

Year in medical school:

Preparatory year/1st/2nd/3rd/4th 2/10/0/0/0 3/6/1/3/0 5/16/1/3/0

Level of interest in surgery, median (range) 5 (1–5) 5 (3–5) 4 (1–5)

Completed surgical rotation (Y/N) 0/11 2/11 2/23

Medical School:

McGill University 5 5 10

University of Montreal 1 7 8

University of Sherbrooke 3 1 4

University of Laval 3 0 3

Playing video games (Y/N) 5/7 9/4 14/11

Playing musical instruments (Y/N) 5/7 6/7 11/14

Previous activities that require hand dexterity 8/4 6/7 14/11

Previously used virtual reality simulation (Y/N) 0/12 0/13 0/25

Study participant demographics.
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significant difference disappeared at the end of the second training session
when the groups switched to the next feedback intervention (AI2EXPERT:
4.5 vs 5), 0.5, z = 1.71, p = 0.09. AI2EXPERT achieved significantly higher
scores compared to EXPERT2AI at the end of the first training session in
Respect for tissue (5.5 vs 4.5), 1, z =−2.02, p = 0.04; Hemostasis (6 vs 4), 2,

z =−2.45, p = 0.01; Economy of movement (4.5 vs 3.63), 0.87, z =−3.05,
p = 0.002; and Flow (5.25 vs 4.5), 0.75, z =−2.69, p = 0.006. Students in
EXPERT2AI achieved significant improvement in Instrument Handling
(first session: 4.5 vs 5), z = 2.35, p = 0.019, and Economy ofMovement (3.63
vs 4.25), z = 2.27, p = 0.023 when they switched to real-time AI instruction.

Fig. 1 | ICEMS composite score across tasks. Groups are color-coded. Horizontal lines represent statistically significant differences (p < 0.05). Vertical bars represent
standard error. a ICEMS’s composite score across practice subpial resection tasks. b ICEMS’s composite score across test subpial resection tasks.

https://doi.org/10.1038/s44387-025-00032-8 Article

npj Artificial Intelligence |            (2025) 1:36 3

www.nature.com/npjAI


Students in AI2EXPERT experienced a significant drop in Flow when they
switched to in-person human instruction (5.5 vs 5), z =−2.2, p = 0.028.
There was poor agreement between the two raters, with an intraclass cor-
relation coefficient (ICC) value of 0.07.

Specific learning outcomes (Fig. 3)
Specific learning outcomes were assessed across five performance metrics:
tissue injury risk, bleeding risk, aspirator force applied, bipolar force applied,
and instrument tip separation distance, to outline potential reasons behind

Fig. 2 |OSATS ratings and cognitive load.Groups are color-coded. Horizontal lines represent statistically significant differences (p < 0.05). Vertical bars represent standard
error. a OSATS ratings by blinded experts on the test tasks. b Cognitive load during the first and second training sessions.
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the differences between groups in the overall score and OSATS ratings.
These performance metrics were assessed by the ICEMS continuously and
an average metric score was calculated for each metric for statistical
comparison.

Injury risk
In all tumor resection surgeries, avoidance of injury to adjacent structures is
of paramount importance. In brain tumor resection, reducing injury risk is a
critical determinant of patient neurologic outcome. Overall, AI feedback
resulted in a decreased injury risk score, whereas human-mediated feedback
led to an increase in this score. In thefirst training session,AI2EXPERTwith
real-time AI intervention achieved significantly lower injury risk scores in
the fourth and fifth repetition of the task compared to EXPERT2AI,−0.04,
95%CI [−0.07 −0.02], p = 0.003 and −0.05, 95%CI [−0.07 to −0.03],
p < 0.001, respectively. Without real-time AI intervention, there was a sig-
nificant increase in the injury risk score for EXPERT2AI by the third
repetition of the task which reached a mean difference of 0.07, 95%CI

[0.03–0.11], p = 0.001 in the fifth repetition of the task when compared to
the baseline performance. In the second training session, there was a sig-
nificant decline in the injury risk score for EXPERT2AI which reached a
mean difference of −0.042, 95%CI [−0.09–0.00], p = 0.043, at the fifth
repetition of the task. Without AI assistance, AI2EXPERT experienced a
significant increase in injury risk score from the second to thefifth repetition
of the task in the second training session, 0.06, 95%CI [0.00–0.12], p = 0.032.

Bleeding risk
Bleeding avoidance is a critical skill for improving patient outcomes. There
were no significant changes observed within groups in the first training
session. EXPERT2AI had significantly higher bleeding risk in the fifth
repetition of the task compared to AI2EXPERT group, 0.10, 95%CI
[0.0–0.20],p = 0.049. In the second training session, a significant declinewas
seen in the bleeding risk score for EXPERT2AI which reached a mean
difference of the fifth repetition of the task from baseline 0.12, 95%CI
[0.02–0.23], p = 0.03. There was a significant difference in the bleeding risk

Fig. 3 | Five learning outcomes.Groups are color-coded. Horizontal lines represent
statistically significant differences (p < 0.05). Black lines represent significant dif-
ferences between groups. Vertical bars represent standard error. The green area

represents the ideal. For risk assessment, this means lower risk. For instrument
utilization, this means no (zero) difference from the expert level. Y-axis represents
the standard deviation from the mean.
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score between the two groups in the fourth repetition of the task in the
second training session 0.12, 95%CI [0.05–0.20], p = 0.002.

Aspirator force
The use of the surgical aspirator to remove brain tissue requires a balance
where insufficient force prevents effective removal of tissue, while excessive
force can lead to removal of tissue beyond the target depth. Both feedback
interventions resulted in close values to expert level, which was defined as a
score of zero (zero difference from the expected expert value in the ICEMS
output). There was a significant decline in the aspirator force for AI2EX-
PERT which reached a mean difference of−0.55 95%CI [−1.08 to−0.02],
p = 0.04 in the fifth repetition of the task from baseline in the first training
session. There was a significant increase in the aspirator force for EXPER-
T2AI in the second repetition from baseline in the second training session
0.28, 95%CI [0.01 to −0.56], p = 0.04. Neither group had a significant
change in aspirator force with expert feedback.

Bipolar force
In this paradigm, the bipolar forceps is used to provide visualization by
retracting tissue to be aspirated or cauterization. Insufficient force appli-
cation prevents adequate tissue retraction while excessive force can injure
the adjacent brain. Therewere no significant differenceswithin andbetween
groups in the first training session. Expert feedback resulted in increased
bipolar force utilization in the second training session, while AI feedback
had the opposite effect. There was a significant decline in bipolar force score
in EXPERT2AI from the third repetition of the task to the fifth repetition
−0.25, 95%CI [−0.44 to −0.05], p = 0.009. There was a significant differ-
ence in the bipolar force score between the two groups at the fourth and fifth
repetitions of the task in the second training session, 0.38, 95%CI
[0.14–0.62], p = 0.005 and 0.53, 95%CI [0.27–0.80], p < 0.001, respectively.

Instrument coordination
The separation between instruments held in each hand is a key metric of
surgical skill7: expert surgeons typically work with both instruments close
together in a highly coordinated fashion.AI feedback resulted in instrument
coordination significantly closer to the expert level when compared to
human-mediated feedback.Therewas a significant decline in instrument tip
separation in AI2EXPERT from baseline in the first training session that
reached amean difference of−0.76, 95%CI [−1.4–(−0.06)], p = 0.03, in the
fifth repetition of the task. EXPERT2AI had no significant changes in the
first training sessionacross thefive repetitionsof the task.EXPERT2AIhada
significantly higher instrument tip separation score in the fifth repetition of
the task at the end of the first training session, 0.16, 95%CI [0.08–0.24],
p = <0.001. EXPERT2AI had a significantly lower instrument tip separation
distance in the fifth repetition of the task at the end of the second training
session.

Cognitive load (Fig. 2b)
It is important to optimize cognitive load to maximize learning without
overloading the trainees with redundancy and distractions13. Trainees’
cognitive load was measured through self-reporting questionnaires (Sup-
plementary Data). Intrinsic load refers to the natural complexity of the task
while extraneous load is linked to the unnecessary difficulty in the way the
feedback information is delivered.Germane loadmeasures the effort used to
integrate new information into knowledge14. There were no significant
cognitive load differences between groups in the first session.Within-group
analysis during the second session revealed that students in EXPERT2AI
perceived significantly a higher extraneous load (1 vs 1.67), z = 3.01,
p = 0.003 and a significantly lower germane load (4.25 vs 4), z =−1.97,
p = 0.048, after switching from in-person expert instruction to real-time AI
feedback. In the between-group comparison, students in EXPERT2AI
reported significantly higher extraneous load compared to those in
AI2EXPERT in the second training session (1.67 vs 1), z =−3.74, p < 0.001,
indicating that the feedback provided by the AI system caused significantly
higher mental stress.

Discussion
To the best of our knowledge, this study is the first to investigate the surgical
skills taught by a real-time AI tutor combined with in-person human
instruction over two training sessions in a simulation setting, outlining a
comprehensive assessment of learning outcomes assessed by both an AI
system and blinded experts’ OSATS rating.

In the washout period of 6–8 weeks, our results demonstrated that
neither the expert nor the ICEMSgrouphad a significant decrease in skills as
compared to their last performance in the first training session, suggesting
that skills obtained from both the expert and the ICEMS training are
maintained over the two months between trials.

The ICEMS feedback system, including its video feedback component,
was designed for students with minimal to no prior knowledge of tumor
resection. Given this focus and the depth of instruction an expert can
provide, we initially hypothesized thatAI feedbackwould bemost beneficial
in the first session. However, by the second session, students would likely
gain more skills from a human instructor, as human instruction is not
constrained in scope. Contrary toour hypothesis, we foundAI training to be
unexpectedly superior to expert training in both the first and second ses-
sions. Introducing expert instruction early in the training phase was asso-
ciated with a higher performance score at the end of the second training
session. Students exhibited significant decay in skills after switching to
expert training in the second session. Although both groups improved on
the test task from the first to the second session, EXPERT2AI had sig-
nificantly greater improvement compared toAI2EXPERT.When evaluated
by human raters using the OSATS scale, the OSATS scores were greater in
AI2EXPERT compared to EXPERT2AI in the first session and then
remained stable in both groups.

Experts are not provided with explicit pedagogical instructions or
training and are free to provide focused personalized feedback. AI feedback,
however, has been designed and validated to provide consistent, continuous
monitoring and feedback that results in both overall and subdomain-
specific performance improvement. Unlike AI, experts can use their
experience to deconstruct a complex surgical procedure into multiple steps
and teach effective strategies and techniques for executing each of these
procedural steps. By chunking information, experts provide a general
understanding of the subpial tumor resection task, and trainees gain insight
into the surgeon’s approach to this procedure. The greatest gains from AI
feedback, and the most diminished returns from expert feedback, occur in
the second session. The AI system is capable of detecting quantitative
metrics, that may be imperceptible to humans, thus reducing the benefit of
human feedback in more highly trained learners15. Taken together, these
results suggest that continuous AI monitoring may be highly important for
the more experienced learners, and warrant prospective validation in the
real operative setting.

Nonetheless, both groups achieved significantly higher performance
scores on the test task at the end of their second session compared to those at
the endof theirfirst session.Although thisworkdidnot involve longitudinal
simulation training, the findings suggest that combining real-time AI-
instructed and in-person expert-instructed sessions in longitudinal simu-
lation training settings can be beneficial in improving surgical skills in a
high-fidelity simulated task. Students may benefit from increased exposure
to training, regardless of the type or order of intervention. Further, despite
AI2EXPERT’s significant decrease in performance scores by the end of the
second training session, they still significantly improved their skills on the
test task over the two training sessions. These results suggest that AI2EX-
PERT’s expert-mediated learning in the second training session was not
reflected in the ICEMS score during the practice sessions but was more
reflected during the test task. EXPERT2AI achieved significantly higher
performance scores than AI2EXPERT in the test task at the end of the
second session. This finding suggests that training with a real-time AI-
monitored feedback system following expert-mediated training enhances
trainees’ transfer of learning.

One argument to the differences between learning outcomes can be the
reliance that the students may have developed on either expert or AI
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feedback. Therefore, learning is affected by both the presence of onemethod
of instruction and the absence of the other. For unbiased assessment, our
study implemented the test task with neither expert nor AI feedback to
measure the skills acquired by the students when no feedback is available.

AI tools canmonitor surgical performance, which can then inform the
surgical educator about the trainee’s performance. A hybrid trainingmodel
would combine the advantages of AI and in-person instruction simulta-
neously, capturing the instances that may not be obvious to the naked eye
and providing them to the expert instructor to guide their instructions. As
such, future studiesmay integrate the ICEMS in assisting surgical educators
indeliveringoptimal feedback to students and compare this hybridmodel to
either system alone.

Human judgment may not align perfectly with surgical performance
assessments made by AI systems. AI versus human-mediated assessments
may each have their unique advantages, and different key aspects of surgical
performance may have been prioritized in their evaluations. Despite these
differences, our results have demonstrated that both scores increase
simultaneously as students learn and acquire skills, and that an increase in
the ICEMS score does not come at the expense of the skills evaluated by
OSATS.Ourworkprovidedadetailed report on surgical skills assessment as
outlined by the ICEMS on six outcomes. Through comprehensive studies
using thedataobtainedduring thisRCT,humandecisionsusingOSATScan
be compared to the decisions made by the ICEMS. Such investigations may
highlight areas unique to human perception, which can inform future AI
systems. These systems can be trainedbased on expert insights and function
under their supervision, a process referred to as human-in-the-loop16.
Human-in-the-loop applications may provide increased interpretability in
high-stakes surgical decision-making, continuous improvement, and
oversight17,18.

Althoughmore evidence is needed to establishAI tools as an important
component of modern surgical training19, our findings suggest that inte-
grating intelligent systems with traditional expert mediated apprenticeship
would further augment the present competency-based model. Virtual rea-
lity simulation provides an immersive medium for trainees to become
familiar with the steps, actions, tools, and anatomy relating to a procedure
before entering the operating room20. Learning these requires under-
standing optimal techniques and approaches to perform each step suc-
cessfully. Traditionally, instructional modules in virtual reality simulators
have accompanied narrative descriptions or expert demonstrations to
achieve this goal but they lacked the capacity for ongoing personalized
feedback or performance risk prediction. However, as these systems can
become productized in a portable and distributed fashion, the primary rate-
limiting step toVR simulationhas been the requirement for expert coaching
—limiting the global adoption of standalone VR trainers. Our work
demonstrates a significant unmet need to use VR systems as an integrated
data capture and feedback system to substantially improve surgical per-
formance without human expert intervention.

AI and expert-guided learning may occur concurrently in the future.
This study examined how both AI and expert instruction methodologies
complement each other, as well as the changes in students’ performance in
the presence versus absence of each teaching methodology. Our work does
not propose a standardized curriculum. Students may always alternate
between training interventions based on their individual needs or pre-
ferences, as well as the availability of experts. Integrating real-time perfor-
mance monitoring in residency training requires support from institutions,
faculties, and residents. This commitment would involve fostering a culture
of continuous improvement and openness to innovative educational
methods. The institutional benefits of investing in technological infra-
structure must be justified by their added value to reduce operational costs
while enhancing education, faculty engagement, and patient outcomes.

Surgical educators play a key role throughout the integration process.
Their understanding of program needs, knowledge of training gaps, and
critical appraisal of existing evidence enable them to determine the role of
real-time AI tutoring in their program’s curriculum. They can be the
champions that advocate for the integration of intelligent systems in

simulation training and investigate their outcomes. In return, residents need
tohaveprotected time in their alreadybusy schedules to actively engagewith
these systems, take part in quality control studies, and complete qualitative
surveys.

AI-guided technical training is not limited to the simulation environ-
ment. With advances in intraoperative data acquisition, continuous per-
formancemonitoringmay soon become the norm. It is therefore important
to consider the regulatory process required for their implementation in the
OR. AI/ML-based software and medical devices pertaining to diagnostic
specialties have experienced a leap in regulatory approval by the FDA
compared to surgical specialties which require more complex and dynamic
AI/ML algorithms due to the nature of real-time intraoperative decision-
making21. In general, the FDA classifies medical devices based on their
potential risks22. Class I devices are categorized as low risk and require
notification only in terms of their approval pathway,whileClass II andClass
III are categorized as moderate and high risk and require the 510(k) and
premarket approval (PMA) pathways, respectively22. The International
Medical Device Regulators Forum (IMDRF), guiding the FDA, established
that the level of regulatory examination of software as a medical device
(SaMD) application and their algorithms should be based on the risk of
harm and their clinical evaluation accomplished via a valid clinical asso-
ciation between SaMD output and targeted clinical conditions, analytical
validation and clinical validation23,24. A recent review of the FDA/CE list
failed to identify any approvedAI-powered surgical simulation software for
appraisal and feedback, however, it is postulated that such devices could
potentially be commercially available without any regulatory approval
process due to lack of direct device-patient interaction25. AI-powered sur-
gical simulators should undergo a regulatory process, potentially designed
by the IMDRF and the FDA, to ensure patient safety, transparency, cyber
security, and improved quality of training which indirectly impacts
patients25.

In simulation training, the ICEMS system can be further optimized to
deliver efficient feedback in a variety of simulations to provide trainees with
comprehensive training of the necessary skills. This system can be imple-
mented in intermediary more realistic settings such as animal and placenta
modelswhere surgical instruments data are recorded, and relevant real-time
feedback can be provided26–28. Further investigation is needed to outline
whether training using these platforms improve real-life intraoperative
skills.

The integration of the ICEMS into the surgical operating room would
be possible with access to real-time surgical performance data, which is
currently limited. Computer vision could enable intraoperative applications
such as surgical video assessment where AI is employed tomonitor surgical
performance to detect and track surgical instruments29, recognize surgical
actions, phases, and gestures30, and predict the amount of hemorrhage31.
The convenient nature of intraoperative cameras may allow the develop-
ment of smart intraoperative cameras equipped with a system similar to the
ICEMS’ feedback to monitor surgical performance and provide assistance
during surgery to enhance efficiency and patient safety32,33.

This work involved limitations worth noting. The simulation learning
environment may not replicate the stressful nature of real patient cases.
Therefore, trainee attention and response to the instructions, as well as
learning engagement, may be limited. Both the ICEMS and OSATS ratings
evaluate the skillset of the students more than the procedural outcome.
Trainees may achieve high ratings on both scoring systems without com-
pletely resecting the tumor. In future studies, the ratings of the technical
skills students received canbe compared to the procedural outcomes such as
the amount of tumor removed and spatial information34,35, to outline
whether students utilize correct instrument techniques while achieving
desired outcomes.

The participants in this study included 25 medical students. This
cohort represents trainees with little to no experience in surgery, similar to
surgical trainees at the start of their training. Their lack of knowledge and
experience minimized variation in baseline skill levels and allowed for
greater room for improvement, resulting in significant differences between
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groups even with a smaller sample size. However, more nuanced operative
skills may require resident participation to demonstrate the utility of AI
platforms in teaching these skills during residency training. Although the
current version of the ICEMS system was designed specifically for trainees
with no knowledge, such systems also need to be developed and tested for
traineeswhohave some level of experience, helping them to further advance
technical skillset mastery.

Technical skills learning may require carefully designed, structured,
longitudinal curricula. Integration of AI into surgical training may yield
significant benefits when combined with in-person expert-guided instruc-
tions. The future of surgical training may need optimal methodologies for
AI integration, achieving the best learning outcomes with long-term
retention and successful skill transfer.

Methods
This multi-institutional instructor-blinded crossover randomized trial was
approved by McGill University Health Centre Research Ethics Board,
Neurosciences–Psychiatry. The inclusion criterion for participants was
enrollment in a medical program in Canada. The exclusion criterion was
prior participation in the virtual reality simulator trial, theNeuroVR, used in
this study. All participants provided informed consent prior to trial parti-
cipation. This report follows theConsolidated Standards ofReportingTrials
involving AI (CONSORT-AI)36,37. This trial was conducted as an extension
of trial registration: NCT05168150, clinicaltrials.gov. The trial started in
February 2022 and ended in April 2022 after recruiting all students who
registered to participate. The study involved no harm to participants.

Simulation training
Participants received training across two sessions in a controlled laboratory
environment at the Neurosurgical Simulation and Artificial Intelligence
Learning Centre, McGill University. After providing written consent, par-
ticipants reviewed standardized instructions onhow touse the virtual reality
simulator and completed a background information questionnaire. They
performed simulated brain tumor resection tasks using theNeuroVRvirtual
reality simulator (CAE Healthcare, Montreal, Canada). The NeuroVR is a
high-fidelity simulator that recreates the auditory, visual, and haptic
experience of interacting with brain tissues realistically and enables repeti-
tive practice of selected neurosurgical tasks20,38. At each training session,
participants first completed a practice brain tumor resection task five times.
After the practice sessions, they performed a test task, a brain tumor
resection that included lifelike bleeding and tissue modeling38, for sum-
mative assessment. They had 5min to complete each practice resection and
13min for the test task. The time limit was defined based on the previous
feedback from neurosurgeons and trainees9,34. Participants were randomly
allocated into two cross-over groups to receive a study intervention
(described below) during practice tasks. Upon completion of the first
training session, participants were asked to return within 6–8 weeks to
undergo the same training with the alternate intervention. The initial
practice task served as the baseline.

Study interventions
Participants in both interventions received real-time instructions during the
5min they performed the resection and, in addition, had an extra 5min to
receive post-hoc debriefing and feedback between each attempt. The first
group, AI2EXPERT (n = 12), received AI instruction during their first
training session followed by expert feedback in the second training session.
Conversely, the second group, EXPERT2AI (n = 13), started with expert
feedback and received AI feedback in the second training session. The
specific educational content of each intervention is described below.

AI instruction
In this phase, participants received real-time auditory instructions given by
the ICEMS – a multialgorithm intelligent tutoring system trained on time-
series data using a deep learningmodel knownas a long short-termmemory
network5. The ICEMS’s ability of performance assessment, risk detection,

and coaching along with its predictive validity on trainee performance were
previously demonstrated5. This model evaluates surgical performance,
predicts risk five times per second, and can provide auditory instructions to
change participants’ behavior.

In this study, the ICEMS system had five teaching objectives: mini-
mizing the risk of (1) bleeding and (2) healthy tissue damage, while opti-
mizing (3) dominant hand force, (4) non-dominant hand force, and (5)
bimanual coordination. If the difference between the participant’s score and
the predicted expert-level score (by the ICEMS) exceeded a predefined
threshold (0.5 for risk metrics and 1 for coaching metrics), an error was
identified, and the system automatically delivered real-time verbal warnings
or instructions. Participants received ongoing tutoring from the ICEMS in
all practice tasks except for the baseline task.

ICEMS training also included personalized automated post-hoc
feedback. Following each practice task, including the baseline, the algo-
rithm selected an error footage from the video recording of the participant’s
performance, categorized it based on the learning objective, and presented it
as a 10-s clip followed by a metric-specific instructional video including an
expert demonstration of that objective.

Expert instruction
Apanel of two expert instructors, highly experienced in simulation training
and brain tumor resection surgery, was created. One instructor was present
in person during the practice tasks, except the baseline, to instruct each
participant in the expert instruction group. To ensure standardized
instruction, the instructors completed a workshop and utilized a modified
Promoting Excellence and Reflective Learning in Simulation (PEARLS)
debriefing script39. Throughout the practice tasks, the expert instructor
provided verbal feedback to the students, using their judgment and expertise
to make recommendations. Following each practice task, the expert
demonstrated relevant strategies and techniques on the simulation as they
considered appropriate.

Outcome measures
The primary outcome measure was the composite performance score
assessed by the ICEMS for practice and test tasks, averaged across each task.
Our secondary outcome measures were the ratings on six OSATS items on
the test task, including 5-items and an overall score. The OSATS ratings
were provided by experts who were blinded to the participant group and
ICEMS assessment. Additionally, scores on 5 ICEMS metrics were tracked
and analyzed. Finally, cognitive load, including intrinsic, extraneous, and
germane load, was measured through questionnaires.

Randomization and sample size
Students were randomized into 2 intervention sequences with an allocation
ratio of 1:1, using an internet-based random number generator without
stratification40. Group allocation was concealed by the study coordinator,
and instructors were notified of appointment times in advance for sche-
duling purposes. The participant recruitment flowchart is outlined in Fig. 4.
Using the study primary outcome, the ICEMS score during the practice
tasks across two training sessions, we conducted a power analysis. With a
power of 0.95, an effect size of 0.3, and a correlation of 0.5 among repeated
measures, the analysis yielded a total sample size of 22 participants (11
participants per group) for the between-within-group interaction in a two-
group randomized crossover trial41,42. Analysis was conducted based on
intention-to-treat.

Statistical analysis
The interaction between the ICEMS score and the trials at each training
session was assessed by a two-way mixed model ANOVA. Shapiro Wilk
test was used to observe normality (p > 0.05). Outliers were imputed using
thenearest non-outlier value43. The composite score acrossfive repetitions
of the practice task was compared using one-way repeated measures
ANOVA or Friedman’s test depending on normality. Mauchly’s test
indicated that the assumption of sphericity was met for two-way
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interaction for the first training session, χ2(9) = 12.58, p = 0.184, and it
was violated for the second training session χ2(9) = 20.86, p = 0.014.
Values with Greenhouse-Geisser correction were reported for violation of
the assumption of sphericity for two-way interactions and repeated
measure analyses. Between-group comparisons at each repetition of the
task and the composite score on the test taskwere done using independent
samples t-test. Within-group differences between 1st and 2nd training
sessions for the performance on the test task were analyzed using paired
samples t-tests. Levene’s test showed heterogeneity of variances, based on
median (p < 0.05), and Box’s test demonstrated violation of homogeneity
of covariances, p < 0.001. Pairwise comparisons were adjusted by Bon-
ferroni correction for multiple tests. Assessment of OSATS scores was
made using non-parametric tests: Mann–Whitney U test for between-
group comparison, and Wilcoxon test for within-group comparisons
between sessions. IBM SPSS Statistics, Version-27 was used to conduct
statistical analyses. Figures were created usingMATLAB, version R2023b
(MathWorks, Natick, MA).

Data availability
The dataset is available from the corresponding author on a reasonable
request. A sample raw simulation data file can be accessed online.

Code availability
The codes used in this study are available from the corresponding author on
a reasonable request.
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