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Optimizing complex systems —from discovering therapeutic drugs to designing high-performance
materials —remains a fundamental challenge across science and engineering, as the underlying rules
are often unknown and costly to evaluate. Offline optimization aims to optimize designs for target
scores using pre-collected datasets without system interaction. However, conventional approaches
may fail beyond training data, predicting inaccurate scores and generating inferior designs. This paper
introduces ManGO, a diffusion-based framework that learns the design-score manifold, capturing the
design-score interdependencies holistically. Unlike existing methods that treat design and score
spaces in isolation, ManGO unifies forward prediction and backward generation, attaining
generalization beyond training data. Key to this is its derivative-free guidance for conditional
generation, coupled with adaptive inference-time scaling that dynamically optimizes denoising paths.
Extensive evaluations demonstrate that ManGO outperforms 24 single- and 10 multi-objective
optimization methods across diverse domains, including synthetic tasks, robot control, material
design, DNA sequence, and real-world engineering optimization.

Across scientific and industrial domains, from drug discovery [1] to engi-
neering superconducting materials [2], researchers face a common bottle-
neck: creating new designs to optimize specific property scores in complex
systems where the rules governing performance are unknown or costly to
evaluate. Numerous methods require either expensive trial-and-error
experimentation or building system models with long-term accumulation of
domain knowledge. Consider the decades-long quest for fusion reactor
materials—each physical test costs millions and risks equipment damage [3]
or the ethical constraints in developing neuroactive drugs where failed
designs could harm patients [4, 5]. These limitations call for a general
optimization framework that learns directly from historical data while
eliminating the need for iterative evaluation.

Offline optimization [6], also named offline model-based optimiza-
tion, has emerged as a promising solution, enabling design improvement
using pre-collected datasets. This approach has proven valuable in molecule
generation [7], protein properties [8], and hardware accelerators [9]. Cur-
rent methods adopt a unidirectional strategy: (i) Training surrogate models
to predict scores from designs. These predicted scores are then utilized by
various optimizers to identify the optimal designs (forward modeling)
[10, 11]; (ii) Generating designs that are conditioned on desired scores
through the use of generative models (backward generation). An example of
this approach is the employment of diffusion models [12], wherein small
amounts of noise are incrementally added to a design sample, and a neural
network is trained to reverse this noise-adding procedure. However,

forward methods mislead optimizers with overconfident out-of-
distribution predictions [6], while backward methods struggle with out-
of-distribution generation (OOG) on unseen conditions [13]. These
struggles stem from a deeper oversight: existing works operate in isolated
design or score spaces, missing the underlying design-score manifold where
optimal designs reside.

We propose to learn the design-score manifold to guide diffusion
models for offline optimization (ManGO). As illustrated in Fig. 1, we
leverage score-augmented datasets to train an unconditional diffusion
model. By learning on the manifold, the model effectively captures the
bidirectional relationships between designs and their corresponding scores.
We then introduce a derivative-free guidance mechanism for conditional
generation, which enables bidirectional guidance—generating designs based
on target scores and predicting scores for given designs, thus eliminating the
reliance on error-prone forward models. To further enhance generation
quality, we implement adaptive inference-time scaling for ManGO, which
computes model fidelity on unconditional samples. This scaling approach
dynamically optimizes denoising paths through ManGO’s self-supervised
rewards. Moreover, ManGO is adaptable to both single-objective optimi-
zation (SOO) and multi-objective optimization (MOO) tasks, making it a
comprehensive solution for various optimization scenarios.

The comprehensive evaluation showcases ManGO’s state-of-the-art
versatility in offline optimization, consistently surpassing existing approa-
ches across both SOO and MOO tasks. In comparison with the baselines,
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Fig. 1| Overview of the ManGO framework for offline optimization. a Illustration
of offline optimization: it identifies optimal designs for an unknown black-box
function using an offline dataset (no environment interaction), where designs
represent function inputs and scores correspond to outputs. b Training a diffusion
model on score-augmented data to learn the joint design-score manifold. ¢ Fidelity
estimation via unconditional samples generated by the trained ManGO model: the
fidelity metric determines whether to activate inference-time scaling during con-
ditional generation. d Bidirectional conditional generation: it leverages preferred-
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score or preferred-design conditions to generate corresponding designs or scores,
illustrated via the self-supervised importance sampling (self-IS) method at denoising
timestep ¢ for sample i. e Conceptual illustration of ManGoO: it learns on the design-
score manifold to enhance out-of-distribution generation (OOG) capability, con-
trasted with design-space learning that struggles with OOG issues under unseen
conditions [13]. f Case study on superconductor’s temperature optimization [37]: it
demonstrates the superior OOG performance via ManGO versus the design-space
approach (i.e., DDOM) across varying ratios of top data removal.

ManGO significantly enhances performance, attaining the top position
among 24 SOO methods and 10 MOO methods. We anticipate that
ManGO will serve as a valuable tool for data-driven design. By unifying
optimization through learning on the design-score manifold, it offers a
scalable and accessible solution for future scientific and industrial
challenges.

Results

In this section, we first introduce preliminaries on offline optimization, the
basics of diffusion models, baseline methods and performance metrics.
Subsequently, to show the motivation and advantages of ManGO, we
compare the learned versus the original design-score manifold and visualize
the trajectory generation. We then conduct extensive experimental valida-
tion on offline SOO and MOO using Design-Bench [6] and Off-MOO-
Bench [14]. Finally, we perform systematic ablation studies to analyze the
contributions of ManGO’s core components.

Preliminaries
Offline optimization [6], also referred to as offline model-based optimiza-
tion, seeks to identify an optimal design x” within a design space X € R?

without requiring online evaluations, where d denotes the design dimen-
sion. Based on the number of objective functions
fO=0F®),....f,,(x): X > R", offline optimization can be classi-
fied into two types [14]: (i) offline SOO when m = 1, and (ii) offline MOO
when m > 1.

Oftline SOO aims to identify the optimal d651gn x* = argmin f (%)
using only a pre-collected offline dataset D = {(x;, y,)} _,»wherex; dSnotesa
specific design (also referred to as a solution) and y; = fix;) represents its
corresponding score (or objective value). Offline MOO aims to identify a set
of designs that achieve optimal trade- offs among conflicting objectives using a
pre-collected dataset D = {(x;, y,)} ._» where y; denotes the vector of scores
corresponding to design x;. The problem is defined as [15]: Findx* €
X suchthat 2x € X with f(x) < f(x*), where < denotes Pareto dominance.
A design x’ is said to Pareto dominate another design x, denoted as
(&) < f(x), if Jiel{l,...,m},f,(x)<f,(x) and Vje
{1,....m}fi(x)<f;(x). Namely, x is superior to x in at least one objective
whlle belng at least as good in all others A design x" is Pareto optimal if no
other design x € X’ Pareto dominates x . The set of all Pareto optimal designs
is referred to as the Pareto set (PS), and the set of their scores {f(x*) |x" € PS}
constitutes the Pareto front. The goal of offline MOO is to identify the PS
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using a pre-collected dataset, thereby achieving optimal trade-offs among
conflicting objectives.

Diffusion models are a type of deep generative models that learn to
reverse a gradual noising process, transforming random noise into realistic
data through iterative denoising. Let x, denote the state of a data sample x; at
time ¢ € [0, T], where x, is drawn from an unknown data distribution py(x).
Here, x; represents a noisy version of x, at time ¢, and x corresponds to a
point sampled from a prior noise distribution p7{(x), typically chosen as the
standard normal distribution p,.(x) = N(0,1).

The forward diffusion process, also known as the noise-adding process,
can be modeled as a stochastic differential equation (SDE) [16]: dx = f(x, f)dt
+ g(t)dw, where w denotes the standard Wiener process, f : R — R is
the drift coefficient,and g(¢) : R — R is the diffusion coefficient of x,. The
denoising process is defined by the reverse-time SDE: dx =
[f(x7 ) — g(t)2 V, log pt(x)] dt + g(t)dw, where dt represents an infinite-
simal step backward in time, and dw is the reverse-time Wiener process.

Baseline methods and performance metrics

We consider existing baseline methods for offline SOO based on three
methodological paradigms: (i) Surrogate-based methods: optimizing with
surrogate models, including BO-gEI [17, 18], CMA-ES [10], REINFORCE
[19], Gradient Ascent and its variants of mean ensemble and min ensemble.
(ii) Forward-modeling methods: employing advanced neural networks like
generative models as surrogate models and integrating with surrogate-based
methods, including COMs [20], RoMA [21],IOM [22], BDI [11], ICT [23],
Tri-Mentoring [24], PGS [25], FGM [26], Match-OPT [27], and RaM [28].

(ili) Inverse-modeling methods: applying score as a condition to reverse
design with generative models, including CbAS [29], MINs [30], DDOM
[12], BONET [31], and GTG [32].

For offline MOO, existing approaches remain relatively under-
explored compared to offline SOO. Our evaluation focuses on three
representative approaches: (i) Multiple Models (MMs)-based NSGA-
II: We implement NSGA-II with independent objective predictors
and perform predictors’ ensemble as the surrogate model for evo-
lutionary optimization, which outperforms end-to-end and multi-
head variants [14]. (i) Multi-objective Bayesian Optimization
(MOBO): We adapt the canonical MOBO by substituting Gaussian
Processes with the MM ensemble and employ an HV-based acqui-
sition function, QNEHVI [33], which outperforms scalarization and
information-theoretic alternatives [14]. (iii) Generative methods:
ParetoFlow [34], a flow-model-based method utilizing adaptive
weights for multiple predictors to guide flow sampling toward PF;
MO-DDOM, a diffusion-model-based method where we extend
DDOM through multi-score conditioning and adding MM-based
design evaluation.

In offline optimization, where environment interaction is prohibited, it
is essential to evaluate multiple candidate solutions; thus, standard bench-
marks adopt k-shot evaluation with the 100th percentile (best candidate) as
the performance metric [6, 14]. All results are normalized using task-specific
references for comparison: For Design-Bench with maximization tasks
(Table 1), we use standardization normalization for the Superconduct task
and min-max normalization for other tasks based on the unobserved

Table 1| The 100th percentile normalized score (k = 128) in the Design-Bench benchmark, where the best and runner-up results

on each task are bold and underlined numbers

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank
D‘g:f;) (Preferred) 0.565 (1.0) 0.884 (1.0) 0.400 (1.0) 0.439 (1.0) 0.467 (1.0) /
BO-qEI 0.812 + 0.000 0.896 + 0.000 0.382 +0.013 0.802 + 0.081 0.628 + 0.036 20.0/24
CMA-ES 1.214 £ 0.732 0.725 + 0.002 0.463 + 0.042 0.944 £ 0.017 0.641 +0.036 13.0/24
REINFORCE 0.248 + 0.039 0.541 £ 0.196 0.478 +0.017 0.935 + 0.049 0.673 + 0.074 16.0/24
Grad. Ascent 0.273 + 0.023 0.853 +0.018 0.510 + 0.028 0.969 + 0.021 0.646 + 0.037 13.6/24
Grad. Ascent Mean 0.306 + 0.053 0.875 +0.024 0.508 +0.019 0.985 + 0.008 0.633 + 0.030 13.2/24
Grad. Ascent Min 0.282 + 0.033 0.884 +0.018 0.514 + 0.020 0.979 + 0.014 0.632 + 0.027 13.5/24
COMs 0.916 + 0.026 0.949 +0.016 0.460 + 0.040 0.953 + 0.038 0.644 +0.052 11.5/24
RoMA 0.430 + 0.048 0.767 + 0.031 0.494 + 0.025 0.665 + 0.000 0.553 + 0.000 20.3/24
IOM 0.889 + 0.034 0.928 + 0.008 0.491 + 0.034 0.925 + 0.054 0.628 + 0.036 15.1/24
BDI 0.963 + 0.000 0.941 + 0.000 0.508 +0.013 0.973 + 0.000 0.658 + 0.000 7.7/24
ICT 0.915 + 0.024 0.947 +0.009 0.494 + 0.026 0.897 + 0.050 0.659 + 0.024 11.4/24
Tri-Mentoring 0.891 + 0.011 0.947 + 0.005 0.503 +0.013 0.956 + 0.000 0.662 +0.012 9.7/24
PGS 0.715 + 0.046 0.954 +0.022 0.444 +0.020 0.889 + 0.061 0.634 +0.040 15.2/24
FGM 0.923 + 0.023 0.944 £ 0.014 0.481 +0.024 0.811 £ 0.079 0.611 +0.008 15.2/24
Match-OPT 0.933 £ 0.016 0.952 +0.008 0.504 + 0.021 0.824 + 0.067 0.655 + 0.050 10.0/24
RaM-RankCosine 0.940 + 0.028 0.951 £ 0.017 0.514 + 0.026 0.982 £ 0.012 0.675 + 0.049 45/24
RaM-ListNet 0.949 + 0.025 0.962 +0.015 0.517 £ 0.029 0.981 £ 0.012 0.670 + 0.035 4.2/24
CbAS 0.846 + 0.032 0.896 + 0.009 0.421 + 0.049 0.921 + 0.046 0.630 + 0.039 17.5/24
MINs 0.906 + 0.024 0.939 + 0.007 0.464 + 0.023 0.910 + 0.051 0.633 + 0.034 15.0/24
BONET 0.921 + 0.031 0.949 +0.016 0.390 + 0.022 0.798 +0.123 0.575 + 0.039 17.1/24
GTG 0.855 + 0.044 0.942 +0.017 0.480 + 0.055 0.910 + 0.040 0.619 + 0.029 15.9/24
DDOM 0.908 + 0.024 0.930 + 0.005 0.452 +0.028 0.913 + 0.047 0.616 +0.018 16.6/24
ManGO 0.960 + 0.017 0.971 + 0.004 0.523 + 0.040 0.985 + 0.004 0.673 +0.033 2.2/24
ManGO*ses 0.968 + 0.013 0.969 + 0.009 0.543 + 0.037 0.985 + 0.004 0.679 + 0.023 1.4/24

(best)
D(ram

denotes the best score in the offline training dataset. Each task’s results are normalized by the best scores in the unobserved dataset. DDOM represents a conditional diffusion-based method.
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Table 2 | Averaged normalized HV and IGD values of synthetic tasks (upper) and RE tasks (lower) in the Off-MOO benchmark,

where the best and runner-up results on each task are highlighted by bold and underlined numbers.

ZDT(n=2) OmniTest(n=2) DTLZ(n=3) Mean Rank

Avg. HV(1) Avg. IGD(!) Avg. HV(1) Avg. IGD(!) Avg. HV(1) Avg. IGD(!) HV Rank(!) IGD Rank(!)
D‘,’;:f,? (Preferred) 1.0 (1.118) 1.0 (0.0) 1.0 (1.056) 1.0 (0.0) 1.0 (1.098) 1.0 (0.0) / /
MM-NSGA2(k=1) 0.888 +0.013  2.555+0.118  1.044 +0.010 0.454 +0.129 0.987 +0.012  0.635+0.048 8.3/10 6.7/10
MO-DDOM (k=1) 0.948 +0.009 1.674+0.150  0.983 + 0.002 0.827 + 0.046 0.932+£0.014 0.795+0.063 9.3/10 8.0/10
ManGO (k=1) 1.097 +0.004  0.729 +0.064  1.050 + 0.002 0.399 + 0.068 0.971+£0.016  0.739+0.104 6.0/10 6.0/10
ManGO ™S (k=1) 1.099 £ 0.005 0.702+0.065  1.050 + 0.001 0.359 + 0.017 1.0563+0.015 0.250+0.084 4.3/10 3.7/10
MM-MOBO 0.963+0.007 4.723+0.164  1.056 + 0.000 0.206 +0.019 1.075+0.000 0.362 +0.016  4.0/10 6.0/10
ParetoFlow 1.000 £ 0.008  2.867 +0.405  0.953 + 0.057 1.523 + 0.567 0.998+0.009 0.672+0.115 7.7/10 8.3/10
MM-NSGA2 (k=256) 1.055+0.003 3592 +0.044  1.046 +0.002 1.008 + 0.019 1.086 £ 0.000 0.752+0.016  4.0/10 9.0/10
MO-DDOM (k=256) 0.981 £+0.006  1.052+0.144  1.033 + 0.001 0.270 +0.010 1.054 £0.006 0.255+0.044 6.7/10 4.3/10
ManGO (k=256) 1.107 £+ 0.002  0.420+0.030  1.051 + 0.002 0.118 £+ 0.015 1.066£0.003 0.172+£0.013 2.7/10 1.7/10
ManGO*°"S (k=256) 1106 +0.002  0.445+0.043  1.052 + 0.000 0.094 + 0.002 1.079+0.003 0.123+0.033 2.0/10 1.3/10

RE(n=2) RE(n=3) RE(n=4) Mean Rank

Avg. HV(1) Avg. IGD(!) Avg. HV(1) Avg. IGD(!) Avg. HV(1) Avg. IGD(!) HV Rank(!) IGD Rank(!)
Dﬁ?:iiﬁ (Preferred) 1.0 (1.037) 1.0(0.0) 1.0 (1.082) 1.0 (0.0) 1.0 (1.310) 1.0 (0.0) / /
MM-NSGA2(k=1) 1.016 £ 0.004 56.958 +12.159 0.935+0.007 2.979+0.159 0.780+0.009 1.504+0.060 9.3/10 9.7/10
MO-DDOM (k=1) 1.010+0.012  2.261 +0.220 1.046 £+ 0.002 0.579+0.020 1.058 +0.003 0.845+0.008 8.7/10 4.7/10
ManGO (k=1) 1.024 +0.004  6.809 + 0.740 1.051 £0.011  0.782+0.083 1.234+0.009 0.421+0.018 5.7/10 6.0/10
ManGO ™S (k=1) 1.022 + 0.004 4.717 +2.081 1.066 + 0.005 0.588 + 0.027 1.240 + 0.016 0.304 + 0.020 4.7/10 4.3/10
MM-MOBO 1.027 £0.002  1.156 + 0.133 1.071£0.001 0.912+0.093 1.123+0.009 0.816+0.029 3.7/10 5.0/10
ParetoFlow 1.017 £0.004  12.403 + 0.052 1.010 £ 0.004  1.806 + 0.024  0.668 + 0.001 1.887 +0.006 9.0/10 8.7/10
MM-NSGA2 (k=256) 1.034 + 0.000 98.945 + 0.011 1.069£0.001 2.160+0.029 1.249+0.012 0.320+0.052 2.0/10 6.7/10
MO-DDOM (k=256) 1.020£0.001  1.476 + 0.031 1.056 £0.001  0.552+0.007 1.073+0.004 0.808+0.008 6.7/10 3.3/10
ManGO (k=256) 1.026 + 0.002  3.373 + 0.428 1.063+0.005 0.611+0.026 1.248 +0.006 0.388 +0.014  4.0/10 4.7/10
ManGO "8 (k=256) 1.028 £0.001  2.264 +0.237 1.072+0.002 0.498 +0.013  1.264+0.002 0.234+0.020 1.3/10 2.0/10

Higher HV values indicate better performance, while lower IGD values are preferred. pesh

wain (Preferred) denotes the best (preferred) HV/IGD in the offline training dataset. For compact presentation, reported

numbers represent tasks’ performance averaged by the objective numbern. The sets of ZDT(n = 2), OmniTest (n = 2),and DTLZ (n = 3) consist of 5 ZDT tasks [41], 1 OmniTest task [52], and 2 DTLZ tasks [42],
respectively. The sets of RE (n = 2), RE (n = 3), and RE(n = 4) comprise 5, 7, and 2 real-world application tasks [43] withn = 2, 3, and 4, respectively. Note that each task’s results are normalized by the best HV
and IGD of its training dataset, and RE (n = 2) presents higher averaged IGD values because the RE22 task has ten times more IGD value than other tasks. Note that MO-DDOM represents a standard

conditional diffusion-based baseline method.

dataset’s highest score. For the Off-MOO-Bench with minimization tasks
(Tables 2), we use min-max normalization with the best HV and IGD values
of training datasets.

Motivation and Advantages of ManGO

Compared to conventional manifold learning, our diffusion-based
approach provides unique advantages for offline optimization. Unlike
conventional methods like kernel-based methods that struggle with com-
plex nonlinear geometries [35], diffusion models excel at capturing intricate
manifold structures through stochastic denoising. Crucially, diffusion
models inherently support conditional generation, enabling direct genera-
tion of high-performing designs conditioned on target scores-a capability
absent in standard manifold learning. Furthermore, compared to GANSs or
VAEs, diffusion models offer superior training stability and generation
fidelity [36], which are critical for reliable optimization from offline data.
This combination of strong representational capacity and built-in condi-
tional generation makes diffusion models suited for learning the design-
score manifold.

Compared to existing methods for offline optimization, our
proposed ManGO framework explicitly learns the design-score
manifold and leverages the underlying manifold geometry to co-
generate designs and scores. Specifically, ManGO learns a bidirec-
tional generation between designs and scores: (i) Design-to-Score
Prediction: Given any design configuration, ManGO predicts its

corresponding score; (ii) Score-to-Design Generation: For any pre-
ferred score, ManGO generates its corresponding design. As illu-
strated in Figure le, this bidirectional mapping provides ManGO
with a robust OOG capability to extrapolate beyond training dis-
tributions. Let X, = (x,,y,) denotes a score-augmented design vector
at timestep f, where x and y represent the design and its score,
respectively. The denoising update can be represented as:

N 1 1
X = (xtvyt) + (Ax[, Ayr) = E(xt + 2Axt7yf) +E(xt7yt + ZAJ’;):
——

Co—update Design update Score update

where the co-update term indicates the denoising update based on the
learned manifold geometry, the design-update term indicates the denoising
update of x, conditioned on y,, and the score-update term indicates the
denoising update of y, conditioned on x, Unlike the design-space
approaches that treat y, as a fixed condition and only update x;
unidirectionally, ManGO jointly updates both x, and y, based on the
bidirectional mapping. The design-space methods struggle with extrapola-
tion under unseen conditions. In contrast, ManGO leverages co-updates to
dynamically capture the geometric relationship between design and score:
each denoising step not only pushes x, toward the local manifold
conditioned on y, (design-update) but also refines y, to align with the
evolving x, (score-update). This bidirectional feedback enables progressive
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extrapolation and converges to the conditioned points on the manifold,
achieving a robust OOG capability.

We conduct a controlled experiment to elucidate the advantage of the
bidirectional mapping of ManGO on a superconductor [37] task, an 86-D
materials design optimization task to maximize a critical temperature, using
DDOM [12] as the design-space baseline. In terms of the 128-shot eva-
luation, Figure 1f shows that ManGO achieves a consistent score gain of
greater than 0.1 over the design-space approach across varying levels of top-
data removal (from 70% to 10%). The gain grows to nearly 0.2 when only
10% of the top data are removed. Regarding the 1-shot evaluation, both
methods exhibit comparable performance under severe data removal (from
70% to 30%). However, ManGO demonstrates progressively better results as
data availability increases. At 10% data removal, ManGO achieves higher
scores than the design-space method with 128 shots. These results confirm
that: (i) ManGO captures the bidirectional design-score relationships,
enabling robustness to OOG challenges; (ii) ManGO exhibits nonlinear
scaling of sample efficiency with data quality, achieving superior few-shot
performance.

Manifold and trajectory generation visualization

To demonstrate the bidirectional mapping capability, we visualize the per-
formance of ManGO on two canonical minimization tasks. (i) Branin function
(for SOO): A well-studied 2D function containing three global minima within
x1 €[ —5,10],x, € [0, 15] and y,,, = 0.398, serving as an ideal testbed to

capture ~ multimodal  landscapes. Specifically,  fy, (x;,%,) =
a(x, — bx? 4+ ox; — r)2 —s(1 —t)cosx; —s, where a=10b=2L,

c= %,r =6,s=10,and t = ﬁ. (ii) OmniTest (for MOO): A synthetic 2D
problem generating 9 disconnected Pareto-optimal points with x € [0, 6]* and
y € [—2,2]?, challenging optimization methods in maintaining diverse designs.
Specifically, f,(x)= >, sin(rx;),f,(x) = >.7_, cos(nx;) with Pareto
designs at all combinations of (x;, x,) € {1, 3, 5} x {1, 3, 5}.

Fig. 2 shows that ManGO reconstructs the entire design-score mani-
fold despite removing the top 40% of low-scoring data. Its generated

manifold recovers the erased global minima locations and maintains the

overall topographic trends in the Branin task in Figure 2a. ManGO also
recovers all 9 disconnected Pareto fronts and preserves the negative corre-
lation between f; and f, objectives in the OmniTest task in Figure 2b
(visualizing two regions for ease of observation). Across both tasks, the
generated manifolds exhibit only minimal deviations from the original
manifolds, even in out-of-distribution regions. This demonstrates ManGO’s
robust OOG capability, validating its ability to extrapolate beyond the
training distribution accurately. Furthermore, both generated manifolds
exhibit consistent minor elevation, with a deviation of less than 5%. For
example, Figure 2c reveals a gradual score elevation between unconditional
and expected scores in Branin’s training region, where higher expected
scores correspond to sparser training samples. This conservative estimation
under uncertainty serves as an advantage in offline optimization, where
reliable performance outweighs aggressive extrapolation [20].

Unlike design-space approaches limited to score-based guidance,
ManGO’s manifold learning framework enables additional condition-
ing on design constraints, providing more flexible control over the
generation process. Figures 2a, b present ManGO’s generated trajec-
tories with minimal score and varying design constraints as conditional
guidance. For instance, in Figure 2a with design constraints x; € [—5,0],
x, € [0, 15] and minimum score condition y, .. = 0.398, ManGO suc-
cessfully guides a randomly initialized point (violating the constraints)
to converge to the constrained minimum. Notably, ManGO exhibits
accelerated convergence as noisy samples approach preferred points.
This indicates its ability to exploit favorable noise points for enhanced
output quality, naturally aligning with our inference-time scaling fra-
mework. On the other hand, ManGO directly transports samples from
randominitializations to preferred pointsin thejoint design-score space,
simultaneously generating both designs and their scores. This eliminates
two key requirements of conventional approaches: (i) iterative score
evaluation on noisy designs via external forward models, and (ii) gra-
dient computation along manifold geometry.

Figures 2 and Fig. 3 demonstrate the critical role of conditional gui-
dance on ManGO’s OOG capability. Unconditional generation faithfully

Fig. 2 | Visualization of manifold learning, tra-
jectory generation, and generation capabilities
of ManGO. Note that unconditional and condi-
tional samples are generated via ManGO without
guidance and with preferred-score guidance,
respectively. a, b Manifold and trajectory compar-
isons for the Branin (SOO) and OmniTest (MOO)
tasks. The generated manifold is constructed via
ManGO's design-to-score prediction within the
feasible region of designs. Close alignment between
the ManGO-generated and original manifold, con-
firming the model’s proficiency in learning complex
design-score relationships. Generated trajectories
visualize ManGO's score-to-design mapping under

X1 5
Original Manifold
2 Generated Manifold

A  Branin Function's Manifold

—e— Generated Trajectory

b

Omnitest's Manifold

1264 _
300
220
200 176
Yitiz2 4
100 88 Y2
0 44
. : 15 = Ll
1 4
5¥2 2 4y
10 O )? 2 o O +

X
@ Training Data 2
% Minimal Point

@ Initial Point
@ Final Point

Given Design Constr.

minimal score and design constraints, highlighting C Results of Branin d Results of OmniTest
its capacity to perform targeted denoising toward Minimal Training Score / 21 o ® & oo,
desired regions. ¢ Branin task: Unconditional sam- 8 1751 e Expected y / o P '7 3
ples (green) match preferred scores from the train- S 150 : ﬂgﬁg”‘;cfjg " ;5' 1 . ;T;Zic”t‘ijcm P
ing dataset, while conditional samples (blue) W 125 y’ "4 UnconilP B SCore )
extrapolate beyond the training minimum (grey 8 100 Y2 | Cond CEepnscore :
dashed line). d OmniTest task: Conditional samples T 75 01 < %
better approximate preferred scores and Pareto- o 2 - o0
dominate the training data (grey) compared to (]C) 50 ) o —-11 ° °
i idicate that & 251! Minimal Training Score: 24.92 . s
unconditional samples. These results indicate that O 257 °. P
ManGO effectively reconstructs in-distribution 0 -2 Y 4
samples during unconditional generation—reflect- 0 50 100 150 _ 2 0 2
ing well-learned manifold structure—while Prefered Score )%1

enabling OOG of superior samples through condi-
tional guidance, demonstrating robust extrapolation
based on the learned manifold.

npj Artificial Intelligence | (2026)2:4


www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00055-1

Article

A RE210=2) b zrw-
0.8 o Design Score 087 o Design Score 0.817 « Design Score 0 o Design Score o Design Score
o Generated Score o Generated Score a o Generated Score * . 0.213 o Generated Score 0.2] & o Generated Score
o Pareto Front }, o Expected Score 0.6 o Expected Score M c o, ; \ . o Expected Score . .\' F o Expected Score
0.6 t\ 0.61+ S : \ 0.4 o % - *
\ g ign ~ s F
N - g o0 <0.4 . Design Score . s .
S04 .. Sos K, S i S (s e Soa g So1 A
o, > .21 3 s
0.2 el 02 NS 02 EL N .ob - v
Tes O AEEN : 8 ¢
0.0 0.0 ML L 0.0 ) 0.0 A 0.0 \ 0.0
0.0 0.5 0.0 0.5 1.0 0.0 0.5 0.0 0.5 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
¢ Yo Yo Yo Yo (] Yo
DTLZ7(n=3) d redp—y
. cee S5ee o6 . 1.00 . 1.00
. ) 0.8] ,: ’%g 0.8 ,"éﬁ .5 1.00
075 & @ o, B
. : R A e 0.6 BEF 075 0.75 0.75
0,50 * oo | o coemerseore | g o cenetesseore | £10.50 £0.50 050
N ot | 0.4 o hmoron 0.4 i e =% e
.2 pY e % .
0.25 02 4 02| & ": 025 025 | pnscore T % R, 0251 0 pesgnscore ~ 1, ¥R2y
3 ) > ) o Generated Score « Generated Score s o o Generated Score & ¥ 422
0.00 0.0{ % | g | o 0.00{ o PparetoFront 0.00] o Pareto Front bt} 0.00] o Ppareto Front e'»ﬁ_
0.0 0.5 1.0 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Yo Yo Yo Yo Yo Yo
0.75 * e Desionscore -_::; « Design score 0.15{7% o Design score 0.8 §; ° Dwinscore o o Design score o Design Score
o, © GeneratedScore ¢ g o Generated Score o Generated Score o Generated Score o Generated Score 0.6 o Generated Score
© o3 o P 0.10 o heoron 0.10 3 et P pinip - PN
0.50 HE T . : 0.6 .
~ « “*s| 0.05 ﬁ“ . 0.05] . 0.4
>0.25 ST N = y £0.4 o
0.00| s e | 0.00 0.2 0 k) 0.2 :
P 1] R % d X
0.00 o ¢ 3 oot s . R 2
o o= eowas , | —0.05 ~ -5 -0.05 | 0.0 e i 0.0 s o
0.0 0.5 10 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.0 0.5 1.0 1.0 0.0 0.5 1.0
Yo Yo Yo Yo Yo
No guidance Guidance Self-IS-based Guidance(ours) No guidance Guidance Self-1S-based Guidance(ours)

Fig. 3 | Pareto front generation under different guidance conditions. Across all
subfigures of (a) RE21, (b) ZDT3, (c¢) DTLZ7, and (d) RE41, columns from left to
right respectively show the results of no guidance, standard guidance, and the
proposed self-IS-based guidance. The progressive improvement in generation

quality highlights ManGO's capability in OOG under conditional guidance. Fur-
thermore, the enhanced performance with self-IS-based guidance illustrates the
ManGO's feasibility for more delicate guidance mechanisms.

reproduces in-distribution samples (matching training score ranges in Fig.
2¢, d), while conditional generation produces designs that extrapolate
beyond the training distribution. This key distinction reveals that although
ManGO learns the complete manifold structure, explicit guidance is
essential to unlock its full OOG capabilities. The consistent results across
RE21, ZDT3, DTLZ7, and RE41 benchmarks (Fig. 3) robustly confirm this
fundamental behavior. Specifically, ManGO without guidance exhibits
conservative behavior, remaining within the training distribution. Mean-
while, when guided by Pareto front (PF) reference points, ManGO
approaches the complete PF, and our self-supervised scaling guidance
achieves better precision than standard guidance.

Evaluation on single-objective optimization

We employ five representative tasks from Design-Bench [6] and sample
10,000 offline design samples per task [28]: (i) Ant Morphology [38] (60-D
parameter optimization for quadruped locomotion speed), (ii) D’Kitty
Morphology [39] (56-D parameter optimization for movement efficiency
enhancement of a quadruped robot), and (iii) Superconductor [37], (iv) TF-
Bind-8 [40] and (v) TF-Bind-10 [40] (discrete DNA sequence optimization
for transcription factor binding affinity with sequence lengths 8 and 10). We
follow the maximization setting of Design-Bench and normalize scores
based on the maximal score in the unobserved dataset [6], where higher
scores indicate better performance.

As shown in Table 1, we compare ManGO with 22 baseline
methods and report normalized scores of top k = 128 candidates
(100th percentile). ManGO establishes a state-of-the-art performance
across diverse domains (materials, robotics, bioengineering) on five
datasets. ManGO with standard guidance attains a mean rank of 2.2/
24 (securing the second position), while the self-supervised impor-
tance sampling (self-IS)-based variant further improves this to 1.4/24
(the first). ManGO ranks first on four tasks, including D’Kitty,
Superconductor, TF-Bind-8, and TF-Bind-10, and secures second
place on Ant, trailing only CMA-ES. This cross-domain advantage
suggests that the effectiveness of learning the design-score manifold is
general and not limited to specific problems.

The 13.6-rank leap over Mins (rank 15.0, the previous best of inverse-
modeling baselines) demonstrates the superiority of the manifold-learned

generation to design-space-learned methods. Meanwhile, the 2.8-rank lead
over RaM (the best of forward-modeling baselines) suggests that score-
conditioned diffusion can better exploit offline data than ranking-based
approaches. It also outperforms the top surrogate-based methods (CMA-
ES, rank 13.0) by 11.6 ranks, without the need for designing acquisition
functions. On the other hand, the self-IS variant shows consistent
improvements over standard ManGO: score boosts on Superconductor
(43.8%) and modest gains on Ant (40.8%) and TF-Bind-10 (+0.9%). A
deviation occurs in D’Kitty, where a slight average score reduction (—0.2%)
accompanies improved peak performance (+0.3%). The marginal gains
reflect that standard ManGO reaches near-optimal performance, leaving
limited room for improvement.

Evaluation on multi-objective optimization
We utilize Off-MOO-Bench [14] and sample 60,000 samples per task [34]:
(i) Synthetic Functions (an established collection of MOO evaluation tasks
with 2 — 3 objectives exhibiting diverse PF characteristics, such as ZDT [41]
and DTLZ [42]), and (ii) real-world engineering (RE) applications [43] (a
suite of practical design tasks with 2—4 competing objectives, such as four-
bar truss design and rocket injector design). We employ two standard
evaluation metrics: (i) Hypervolume (HV)[44], which quantifies the domi-
nated volume between candidate designs and nadir point (each dimension
of which corresponds to the worst value of one objective), and (ii) Inverted
Generational Distance (IGD) [45], which measures the average minimum
distance between candidate designs and the ground-true PF, both metrics
applied to non-dominated sorting [46] with k = 256 candidate designs
(100th percentile). While generating high-quality single solutions from
purely offline data remains challenging, we also report our method’s per-
formance at k = 1 to demonstrate competitive performance. Note that while
we replace the online query in MOBO/NSGA2 with a surrogate forward
model for offline adaptation, performance degradation occurs versus online
operation as the surrogate model cannot perfectly emulate environment
feedback.

We follow the minimization setting of Off-MOO-Bench and normalize
HV (IGD) values based on the best HV (IGD) of the training dataset, where
higher HV (lower IGD) indicates better performance. ManGO outperforms
all baseline methods across both synthetic and real-world MOO benchmarks
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indicating empirically optimal thresholds (7o = 0.827 for SOO; 7, = 0.87 for
MOO). e-h Inference-time scaling efficiency: HV (e, g) and IGD (£, h) versus
number of function evaluations (NFE) for ZDT3 (e, f) and RE21 (g, h) task for three
approaches, comparing standard denoising, self-IS scaling, and FKS scaling meth-
ods. Consistent performance improvements are achieved through adaptive noise-
space exploration.

according to Table 2. Regarding synthetic tasks, the self-IS-based ManGO
achieves the best mean rankings of 2.0 (HV) and 1.3 (IGD) out of 10 com-
peting methods, while the standard guidance version follows closely with ranks
of 2.7 (HV) and 1.7 (IGD), securing the top two positions. The superiority
extends to RE tasks, where self-IS-based ManGO dominates with average
ranks of 1.3 (HV) and 2.0 (IGD), establishing itself as the overall leader.

As presented in the upper part of Table 2, ManGO shows consistent
superiority across ZDT, OmniTest, and DTLZ series. Under the most
challenging OOG scenarios where preferred designs are distant from ZDT’s
training data, self-IS-based ManGO outperforms the best baselines by 60.1%
in IGD (vs DDOM) and 3.9% in HV (vs NSGA-2). For 1-shot evaluation
settings (i.e., k = 1), ManGO matches the performance of baseline methods
requiring 256-shot evaluations. This shows that the efficient learning on the
design-score manifold enables high-quality guidance generation even with
minimal sampling.

As task complexity escalates with increasing objectives, the self-IS-
based variant consistently achieves top performance in both HV and IGD
metrics in the lower part of Table 2. This confirms its OOG capability in
high-dimensional objective spaces. Compared to synthetic tasks, learning
on manifolds poses greater challenges for RE tasks. Consequently, this
diminishes ManGO’s performance advantage in 1-shot and standard gui-
dance modes. However, self-IS guidance effectively offsets this by exploring
more noise points, and its performance gains become more pronounced as
task complexity increases.

Ablation study on robustness to preferred scores

Although we use the maximum unobserved score as a guided score (i.e.,
¥p = 1.0) in Table 1, practical scenarios may lack precise knowledge of
optimal scores. We evaluate ManGO’s robustness to suboptimal guided
scores by analyzing the best score of generated candidate designs across
varying shotnumbers. Fig. 4a, breveal two key insights: (i) Increasing the
shot number enhances robustness, with stable optimal designs emerging
when guided scores exceed 0.7 (Ant) or 5.5 (Superconductor) at
128shots. (ii) Decreasing the shot number to 1, peak performance occurs
nearbutnotexactlyaty,. This demonstrates that the generation diversity
of diffusion models provides practical robustness for ManGO when y,, is
unknown.

Ablation study on optimal fidelity threshold

We quantitatively evaluate the design-to-score prediction accuracy
through the fidelity metric (Eq. (10)), which measures the distance
between the ground-truth scores and the generated scores of uncondi-
tional samples. Figures 4c, d show that self-IS-based scaling achieves
performance gains on the majority of SOO (optimal fidelity threshold
Topt = 0.827) and MOO tasks (7op: =0.87). Furthermore, MOO tasks
exhibit higher fidelity than SOO tasks due to SOO’s higher-dimensional
design spaces. It is more likely to increase performance gains with
increasing fidelity values because diffusion models with higher fidelity
generate more accurate self-reward signals during inference, enabling
more effective noise-space exploration.

Abilation study on inference-time scaling

We evaluate computation-performance tradeoffs by controlling NFE on
ZDT3 in Figures 4e, f and RE21 in Fig. 4g, h, comparing three approaches:
(1) standard guidance with more denoising steps, (2) self-IS-based scaling,
and (3) Feynman-Kac-steering (FKS)-based scaling. For ZDT3, standard
guidance achieves competitive performance at NFE = 31, demonstrating
ManGO’s sample efficiency. However, performance degrades at inter-
mediate NFE before recovering, revealing instability in simple step exten-
sion. In contrast, scaling-based methods show monotonic improvement
with increasing NFE, where FKS scaling temporarily outperforms IS scaling
during mid-range NFEs before converging at NFE = 150. The RE21 task
exhibits different characteristics: all methods display bell-shaped perfor-
mance curves, peaking at NFE =78 (FKS), NFE = 36 (IS), and NFE =36
(standard). Scaling-based methods attain higher peak performance over
standard guidance while maintaining a sustained advantage after NFE = 36.
These results indicate that scaling methods yield superior computational
performance compared to simple step extension.

Discussion

This work introduces ManGO, a framework that fundamentally rethinks
offline optimization by learning the underlying design-score manifold
through diffusion models. Unlike existing approaches that operate in
isolated design or score spaces, ManGO’s bidirectional modeling unifies
forward prediction and backward generation while overcoming OOG
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challenges. The derivative-free guidance mechanism eliminates reliance
on error-prone forward models, while the adaptive inference-time scaling
dynamically optimizes denoising paths. Extensive validation across
synthetic tasks and real-world applications (robot control, material
design, DNA optimization) demonstrates ManGO’s consistent super-
iority among 24 offline-SOO and 10 offline-MOO methods, establishing
a new paradigm for data-driven design generation for complex system
optimization.

We envision three critical future directions. First, extending
ManGO to high-dimensional and discrete design spaces (e.g., 3D
molecular structures) requires developing techniques for learning the
latent-based manifold via encoding designs as latents to maintain
computational efficiency. Recent work on latent diffusion models
suggests potential pathways for improvement. Second, integrating
physics-informed constraints beyond current design-clipping gui-
dance could enhance physical plausibility in domains like metama-
terial design, where conservation laws must be preserved. Preliminary
experiments with physics-informed neural networks show promising
results. Third, developing distributed ManGO variants would enable
collaborative optimization across institutions while preserving data
privacy, particularly valuable for pharmaceutical development where
proprietary molecule datasets exist in isolation.

Several limitations warrant discussion. ManGO’s current imple-
mentation assumes quasi-static system environments, while gradually
evolving scenarios would require incremental manifold adaptation
mechanisms. While our adaptive scaling provides partial mitigation,
improvement for non-stationary distributions remains an open challenge.
Meanwhile, although ManGO demonstrates strong robustness to preferred
scores in identifying optimal designs, it lacks an iterative refinement
mechanism to further improve designs post-generation. Recent advances in
post-training adaptation of diffusion models, such as controllable fine-
tuning and editing, suggest promising pathways to augment ManGO with
such capability.

Methods

In this section, we delve into the core components of our approach: (i)
training the diffusion model to learn the design-score manifold and (ii)
bidirectional guidance generation with the preferred condition. Finally, we
present the training and inference settings of our proposed approach.

Unconditional training of diffusion model on score-augmented
dataset

To better explore unknown design-score pairs, our method aims to capture
the prior probability distribution of the design-score manifold using a dif-
fusion model. This is a critical step to improve OOG limitation of backward
methods to solve offline optimization problems. To achieve this, we train an
unconditional diffusion model based on a variance-preserving (VP)
SDE[16]. The model is trained on a joint design-score dataset
D={%:% = (x,y) € R(‘”’”)}fil, where x; denotes the design and y;
represents its corresponding score vector. Specifically, D is constructed by
augmenting the original design dataset D, = {x, € R} ., with score
information.

Unlike classifier-free diffusion models[47], which perform con-
ditional training by incorporating score information as a condition
with random dropout during training, our method directly learns the
joint distribution of designs and scores. This eliminates the need to
learn the design distribution under varying conditions, instead
focusing on capturing the underlying structure of the design-score
manifold. The diffusion process of our manifold-trained model is
denoted by the following SDE:

dx = —%ﬁtfcdt+ VB, dw, (1)

where 8, = B + (Brax — Buin)t With £ € [0, 1]. The denoising process is
represented by the following reverse-time SDE:

di = —p, B +V; logpt(ff)] dt + /B, diw, @

where dw denotes the reverse-time Wiener process. Using this process, the
pre-trained diffusion model can transform a prior noise point X ~ p(X)
into a design-score-joint point X, = (x;, ¥,) on the design-score manifold.

Learning to reverse superior designs via score-based loss
reweighting

When uniformly sampling data points from the augmented dataset D, the
diffusion model learns the entire manifold. However, this does not fully
align with the goal of offline optimization, which aims to find superior or
optimal designs. We introduce a score-based reweighting mechanism into
the loss function to steer the model toward regions of the manifold asso-
ciated with lower scores (indicating better designs). This mechanism assigns
higher weights to samples with lower scores, thereby encouraging the model
to prioritize the generation of superior designs and reducing the learning
complexity by focusing on the most promising regions of the manifold
rather than learning the entire manifold.

Specifically, the weight vector for offline SOO (or MOO) tasks is
obtained by applying max-min normalization to the sample scores (or the
sample frontier index) based on non-dominated sorting[46] across the
entire dataset. The reweighting mechanism allows the diffusion model to
focus on the most promising region of the manifold, which is expressed as:

Ymax Y
Yenax=Ymin ’

Ln—Ixpsiy)
Iy—1 7

w(x = (x,y)) = ®)

where . and y . denote the minimum and maximum scores, respec-
tively, and [y and Iyps(y) represent the total number of frontier layers and the
frontier index of %, respectively. Equation (3) indicates that samples with
lower scores (or those located on a more advanced frontier) are assigned
higher weights in offline SOO (or MOO) tasks. We note that the
normalization-based implementation serves as a foundational step, and
future work may explore more efficient reweighting mechanisms.

The score function V; log p,(X) in Equation (2) is approximated by a
time-dependent neural network s (%,, t) with parameters 6 based on VP-
SDE[16]. The network is optimized by minimizing the following loss
function:

OB {A(t)@[w(&o)ﬁ‘ [lso G, ) = Vi logp, (’A‘f"A“))Hzm’ @

where A(f) is a positive weighting function dependent on t, and
V, logp, (%,]%,) can be obtained by the diffusion process.

Bidirectional generation on design-score samples via derivative-
free guidance
Diffusion models generate data by iteratively refining random noise into
preferred samples through a guided denoising process. The pre-trained
diffusion model directly generates design-score samples, where each design
is paired with a score predicted by the model itself, eliminating the need for
an additional surrogate score model. This capability allows us to jointly
guide the model on both the design and its associated score, enabling the
generation of samples that align with our preferences.

In terms of score-to-design generation, the proposed method enables
guided generation of preferred design-score samples through two
mechanisms: (1) leveraging preferred scores y, to guide the score
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component of the generated samples, ensuring alignment with desired
performance; and (2) specifying a design constraint range [x, ,x. ] to
guide the design component, ensuring design feasibility. This dug‘f—guixad;nce
strategy generates samples that satisfy both design and score constraints
without requiring an additional surrogate score model.

Concretely, during the reverse process, the guidance on the score
component of the generated sample X, = (x,, y,) is formulated as the gra-
dient of the MSE between y,, and the current score y;, i.e., vV, 1y, =l %
Similarly, the guidance on the design component is formulated as the gra-
dient of the MSE from the current design x, to the constraint range
(BT A, § ie., V, Il x, — dip (v, %% )3, where
clip (x,,x. ,x. ) ensures that x, is projected onto the constraint range.

Since both MSE gradients can be computed analytically, our method
effectively implements a derivative-free guidance scheme that operates
without relying on differentiable models, avoiding the computational
overhead of backpropagating (e.g., classifier guidance). Using the Euler-
Maruyama method [48], the reverse process can be expressed as:

‘min

+o,(, — yt)} At + /B,ALN(O, 1),

X =% +p % + sp(%;, 1) + @, (5‘: — dlip(x,, X, 75‘cm“)) ©)
5

where a, and «, control the guidance scale on the design and score com-
ponents, respectively. Here, %,, X, ,X. ,7,,and y, are padded versions of
their original vectors with a zero vector 0, to match the dimensionality of x,,
like , = (0,7,

Similarly, the design-to-score prediction uses the zero-vector-
augmented preferred design X, = (x,, 0,,) as guidance:

. N x . S rarw:
Xt At = X + /‘;t é + sﬂ(xh t) + ax(xp - xt) At + ﬁtAtN(07I)7

©)

where the estimated score of the preferred design x;, is y, from Xy = (x,, ).

Achieving inference-time scaling via self-supervised reward
Diffusion models have been shown to exhibit inference-time scaling beha-
vior [49-51]: their generation quality can be improved by allocating addi-
tional computational budgets during inference, even without fine-tuning.
This stems from a mechanism of noise space exploration, where the pre-
trained model optimizes the generation trajectory by adaptively selecting
high-reward noise points based on reward feedback. The reward feedback
can be formulated through posterior mean approximation as:

R(xt) = ExUprm(x,)[r(xO)lxt] = V(Exowp?re [x0|xt]) = 7(x0|t)> (7)

where R(x,) evaluates the expected reward of samples generated from the
noise point x,, p/" represents the approximated distribution of the pre-
trained model at £, ( - ) denotes the reward model evaluated at ¢t = 0, and
xop = B ~p[%,|%;] denotes that the pre-trained model denoises the noise
point from ¢ to 0. Based on this mechanism, noise points with high rewards
are retained for further refinement, while those with low rewards are
discarded.

The dual-output capability (design-score generation) of our pre-
trained model enables a self-supervised inference-time scaling scheme. For
any intermediate noise point X, we estimate the denoised state %, via

Tweedie’s Formula [36] as:

X+ /1= ats(ox)(&n )y +JT— &tsg)(’%n t)>

5‘?0\1’ = (x()lny()\t) = < ﬂ \/a_t

®)

where &, = exp[— (B, — ﬁmin)% — Bant]> and sg‘), sg') denote the design

and score components of the model output sg, respectively. The estimated
score yo provides self-supervised reward feedback by measuring its
deviation from the preferred score:

R(x) = r(Xo;) =l ¥, — Yopell- ©)

This eliminates the need for external reward models, enabling the model to
autonomously reject low-reward noise points and refine its generation
process through self-supervised feedback.

As the effectiveness of inference-time scaling depends on the reward
quality [49], the effectiveness of our self-supervised reward depends on the
fidelity of the pre-trained diffusion model, denoted by F(sq). We propose to
quantitatively assess F(sg) through the unconditional generation of s.
Specifically, we first generate a set of unconditional samples {x,c = (Xyo Yuc)}
by Equation (5) without guidance. We then filter the samples that are better
than training data (ie., y\ < yg’:-“) for SOO and y®© < y(::;s;) for MOO)
and get the filtered set D, = {:?:a?c }:\il. The fidelity metric F(sy) is subse-
quently computed as:

1M . .
F(se) = exp (— Ao 1 =2 ||) : (10)
i=1

where F(sy) € (0, 1], j = argmin || x(\?c — x(’)ain |, denotes the ingex of
the nearest training data to x? in D= {3, = (x(t'r)ain , J’(tlr)am Nioi- A
higher value of F(sy) indicates a stronger alignment between the generated
and ground-truth scores. As shown in Figure 4, this metric exhibits a strong
correlation with inference-time scaling performance based on the self-
supervised reward mechanism. Based on this observation, we implement a
conditional logic with F(sg) > to activate the inference-time scaling
scheme during guidance generation. In this way, we establish a general
inference-time scaling framework for offline optimization by substituting
external reward models in existing schemes with self-supervised rewards.

This framework is compatible with various methods, including the IS-
based scaling [50] and the FKS-based scaling [51] methods. For example, we
illustrate the complete process of ManGO based on IS with the self-
supervised reward in Algorithm 1. Self-IS-based ManGO is designed to
explore the denoising paths with higher rewards. Specifically, the algorithm
first duplicates each noise point &!" J times. Each copy then undergoes an
independent denoising step as defined in Eq. (5), where the inherent ran-
domness in the reverse process—introduced through the Wiener noise
term. This causes the denoising paths to diverge and results in divergent
candidates {5:51_]1 } i at the next timestep. For each candidate, ManGO
estimates its corresponding denoised state to compute self-supervised
rewards R(&g’;’i) Eq.s (8) and (9). These rewards drive an importance
sampling mechanism that prioritizes higher-reward paths, effectively
steering the generative process toward more promising regions of the
design-score manifold. This framework leverages the innate stochasticity of
diffusion models to explore the noise space dynamically, eliminating the
need for explicit external perturbations or reward models. Our experiments
validate the integration of the IS and FKS approaches with self-supervised
rewards.
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Algorithm 1. Self-IS-based ManGO

1: Input: Offline dataset &, scaling threshold 7, preferred scores Yp preferred design constraints [xcmin ,xcmax], conditional
sample number K, unconditional sample number M, duplication size J, importance ratio 0g

Output: K candidate optimal designs.

/* Phase 1: Training */

Augment Z and get &  {&; : & = (x;,y,)}Y,
Calculate the weight vector w with Eq.(3)
Training s¢ with Eq.(4) on 9

/* Phase 2: Guided generation */
Unconditional generation and get %, = {xuc ﬁ” 1
Compute fidelity % (sq) with Eq (10) on Yy

Sample random noise X {xT ~ N (0,1)}K
fort=T—-1to0do
12:  if F#(sg) > 7 then
13: Duplicate J times on 5ct(')

R A

—_—
[

and get X; =

(7"} fori e K]

14: Guide to reverse X; « {&// }1‘71 with Eq.(5) on y, and [xc,;, s Xc,, ) fOr i € [K]

15: Estimate the denoised state x(‘ ) with Eq.(8) for i, j € [K], [J]

16: Compute self-supervised reward ,%’(J?:,i‘ ')) with Eq.(9) for i, j € [K], [J]
17: Compute importance w,( i) = exp(% (x, ) /o) for i, j € [K],[J]

18: Resample j; = Cat ({wt” /): IW,
19: Update i:,(i) — xt( i)
20:  else

) fori € [K]

forie [K ]andgetX(—{xt K

21: Guide to reverse X <— {5:,(')}{(: 1 with Eq.(5) on y,, and [xc, ;. , Xcpa ]

22:  end if
23: end for

Training and inference settings
Our model architecture processes three input components: design, scores,
and timestep. The timestep undergoes standard cosine embedding, while
design and score are independently projected via fully connected layers,
both to 128-D features. These features interact bidirectionally through
cross-attention layers, with outputs fused via two multi-layer perceptron
(MLP) layers (128 hidden units, Swish activation). The fused features are
then combined with time embeddings and processed through a three-layer
MLP (2048 hidden units, Swish) for reconstruction. We employ AdamW
optimizer with a learning rate (LR) of 5 x 107>, a weight decay coefficient of
1x107% and a one-cycle LR scheduler with cosine annealing. Training
converges in 800 epochs for SOO and 400 epochs for MOO, maintaining
original baseline configurations. The diffusion process uses f3
1x107*,5x1072 for SOO and 1 x 107%, 5 x 10~* for MOO.
During inference, we configure 200 denoising steps for all MOO tasks,
Ant and DKittyMorphology of Design-bench tasks, 5 for Superconduct
tasks, and 250 for TF-Bind-8 and TF-Bind-10. For the guidance scaler, we
set a,. = 1, &, = 1 for design-constraint trajectory generation in Figure 2, and
o, =0,0a,=1 for benchmark evaluation. For the sake of comparison, we
disable the fidelity-adaptive activation of the inference-time scaling, denoted
as (10), in the self-supervised importance sampling-based ManGO. The
scaling methods are activated every five denoising steps, where the IS-based
scaling uses beam search with duplication size = 16, and the FKS-based
scaling uses accumulated maximal rewards. Complete implementation
details are provided in the supplementary material.

max7ﬁmin -

Data availability

The datasets used in this paper are publicly available. The Design-Bench
benchmark datasets are available at https://huggingface.co/datasets/
beckhamc/design_bench_data. The Off-MOO-Bench datasets are

available at https://github.com/lamda-bbo/offline-moo. The usage of these
datasets in this work is permitted under their licenses.

Code availability

Codes for this work are available at https://github.com/TailinZhou/
ManGO_SOOfor offline SOO tasks and https://github.com/TailinZhou/
ManGO_MOOfor offline MOO tasks. All experiments and implementation
details are thoroughly described in the Experiments section, Methods sec-
tion, and Supplementary Information.
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