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Accurate prediction of enzyme commission (EC) numbers remains a significant challenge in
bioinformatics, limiting our understanding of enzyme functions and their roles in biological processes.
This paper presents the integration and evaluation of Kolmogorov-Arnold networks (KANs), a new
deep learning paradigm, in state-of-the-art models for EC prediction. KAN modules are incorporated
into existing models to assess their impact on predictive performance. Additionally, we introduce a
novel interpretation method designed for KANs to identify relevant input features, addressing a key
limitation of these networks. Our evaluation demonstrates that KAN integration substantially improves
predictive accuracy, with up to a 15.7% increase in micro-averaged F1 score and a 34.2% increase in
macro-averaged F1 score. Moreover, our interpretation method enhances the trustworthiness of
predictions and facilitates the discovery of motif sites within enzyme sequences. This approach
provides insight into enzyme functionality and highlights potential new targets for research. The code
is available at: https://github.com/datax-lab/kan_ecnumber.

Identification of protein chemical properties is essential for various bio-
medical applications, including protein-protein interaction prediction1,
diagnosing neurodegenerative diseases2, and pharmaceutical development3.
The protein chemical properties are categorized by Enzyme Commission
(EC) numbers. This EC number system is critical for characterizing
unknown enzymes which catalyze various commercial processes, such as
pharmaceutical biosynthesis, food production, and bioremediation4. EC
numbers categorizebiological roles of enzymes in catalyzingmajor chemical
reactions to biological processes across all organisms5. This classification
system is organized intohierarchical levels: a class, a subclass, a sub-subclass,
and a serial number (e.g., EC 1.2.3.4)6–8.

Deep learning has significantly enhanced the automation of EC
number predictions, enabling biologists to collaborate with advanced
models to reduce the need for extensive and potentially unnecessary bio-
logical experiments. State-of-the-art deep learningmodels such as CLEAN9,
DeepECtransformer10, DeepEC11, ECPICK12, ifDEEPre30, HDMLF13, and
HECNet14, have beendeveloped to be increasingly effectivewhen predicting
enzymatic functions. This allows researchers to quickly annotate new
sequences with high confidence, facilitating the functional characterization
of enzymes.

Model interpretability is a crucial aspect of deep learning as it facilitates
its understanding and assesses its robustness and trustworthiness. Inter-
pretation of deep learningmodels for EC number predictions could provide
insights into uncovering patterns in enzyme sequences, which could deepen
the understanding of the enzymatic activities and guide future research
efforts. DeepECtransformer showed a preliminary approach to identify
active site and binding residues in EC number prediction10. ECPICK
introduced an interpretation method that enhances the trustworthiness of
its predictions and uncovers potential new motif sites in enzyme
sequences12.

Recently, Kolmogorov-Arnold Networks (KANs) have been high-
lighted as a promising alternative to multilayer perceptrons (MLPs)15. In
KANs, weight parameters are replaced by learnable functions, para-
meterized as splines, based on the eponymous theorem16. KANs combine
the strengths of splines and MLPs’ compositional layer structures by opti-
mizing both feature learning and univariate function approximation. The
resulting architecture showsbetter performance thanMLPs for simple tasks,
such as predicting multi-variable functions or solving partial differential
equations15. KANs have demonstrated their effectiveness and interpret-
ability for low-dimensional problems and non-stochastic datasets.
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However, to fully leverage their potential for high-dimensional challenges,
including protein sequence analysis, further exploration is needed. While
KANs offer excellent interpretability for simpler tasks, developing advanced
methods for interpreting these models in complex, high-dimensional con-
texts will be crucial for their successful application in real-world biological
analyses.

In this study, our hypotheses are (Fig. 1): (1) KANs could significantly
enhance performance when integrated in state-of-the-art models for EC
number prediction and (2) KANs could increasemodel interpretability and
further enhance biological understanding of the parts of enzyme sequences
that are relevant to a predicted EC number. To test these hypotheses, we
explore the applicability of KANs as an alternative to MLPs for high-
dimensional protein sequence analysis and propose a novel interpretation
approach for KANs. We also explore the KAN architecture pruning strat-
egy. The contributions of this study include (1) the first introduction of
KANs to the real-world application of protein sequence analysis, (2) sig-
nificant improvement of the predictive performance with KANs for EC
number predictions, (3) the introduction of the pruning strategy to high-
dimensional data, and (4) the development of a novel interpretation strategy
for KANs.

Results
Overview of the study
We conducted experiments to evaluate whether KANs improve predictive
performance and interpretability for the prediction of enzyme commission
numbers. We considered three categories of state-of-the-art models: (1)
convolutional neural network-based architectures, (2) attention-based

architectures without pretraining, and (3) large language model-based
architectures with pretraining. We selected (1) DeepEC11, (2)
DeepECtransformer10, and (3) CLEAN9 as representative models for these
categories. These models provide a broad coverage of state-of-the-art
approaches and establish a comprehensive basis for evaluating the effect of
KAN integration across different paradigms. In addition to predictive
performance, we developed an interpretation strategy specifically designed
for KANs. Our interpretation scheme quantifies the contribution of amino
acids in the input sequence to the model’s predictions, thereby inferring
biologically relevant sites. The performance of the KAN integrated models,
the effectiveness of the interpretation strategy, and the applicability of
pruning are evaluated in the following sections. The details of the state-of-
the-art models, their KAN-integrated models, and the interpretation
strategy are provided in Methods.

Dataset
For this study, we used protein sequences from Swiss-Prot17 and the Protein
Data Bank (PDB)18 released before September 2022.We retained sequences
up to 1000 amino acids, removed redundancy by eliminating exact dupli-
cates, and required complete four-level EC annotations; entries with
incomplete EC numbers (e.g., “1.14.15.-”) were excluded.

Only identical sequences were removed to preserve sequence diversity,
as minor variations may correspond to distinct enzyme functions. This
decision was counterbalanced by evaluating themodels on a dedicated low-
similarity test set to avoid performance overestimation.

The dataset contains more than 200,000 protein sequences, approxi-
mately two-thirds from Swiss-Prot and one-third from PDB. We reported

Fig. 1 | Overview of the study. A KANs are integrated in state-of-the-art EC number prediction models by replacing the MLPs. B The resulting models are interpretable as
they can identify motif sites in enzyme amino-acid sequences, as in18,36. C State-of-the-art models with KAN yield enhanced performances compared to original ones.
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results at all four levels of the EC hierarchy. Fourth-level analyses are
restricted to classes with at least 10 sequences. We also evaluated on a
homology-reduced test subset in which each test sequence shares less than
50% sequence identity and less than 80% alignment coverage with any
training sequence. Proteins annotated with multiple EC numbers were
treated as multi-label, and performance is reported at each EC level using
micro- and macro-averaged F1.

The integration of KANs enhances predictive performance
We compared the predictive performance of three representative state-of-
the-art architectures,DeepEC,DeepECtransformer, andCLEAN,with their
KAN integrated counterparts. We split the dataset into training (80%),
validation (10%), and test (10%) sets using stratified random sampling to
preserve class ratios. Specifically, the sample sizes were approximately
160,000 for the training set, 20,000 for the validation set, and 20,000 for the
test set.We optimized themodels with the training dataset, while the hyper-
parameters were fine-tuned with the Optuna framework19 using the vali-
dation dataset. Hyperparameter tuning was applied to both the MLP and
KAN variants under a common search protocol. For each baseline archi-
tecture, we constrained model depth to not exceed the number of layers
reported in the corresponding original manuscript. For width, the search
space for the number of nodes per layer was {32,64,128,256,512}. The
learning-rate range was [10−5, 10−2], and the dropout rate range was [0, 1].
For KAN variants, we also tuned KAN-specific hyperparameters: the spline
order was selected from {1,2,3,4,5}, and the grid size from {3,5,10,20}.

All models were trained until convergence using identical early-
stopping criteria based on the validation loss. Training was automatically
terminated when no improvement in validation loss was observed for five
consecutive epochs.

We assessed the performance of the models on the test dataset. We
repeated the experiment ten times for reproducibility. We computed the

micro- andmacro-averagedF1 score to evaluate themodels. For eachmodel,
we selected the threshold for the final discriminative function that max-
imizes the macro-averaged F1 score on the validation set. Then, we com-
puted the evaluation metrics on the test set using these thresholds.

EC number prediction is a multi-label classification problem char-
acterized by substantial class imbalance, making conventional metrics such
as accuracy or AUC less informative. F1-based metrics, including both
macro- and micro-averaged variants, provide a balanced and reliable
assessment by jointly considering false positives and false negatives across
enzyme classes. This choice follows standard practice in enzyme function
prediction studies, where F1-scores are consistently used for fair and com-
parable evaluation9–11. Each training run used a single NVIDIA A100 GPU
(80GB RAM).

Across all models, KAN increased F1 scores at every EC level (Table 1).
DeepECtransformer showed relative gains in micro-averaged F1 scores of
15.4% (level 1), 15.7% (level 2), 14.6% (level 3), and 10.2% (level 4) over the
MLP variant. KAN-integrated DeepEC also improved the predictive per-
formance consistently, with increases of 2.2%, 3%, 1.1%, and 1.7% across
levels 1-4. CLEAN showed measurable gains (0.3 -1.1% across levels 1-4).
Macro-averaged F1 was also enhanced by KAN: DeepECtransformer
improved by 13.3%, 19.2%, 34.2%, and 24.2% at levels 1-4, while DeepEC
improved by 1.9%, 11.3%, 9.9%, and 25.1%.CLEANagain exhibitedmodest
increases. Collectively, these results indicate that KAN yields consistent
micro-level gains and substantial macro-level gains across architectures. All
improvements were significant by theWilcoxon signed-rank test (p < . 05).

Furthermore, we evaluated the models by considering only low-
similarity test set, where proteins shared at most 50% sequence identity and
at most 80% coverage with the training data (Table 2). This setup reduces
potential information leakage and provides a more rigorous measure of
generalization. In this setting, KAN integration consistently improved
predictive performance across all EC levels. For themicro-averagedF1 score,

Table 1 | Micro- and macro-averaged F1 scores for all models across EC levels 1-4 on the test set

Metric Level CLEAN DeepECtransformer DeepEC

MLP KAN MLP KAN MLP KAN

Micro F1-scores 1 0.968 ± 0.007 0.971 ± 0.008* 0.784 ± 0.059 0.905 ± 0.052* 0.895 ± 0.019 0.915 ± 0.014*

2 0.938 ± 0.012 0.948 ± 0.011* 0.773 ± 0.063 0.894 ± 0.059* 0.887 ± 0.022 0.914 ± 0.019*

3 0.882 ± 0.014 0.891 ± 0.013* 0.768 ± 0.064 0.880 ± 0.060* 0.880 ± 0.019 0.890 ± 0.018*

4 0.875 ± 0.010 0.880 ± 0.010* 0.787 ± 0.015 0.867 ± 0.046* 0.859 ± 0.014 0.874 ± 0.013*

Macro F1-scores 1 0.962 ± 0.021 0.965 ± 0.019* 0.797 ± 0.057 0.903 ± 0.051* 0.906 ± 0.028 0.923 ± 0.020*

2 0.910 ± 0.013 0.915 ± 0.010* 0.687 ± 0.086 0.819 ± 0.071* 0.808 ± 0.021 0.899 ± 0.019*

3 0.809 ± 0.018 0.812 ± 0.012* 0.582 ± 0.095 0.781 ± 0.080* 0.720 ± 0.022 0.791 ± 0.014*

4 0.802 ± 0.024 0.811 ± 0.021* 0.585 ± 0.068 0.727 ± 0.059* 0.589 ± 0.019 0.737 ± 0.013*

Asterisks (*) denote statistical significance by the Wilcoxon signed-rank test; boldface indicates the best performing variant (MLP or KAN) within each model.

Table 2 | Micro- and macro-averaged F1 scores for all models across EC levels 1-4 on the test subset restricted to sequences
with less than 50% sequence identity and less than 80% coverage relative to the training set

Metric Level CLEAN DeepECtransformer DeepEC

MLP KAN MLP KAN MLP KAN

Micro F1-scores 1 0.818 ± 0.015 0.821 ± 0.021* 0.511 ± 0.070 0.661 ± 0.061* 0.601 ± 0.025 0.717 ± 0.019*

2 0.727 ± 0.019 0.731 ± 0.029* 0.486 ± 0.071 0.641 ± 0.068* 0.576 ± 0.024 0.711 ± 0.020*

3 0.685 ± 0.014 0.701 ± 0.019* 0.476 ± 0.072 0.629 ± 0.070* 0.553 ± 0.019 0.698 ± 0.012*

4 0.589 ± 0.009 0.592 ± 0.015* 0.454 ± 0.071 0.601 ± 0.065* 0.521 ± 0.014 0.673 ± 0.013*

Macro F1-scores 1 0.785 ± 0.011 0.798 ± 0.019* 0.513 ± 0.069 0.663 ± 0.062* 0.591 ± 0.022 0.718 ± 0.017*

2 0.595 ± 0.008 0.612 ± 0.015* 0.309 ± 0.053 0.499 ± 0.050* 0.372 ± 0.020 0.521 ± 0.012*

3 0.429 ± 0.007 0.453 ± 0.012* 0.206 ± 0.034 0.349 ± 0.031* 0.257 ± 0.027 0.368 ± 0.021*

4 0.237 ± 0.007 0.249 ± 0.009* 0.086 ± 0.015 0.167 ± 0.014* 0.120 ± 0.016 0.183 ± 0.012*

Asterisks (*) denote statistically significant improvements by the Wilcoxon signed-rank test; boldface indicates the best performing variant (MLP or KAN) within each model.
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DeepECtransformer achieved substantial gains, with improvements of
29.4% at level 1, 31.9% at level 2, 32.1% at level 3, and 32.4% at level 4.
DeepEC also benefited considerably, with increases of 19.3%, 23.4%, 26.2%,
and 29.2% across the four levels, while CLEAN showed consistent
improvements of up to 2.3%. The macro-averaged F1 score exhibited sig-
nificant improvements. DeepECtransformer improved by 29.3% at level 1,
61.5% at level 2, 69.4% at level 3, and 94.2% at level 4, while DeepEC
improved by 21.5%, 40.1%, 43.2%, and 52.5% across the same levels.
CLEAN again showed stable but modest gains ranging from 1.7% to 5.6%.
All improvements were significant by the Wilcoxon signed-rank test (p <
0.05). These results highlight that the benefits of KAN integration are
amplified under reduced sequence similarity, especially at deeper EC levels
where functional prediction is more challenging.

KANs identify existing motif sites using the proposed inter-
pretation strategy
We verified the proposed KAN interpretation strategy by comparing the
identified amino acids with well-characterized motif sites in enzyme
sequences. We computed a contribution score for each amino acid to
represent its impact in the model’s predictions from a given protein
sequence. We focused on the KAN-integrated DeepEC model.

The proposed interpretation strategy computed the intermediate
scores of the activation maps, which are the input of the KAN module. To
map the intermediate scores (s= {sq; 1≤ q≤ 384}) to the contribution scores
of the protein sequence (γ= {γq; 1≤ q≤1000}), we identified the segments of
the sequence that produced the 384-dimensional input vector to the KAN
module (v={vj; 1≤ j≤384}). Each input value vj is themaximumvalueof the
corresponding activation map fj, and ιj is its index, such as:

v ¼ fmaxðf jÞ; 1≤ j≤ 384g; ð1Þ

ι ¼ fargmaxðf jÞ; 1≤ j≤ 384g: ð2Þ
We grouped the intermediate scores from the activationmaps of size z (i.e.,
kernel size: 4, 8, or 16) and index i in a set J i;z . Mathematically, J i;z is:

J i;z ¼ sj 2 sjιj ¼ i ^ f j 2 R1000�zþ1
n o

; ð3Þ

where ∧ is the logical AND operator. Thus, the intermediate scores (λðzÞq ) of
the qth amino acid from the activation maps of size z is:

λðzÞq ¼
Xminðq;1000�zþ1Þ

i¼maxð1;q�zÞ

X
j2J i;z

j; ð4Þ

where the range frommaxð1; q� zÞ tominðq; 1000� z þ 1Þ represents all
the possible indices of an activation map of size z, which is computed from
the qth amino acid. To compute the contribution score (γq) of the q

th amino
acid in the input protein sequence, we summed the intermediate scores of
activationmaps of size 4, 8, and 16 computed from the qth amino acid, such
as:

γq ¼ λð4Þq þ λð8Þq þ λð16Þq : ð5Þ

For the validation of the proposed interpretation strategy, we con-
sidered enzyme sequences from Cytochrome P450 (CYP) (CYP106A2
family [EC 1.14.15] and CYP7B1 family [EC 1.14.14]), whose biological
functions are well-reported in various organisms, from bacteria to
mammals20. CYPs belong to a super-family of enzymes that have been
extensively studied and widely utilized in the pharmaceutical industry and
in clinical and disease-related medicine21. CYPs are monooxygenases that
catalyze the incorporation of a single oxygen atom into substrates. For
example, CYP106A2 and CYP7B1 enzymes perform similar biological
functions in different organisms (e.g., bacteria and humans). The bacterial

CYP106A2 group plays a crucial role in attaching a hydroxyl group to
steroid structures. Whereas, the human CYP7B1 group is involved in the
metabolism of endogenous oxysterols and steroid hormones, including
neurosteroids, in eukaryotic cells. Despite these functional differences, both
CYP106A2 and CYP7B1 share the same first and second digits in their EC
numbers, indicating that they belong to the same general category of oxi-
doreductases (EC1) that act onpaireddonors and involve the incorporation
or reduction of molecular oxygen (EC 1.14).

We performed the model interpretation on 13 sequences from the
bacterialCYP106A2enzyme family. Specifically,we considered 5XNT22 and
4YT323 from the ProteinData Bank (PDB), alongwith 11 protein sequences
from Swiss-Prot that share over 90% sequence similarity with 5XNT and
4YT3.We computed the contribution scores of amino acids for eachprotein
sequence using the KAN interpretation method and ECPICK, which is the
current state-of-the-art interpretation strategy to identify motif sites in
enzyme sequences12. Both KAN and ECPICK correctly predicted all of the
protein sequences as belonging to the 1.14.15 class.

The 13 protein sequences were aligned by a multiple sequence align-
ment (MSA) tool (e.g., Clustal Omega24) for graphical comparison. Con-
served amino acids were identified by ESPript325, colored in red. Fig. 2A
illustrates the corresponding contribution scores of KAN and ECPICK
along with motif sites (e.g., oxygen-binding, EXXR, and heme-binding
domains) in black boxes and substrate recognition sites (SRS 1-6) in green
boxes, which are key regions relevant to the enzyme function. High con-
tribution scores are indicated in dark red, with lower scores gradually
transitioning to white along the gradient scale.

The proposed KAN interpretationmethod successfully identified both
the oxygen binding motif site and hem-binding motif sites of the bacterial
CYP106A2 family. The identification of the binding motif sites aligns with
established biological knowledge, which determines the primary and sec-
ondary levels of the givenECnumber (e.g., 1.14).However, ECPICKdidnot
recognize the hem-binding motif site, which is crucial for determining the
CYP’s enzyme function. The EXXR motif site was not identified by either
model, as EXXR may not be sufficiently discriminative for the given EC
number (e.g., 1.14). Note that ECPICK and KAN-integrated DeepEC share
the exact same CNN backbone. Therefore, the observed gains in motif
localization reflect the contribution of KAN layers and the proposed
interpretation rather than differences in architectures.

We quantitatively validated the proposed interpretation method by
comparing the contribution scores with known motif sites, i.e., oxygen-
binding, EXXR, andheme-bindingmotifs. For this evaluation,we computed
the recall-at-k scores, where k corresponds to the top 1%, 2%, 5%, and 10%
of amino acids ranked by contribution scores (Table 3).

These ranges correspond to the expected density of functionally
important residues: enzymes typically contain approximately 3–4 catalytic
residues (≈3.5 per enzyme26), while 10–13% of residues are estimated to
contribute indirectly to function27. Consequently, lower k values emphasize
catalytic precision, whereas higher values capture motif-level
interpretability.

We focused on recall because known motif sites enumerate only
annotated positives (i.e., motif residues) and do not provide a validated
negative set. Treating unannotated residues as negatives would conflate
unknown siteswith true negatives, whereas recall at kmeasures howwell the
highest-scoring positions recover curated positives without assuming
negatives. Recall-at-k scores were computed separately for each protein
sequence as the fraction of annotatedmotif residues capturedwithin the top
k%ofpositions rankedby contribution score, and the reported values are the
arithmetic means across sequences. Our proposed KAN interpretation
consistently achieved higher recall rates than ECPICK. For instance, at the
5% threshold, the KAN interpretation reached a recall of 0.73 compared to
0.26 for ECPICK. At the 10% threshold, the KAN method achieved 0.78
recall, while ECPICK achieved only 0.27. These quantitative results confirm
that the proposed KAN interpretation strategy highlights biologically rele-
vant motifs and achieves higher overlap with annotated motif sites com-
pared to ECPICK.
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We also analyzed the proposed strategy within the CYP7B1 group
across the three organisms: mice, rats, and humans. KAN-integrated Dee-
pEC accurately predicted the enzyme functions of the protein sequences
(i.e., 1.14.14). Moreover, the contribution scores effectively highlighted the
essential motif sites of this CYP enzyme family (Fig. 2B). Specifically, the
hem-binding site was highly scored across the three species. The I-helix,
which contains the oxygen-binding site, and the C-helix regions were
identified by the proposed interpretation, whereas the steroidogenic con-
served domain was assigned low contribution scores.

High contribution scores were observed in the essential motif sites on
both the CYP106A2 and CYP7B1 families. The identified sequential pat-
terns aligned well with conserved domains or existing motif sites. This
analysiswas achievedwithout the time-consumingcomputational processes
typically required for sequence similarity and secondary structure com-
parison. The proposed interpretation strategy provides trustworthiness in
prediction by identifying existingmotif sites related to the enzyme function
and could potentially discover unknown motif sites within enzyme
sequences.

Pruning for architecture optimization
Weconducted an additional experiment to evaluate the pruning strategy for
KANs. We tested pruning to remove irrelevant connections of the KAN-
integrated DeepECmodel. We initiated this experiment by training a four-
layer KAN of dimensions 512, 1024, 512, and 229 in KAN-integrated
DeepEC optimized to predict the third level of the EC hierarchy. After
training the model, we applied pruning as defined in (12) with varying
thresholds (θ).

Figure 3 illustrates themacro-averaged F1 scores of the prunedmodels
in relation to the number of parameters controlled by varying thresholds,
with the rightmost point corresponding to the unpruned baseline model.

The best model achieved a macro-averaged F1 score of 82% and con-
tains 12,020,528 parameters, whereas the unprunedmodel yielded amacro-

averaged F1 score of 81.46% with 16,429,184 parameters. The unpruned
model comprises 36.68% more parameters than the pruned model. Hence,
the removal of the connections increases the efficiency and robustness of the
model as well as its predictive performance. Pruning reduces the size of the
network without retraining the model. However, the improvement in pre-
dictive performance and efficiency highly depends on the architecture of the
unpruned model.

Discussion
In this study, we have investigated the potential of KAN for EC number
prediction using protein sequences. We evaluated the integration of KAN
modules in three state-of-the-art deep learning models for EC number
prediction and observed consistent and statistically significant improve-
ments across all EC levels. This demonstrates that KAN can enhance
existing enzyme function predictors without altering their core archi-
tectures. We also proposed a novel interpretation method specifically
designed for KAN that enables residue-level attribution of enzymatic
function and successfully identifies biologically meaningful motif sites. The
proposed method quantitatively outperforms existing approaches such as
ECPICK in recovering known catalytic residues, providing both trust-
worthiness and biological insight. Furthermore, all interpretability evalua-
tions were performed consistently across multiple homologous sequences
and compared quantitatively against ECPICK using recall-at-k metrics,

Fig. 2 | The model identifies significant amino acids contributing to the pre-
diction, demonstrating trustworthiness in its predictions and discovering
motif sites. High contribution scores are indicated in dark red, with lower scores
gradually transitioning to white along the gradient scale. A A partial sequence,
spanning positions 182 to 418, from the CYP106A2 family is displayed. This seg-
ment was selected for detailed analysis due to its significant role in CYP106A2.Motif
sites are outlined in black boxes and substrate recognition sites (SRS 1-6) in green

boxes. KAN interpretation highlights the oxygen-binding site and the hem-binding
motif, which are primary active sites within the CYP106A2 group. On the other
hand, ECPICK only recognizes the oxygen-binding motif site. B Visualizes the four
motif sites in the protein sequences of the CYP7B1 family with contribution scores
computed by the proposedKAN interpretation, which emphasizes the central role of
these regions in predicting the enzymatic function (EC 1.14.14).

Table 3 | Quantitative evaluation of motif detection using
recall-at-k

Metric Method Top 1% Top 2% Top 5% Top 10%

Recall KAN 0.392 0.544 0.725 0.778

ECPICK 0.105 0.211 0.263 0.269

The best score for each column is shown in bold.
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confirming the robustness and reproducibility of the proposed method. In
future works, we plan to extend the interpretability analysis to a broader
range of enzyme families as high-quality motif annotations become
increasingly available. Finally, we have evaluated the pruning strategy for
protein sequences. We have observed that pruning is applicable to this task
and optimizes the KANs’ architecture without having to retrain the model.
Overall, our results highlight KAN as a promising and interpretable mod-
eling framework for advancing enzyme function prediction and supporting
the discovery of new potential motif sites.

The consistent outperformance of KANs across architectures may be
partly explained by properties highlighted in the original KANpaper, which
make them particularly suitable for biological sequence modeling. Unlike
standardMLPs that rely on fixed activation functions, KANs learn adaptive
spline functions that can locally adjust curvature and smoothness during
training. This flexibility allows fine control over nonlinear behavior,
enabling the model to capture gradual biochemical variations while
remaining sensitive to sharp functional changes near catalytic or binding
residues. The structured and smooth function space of KANs was also
shown to promote improved generalization. In our setting, these properties
likely complement encoder modules such as CNNs or attention layers by
refining the encoded sequence features into more accurate and biologically
meaningful representations of enzyme function.

However, KANs introduce additional computational complexity due
to their function-learning paradigm. We quantified this aspect by mea-
suring the training and inference times of KAN-integrated architectures
relative to their MLP counterparts under identical hardware and dataset
conditions. The computational overhead varied across models and
increased with the dimensionality of the KAN layers. The KAN-integrated
DeepEC trained ~1.6 × slower and inferred ~1.1 × slower than the MLP
version, the KAN-integrated CLEAN trained ~ 2 × slower and inferred
~1.2 × slower, and the KAN-integrated DeepECTransformer trained
~2.6 × slower and inferred ~2.5 × slower. We observe that models with
higher-dimensional KAN layers exhibited proportionally larger differ-
ences in training and inference times compared to theirMLP counterparts.
These differences likely reflect the early-stage nature of current KAN
implementations rather than intrinsic model inefficiency. The existing
libraries are still undergoing active optimization, and recent updates have
already demonstrated substantial improvements in computational speed
and memory usage.

In this study, we evaluated the proposed interpretation strategy using a
limited set of enzyme families for which high-quality and experimentally
validatedmotif annotations are available. Such residue-level annotations are
not systematically available across most enzyme classes, and consistent
functional labeling remains scarce in public databases. For this reason, our

assessment focused on well-characterized sequences to ensure reliable
comparison between the identified residues and established motif sites.
While this provides a controlled and biologically meaningful benchmark, a
more comprehensive and robust evaluation will require broader, system-
atically curated motif annotations. Future work should extend the inter-
pretability analysis to additional enzyme families as such high-quality data
become more widely accessible.

This study opens several paths for future research into KANs. Their
ability to capture complex relationships within protein sequences could be
further explored by integrating them with other protein sequence analysis
methods. Moreover, the interpretability of KANs could be enhanced by
coupling the proposed method with other explainability techniques,
allowing for a better understanding of how specific motifs contribute to the
prediction of enzyme functions. Overall, this study demonstrates the pro-
mising future of KANs and emphasizes the importance of model inter-
pretability regarding protein sequence analysis. Future work in this area
could significantly advance the development of robust and efficient models
for handling complex biological tasks, which will contribute to the
advancement of biological understanding.

Methods
This section provides details about the fundamentals of the current deep
learning models for EC number prediction, the KAN architecture, and its
architecture-tuning approach called pruning. Then, we introduce our novel
interpretation strategy, which identifies relevant input features to the pre-
dictions. Finally, we explain how KANs can be integrated into state-of-the-
art models.

Current deep learning models for EC number prediction
Deep learningmodels for ECnumber prediction can be broadly categorized
into two main types: CNN-based models and attention-based models. The
attention-based models can be further divided by training paradigm: (1)
conventional models trained directly for EC classification and (2) large
language models pretrained on large-scale protein sequence datasets and
subsequently fine-tuned for enzyme classification. CNN-based models,
such as DeepEC11, ECPICK12, and ECNet28, leverage convolutional layers to
extract hierarchical features from enzyme sequences or structures, effec-
tively capturing local patterns and spatial information. Conventional
attention-based models, such as DeepECtransformer10 and BEC-Pred29,
utilize the self-attention mechanism to improve the models’ ability to cap-
ture long-range dependencies and context.

Recent studies have further advanced EC number prediction using
large-scale protein language models and transformer-based architectures.
Methods such as CLEAN9, BEC-Pred29, ifDEEPre30, and GraphEC31 lever-
age embeddings from foundation models to improve EC number predic-
tion. Comparative analyses of protein language models like ESM-2 and
ProtT5 have also demonstrated strong generalization for enzyme
annotation32. In addition, hierarchical frameworks such as GloEC33 high-
light the importance of modeling the EC hierarchy explicitly. These
advances underscore the rapid progress of pretrained transformer-based
approaches in enzyme function prediction.

Each category offers unique strengths and applications, reflecting the
diverse approaches in state-of-the-art EC number prediction.

DeepEC is a representative example of CNN-basedmodels. At its core,
DeepEC employs convolutional layers to capture patterns within protein
sequences, which are crucial for identifying enzymatic functions11. Its
architecture includes multiple convolutional layers that extract hierarchical
features, followed bypooling layers to reduce dimensionality and emphasize
the most relevant information. This is then complemented by MLP layers,
which integrate the extracted features and perform the final classification to
predict the EC numbers. This approach enables DeepEC to leverage the
strengths of convolutional neural networks in handling complex and high-
dimensional enzyme sequences.

DeepECtransformer is a state-of-the-art attention-based architecture
for enzyme function prediction10. It follows the Transformer paradigm34,

Fig. 3 | Pruning of a KAN-integrated DeepEC. A KAN model is pruned with
varying thresholds. The number of parameters thus decreases incrementally as the
thresholds increase. The rightmost point corresponds to the unpruned baseline
model, serving as a reference for comparison.Weobserved that the best performance
is yielded by a pruned model. The unpruned model contains 36.68% more para-
meters than the best-performing model.
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employing stacked self-attention layers directly optimized for EC number
prediction. This design captures long-range dependencies and contextual
patterns along the sequence. It is well-suited to enzyme classification, where
residues critical for function are not necessarily adjacent in the primary
sequence but interact across distant regions.

CLEAN stands out as a prominent example of LLMs as it builds upon
theESM-1bmodel35 as its foundation,which is anLLMspecifically designed
for protein sequences. To make its predictions, CLEAN integrates MLP
layers on topofESM-1b.This combination allowsCLEANto leverageESM-
1b’s deep contextual embeddings while utilizing theMLP layers to output a
representation of the input sequence. CLEAN employs contrastive learning
techniques, which train the model to encode protein sequences such that
enzymes with similar activities are represented closely in the embedding
space, while those with different activities are positioned farther apart.

Architecture of Kolmogorov-Arnold Networks
KANs, like MLPs, are fully connected feed-forward networks that
leverage dense connectivity to capture complex and non-linear rela-
tionships for inferring desired outcomes. MLPs learn weight parameters
and use fixed activation functions, whereas KANs do not learn weights;
rather, they replace fixed activation functions with learnable activation
functions (Fig. 4). According to the Kolmogorov-Arnold representation
theorem, any complex high-dimensional function can be represented by
a polynomial number of univariate functions16. Thus, KAN, which is a
neural network with compositions of univariate functions, can

effectively model complex and high-dimensional functions. In KANs,
each layer of a neural network represents a component of the compo-
sitions, which collectively model relevant relationships within the data.

A KAN (K : x ! ŷ) is formulated as:

KðxÞ ¼ ðΦL�1 �ΦL�2 � � � � � Φ0ÞðxÞ; ð6Þ

where L is the number of layers, Φl is a function matrix, and ∘ is the
composition operator, such as (Φ1 ∘Φ2)(x) = Φ1(Φ2(x)). The output ŷ is
obtained by computing the composition of L functions (Φl) from the input
x. The functionmatrix,Φl, is a set of activation functionsϕl,j,i, connecting the
ith neuron in the lth layer to the jth neuron in the l + 1th layer, such as:

Φlð�Þ ¼

ϕl;1;1ð�Þ ϕl;1;2ð�Þ � � � ϕl;1;nl ð�Þ
ϕl;2;1ð�Þ ϕl;2;2ð�Þ � � � ϕl;2;nl ð�Þ

..

. ..
. ..

.

ϕl;nlþ1 ;1
ð�Þ ϕl;nlþ1 ;2

ð�Þ � � � ϕl;nlþ1 ;nl
ð�Þ

0
BBBBB@

1
CCCCCA
; ð7Þ

where the layer sizes are [n0, n1, . . . , nL−1].
For the activation function, ϕl,j,i, the input value (xl,i) is called pre-

activation, and the output of the activation function (~xl;j;i) is called post-
activation, such as:

~xl;j;i ¼ ϕl;j;iðxl;iÞ: ð8Þ

Then, the pre-activation value for the jth neuron in the next layer is xl+1,j,
which is the sum of post-activations from the previous layer (~xl;j;i), such as:

xlþ1;j ¼
Xnl
i¼1

~xl;j;i ¼
Xnl
i¼1

ϕl;j;iðxl;iÞ: ð9Þ

A post-activation (ϕl,j,i(xl,i)) is computed as:

ϕl;j;iðxl;iÞ ¼ wbbðxl;iÞ þ ws spline ðxl;iÞ; ð10Þ

wherewb andws are trainable parameters that control the overallmagnitude
of the activation function, and the function b is the SiLU function (i.e.,
bðxl;iÞ ¼ xl;i=ð1þ e�xl;i Þ) which allows the networks to bypass one ormore
layers, similarly to residual connections in MLPs. The spline function is
defined as:

spline ðxl;iÞ ¼
XG
g¼1

cgBg ðxl;iÞ; ð11Þ

where Bgs are piecewise polynomial functions called B-splines, and cgs are
trainable parameters. The resulting linear combination is a spline of order k,
which is defined on a specific interval of G grid-points.

The complexity of a KAN with L layers of width N is O((G+ k)N2L),
which would be O(N2L) for the same dimension MLP. However, KAN has
been proven to require much smaller networks15.

KAN Pruning Method
In this section, we present an architecture-tuning strategy for KANs named
pruning15. Pruning is a sparsification technique to enhance the efficiency of
KANs by systematically reducing the number of network parameters. The
pruning strategy is explored with detailed explanations, highlighting its
contribution to improving the performance and efficiency of KANs.

Pruning reduces the number of parameters of the network by
suppressing irrelevant connections (Fig. 5A). The goal of pruning is to
make the network sparser, which reduces computational costs and
memory usage. Neurons are considered irrelevant if the maximum value
between their incoming and outgoing scores is not higher than a

Fig. 4 | Representation of a two-layer KAN of dimensions 2 and 1, with an input
of dimension 2. (x0,1, x0,2). ϕl,j,i is the activation function between the ith node of the
lth layer, and the jth node of the l+ 1th layer. For any layer, each node is connected to
all the nodes of the next layer.

Fig. 5 | A KAN before and after pruning. Pruning removes the irrelevant con-
nections of the network, allowing the model to contain fewer parameters and to
perform faster predictions without retraining it.
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threshold (θ). Mathematically, the ith neuron of the lth layer is pruned if:

max ðmax
k

ðjϕl�1;i;kj1Þ;max
j

ðjϕlþ1;j;ij1ÞÞ < θ: ð12Þ

Pruning does not require the model to be retrained, which makes it a cost-
effective sparsification technique that manages the trade-off between
efficiency and predictive performance.

KAN Interpretability
Wepropose a new systematic interpretation strategy that identifies a feature
set which is relevant to the prediction and address a critical gap, as such
interpretation methods do not exist for KANs. This strategy identifies
relevant amino acids in the protein sequence that contribute to a given
prediction, thereby offering insights into biological processes of enzyme
functions.

In a KAN with L layers of dimensions [n0, n1, . . . , nL−1], a posterior
probability (ŷc) is computed by applying the sigmoid function on the last
activation value (sc) for the class c, such as:

Sigmoid ðscÞ ¼ ŷc: ð13Þ

The relative contribution to thepredictionof eachneuron in theL−1th layer
is represented by a vector, sL−1 = {sL−1,j; 1 ≤ j ≤ nL−1}, as:

sL�1;j ¼
max ðϕL�1;c;jðxL�1;jÞ; 0Þ

sc
; ð14Þ

where ϕL−1,j,i is the activation function between the ith node of the L − 1th

layer and the jth node of the Lth layer.
For any layer lbetween1 andL− 2, xl,i is the pre-activation value ofϕl,j,i

as defined in Eq. (9).We define sl = {sl,j; 1 ≤ j ≤ nl} as the contribution scores
for each neuron of the lth layer, which is computed as:

sl�1;j ¼
Xnl
i¼1

ϕl�1;i;jðxl�1;jÞPnl�1
k¼1 ϕl�1;i;kðxl�1;kÞ

�����

�����× sl;i: ð15Þ

This operation (Eq. (15)) is repeated on each layer, starting with the L− 2th

layer to thefirst layer, thus obtaining the contribution scores s1of the inputx.

Integration of KAN in state-of-the-art models
In this study, we integrated KAN layers into state-of-the-artmodels in three
categories: CNN-based models, attention-based models, and LLMs for

Fig. 6 | Integration of KAN into state-of-the-art
models improves their predictive performances.
In DeepEC (A) KAN layers replace MLP layers after
the three parallel CNNs. In the DeepECtransformer
(B), both the neural networks following the multi-
headed attention module and the output layer are
replaced by KAN layers. In CLEAN (C), KAN layers
replace the MLP layers after the ESM-1b
transformer.

https://doi.org/10.1038/s44387-025-00059-x Article

npj Artificial Intelligence |            (2026) 2:11 8

www.nature.com/npjAI


protein sequences. We performed a thorough assessment of their impact
and effectiveness, covering the most advanced and high-performing
architectures available.

The KAN layers were implemented using established open source
references, which we adapted and fine-tuned to ensure stable training and
compatibility with the different model frameworks.

For the CNN-based model, we integrated KAN layers in the DeepEC
architecture (Fig. 6A). We replaced the three MLP layers with two KAN
layers of 512 and 1938 nodes, respectively, with a grid size of three and a
spline order of three, obtained through fine-tuning the hyper-parameters of
KAN-integrated DeepEC. The KAN layers were implemented using estab-
lished open source references, which we adapted and fine-tuned to ensure
stable training and compatibility with the different model frameworks.

For the attention-based model, KAN layers were integrated into Dee-
pECtransformerby replacing theMLP layers after themulti-headedattention
modules and the classification layers (Fig. 6B)34. After the hyper-parameter
tuning, we replaced the two MLP layers following the multi-attention head
module by twoKAN layers comprising 512 and 128 nodes, with a grid size of
three and a spline order of three. The KAN classification layers have a fixed
size that corresponds to the number of ECnumbers in our dataset (i.e., 1938).

For the LLM model, we enhanced the CLEAN architecture by repla-
cing its three MLP layers with two KAN layers, while maintaining dropout
and layer normalization as proposed in the original model. Following the
hyper-parameter optimization, the KAN-integrated CLEAN model was
configured with two KAN layers of 512 and 256 nodes, a grid size of ten, a
spline order of three, and a dropout rate of 0.1. (Fig. 6C).

Data availability
All data supporting the findings of this study are available from publicly
accessible resources, including the Swiss-Prot database (UniProt) and the
Protein Data Bank (PDB) $[18,19]$. No proprietary datasets were used.

Code availability
The open-source code is publicly available at: https://github.com/datax-lab/
kan_ecnumber.
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