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Flow matching meets biology and life
science: a survey
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Over the past decade, advances in generative modeling, such as generative adversarial networks,
masked autoencoders, and diffusion models, have significantly transformed biological research and
discovery, enabling breakthroughs in molecule design, protein generation, catalysis discovery, drug
discovery, and beyond. At the same time, biological applications have served as valuable testbeds for
evaluating the capabilities of generative models. Recently, flow matching has emerged as a powerful
and efficient alternative to diffusion-based generative modeling, with growing interest in its application
to problems in biology and life sciences. This paper presents the first comprehensive survey of recent
developments in flow matching and its applications in biological domains. We begin by systematically
reviewing the foundations and variants of flow matching, and then categorize its applications into three
major areas: biological sequence modeling, molecule generation and design, and peptide and protein
generation. For each, we provide an in-depth review of recent progress. We also summarize commonly
used datasets and software tools, and conclude with a discussion of potential future directions.

Flow matching (FM)1 has recently emerged as a powerful paradigm for
generative modeling, offering a flexible and scalable framework applicable
across a wide range of domains, such as computer vision1,2, and natural
language processing3,4. By constructing a continuous probability trajectory
between simple and complex distributions, FM provides an efficient and
principled method to model high-dimensional, structured data. While FM
hasdemonstrated strongperformance in conventional generative tasks such
as image, video, and language synthesis, its potential extends far beyond
these domains. In particular, its ability to model diverse modalities while
preserving structural and geometric constraints makes it especially well-
suited for applications in biology and life sciences.

At the same time, biological and life science applications present a
natural testbed for FM(Fig. 1). These tasks, ranging fromgenomic sequence
modeling5–7, molecular graph generation8–10, and protein structure
prediction11–13, to biomedical image synthesis14–17, are often high-dimen-
sional, multimodal, and governed by strict structural, physical, or bio-
chemical constraints. In fact, they have already served as benchmarks for
validating the performance of various generativemodeling paradigms, such
as Generative Adversarial Networks18–20, Masked Autoencoders21–24, and
Diffusion Models25–27. Compared to traditional rule-based simulations28–31

and physics-driven models32–35, which often suffer from limited scalability
and reliance on expert-crafted rules, these machine-learning-based gen-
erative models offer a data-driven alternative that can scale to complex

biological systems, adapt to diverse modalities, and generalize beyond
handcrafted constraints36–44. By learning directly from empirical data, they
enable the generation of biologically plausible outputs while significantly
reducing the need for domain-specific assumptions. FM, as a newer yet
promising alternative, inherits key advantages from these models such as
expressiveness, scalability, and data efficiency, while introducing a more
stable training objective based on continuous probability flows. Its ability to
generate high-quality samples with fewer inference steps makes it particu-
larly appealing for biological applications, where modeling precision and
computational efficiency are both critical.

Interest in applying FM to biological problems is growing rapidly. As
illustrated inFig. 2,wehaveobserved a steadily growing trend in thenumber
of FM-related publications, with a visible rise in bio-related applications.
Thefirst biological applications appeared atNeurIPS202345,46, both focusing
on molecule generation. This momentum continued with the introduction
of FM-based protein generationmodels at ICLR 202447, followed by further
progress in biological sequence and peptide generation at ICML 2024.
Beyond these milestones, 2024 and 2025 have seen the emergence of
increasingly specialized FM variants, such as categorical FM48, rectified
FM49, and non-Euclidean formulations including Riemannian50 and
Dirichlet51 FM. Many of these have begun to find applications in structural
biology, molecular conformationmodeling, and biomedical imaging. More
recently,NeurIPS2025 featuresover 30acceptedFMpapers, and ICLR2026
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receivedmore than150FM-related submissions.Asof the time this survey is
under peer review (Nov 2025), these venues collectively include over 20 new
FM-for-biology works. Since their proceedings are not yet public, we only
cover the NeurIPS 2025 papers with available preprints and leave full cov-
erage of these emerging results to future iterations. This upward trajectory
highlights not only the methodological innovation within FM, but also its
growing relevance in life science domains that demand high-dimensional,
structure-aware generative modeling.

As both FM and its biological applications evolve, the landscape has
become increasingly fragmented, making it difficult to keep track of key
developments and emerging trends. This survey addresses this gap by
providing the first comprehensive review of FM in the context of biology
and life sciences. We begin with a systematic overview of FMmethods and
variants, and then categorize their biological applications into three core
areas: biological sequence modeling, molecule generation and design, and

protein generation. We also review auxiliary topics such as bioimage
modeling and spatial transcriptomics, summarize commonly used datasets
and tools, and conclude with open challenges and future directions. Our
goal is to offer an accessible entry point for newcomers, while equipping
experienced researchers with a clear map of the field’s current trajectory.
Our curated resources are publicly available at https://github.com/
Violet24K/Awesome-Flow-Matching-Meets-Biology.

Challenges of generative modeling for biology
Biological systems are among themost intricate andmultifaceted systems in
the natural world52–54, shaped by billions of years of evolution and governed
by deeply intertwined physical, chemical, and informational processes.
Modeling such systems has long been a grand challenge across scientific
disciplines, demanding tools that can reconcile precisionwith flexibility55–60.
The complexity of biological data and phenomena stems from a confluence

Fig. 1 | Flow matching meets biological and life
sciences. Flow matching serves as a powerful gen-
erative modeling paradigm for a wide range of bio-
logical and life science applications. Conversely,
these domains offer rich and diverse tasks for eval-
uating and advancing flow matching techniques. In
this survey, we first present state-of-the-art flow
matching models and their variants, then categorize
their applications into four major areas: sequence
modeling, molecule generation, protein design, and
other emerging biological applications. The corre-
sponding curated resources are available at https://
github.com/Violet24K/Awesome-Flow-Matching-
Meets-Biology.

Fig. 2 | Trend of published papers on flowmatching (FM) and its applications in
biology and life sciences across major ML conferences from 2023 to 2025. The
blue line indicates the total number of FM papers, while the orange line shows the

subset focused on biological applications. Annotations highlight key milestones in
FM and its adoption for molecule, sequence, and protein generation, illustrating the
rapid growth and expanding interest in this area.
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of factors, with some of the most formidable challenges including: (1) the
necessity to embed rich domain knowledge, ranging from physical laws to
biochemical constraints, into generative models in a way that ensures
structural and functional validity; (2) the scarcity, incompleteness, and noise
characteristic of real-world biological datasets, often resulting from
expensive or error-prone experimental procedures; (3) the inherentlymulti-
scale and multi-modal nature of biological processes, which span atomic
interactions to cellular behavior, and integrate diverse data types such as
sequences, structures, and spatial-temporal signals; (4) the increasing
demand for controllable and condition-aware generation, where outputs
must satisfy explicit biological properties or therapeutic objectives; and (5)
the pressing need for models that are not only accurate but also computa-
tionally scalable and sample-efficient, especially in applications such as drug
discovery or protein design where inference speed can be critical. Together,
these challenges make it challenging for biology models.

FM, as a recently introduced generative modeling paradigm, holds
strong potential for addressing the unique challenges of biological data. It
learns a deterministic vector field to map a simple base distribution directly
to complex target data via continuous probability trajectories. This yields
several advantages particularly relevant to biological applications, such as
faster and more stable sampling, easier conditioning on structured inputs,
and the ability to incorporate geometric or physical priors into themodeling
process. Since its introduction, a growing number of studies have explored
the use of FM in tackling biological tasks. These early successes demonstrate
not only the method’s versatility but also its capacity to model the struc-
tured, multimodal, and constraint-rich nature of biological systems, posi-
tioning FM as a compelling alternative to conventional generative
frameworks in the life sciences.

Our contributions
This survey presents the first comprehensive review of FM and its appli-
cations in biology and life sciences. Our key contributions are summarized
as follows:
• A unified taxonomy of flow matching variants: we introduce a struc-

tured taxonomy of FM methodologies, spanning general FM, condi-
tional and rectified FM, non-Euclidean and discrete FM, and hybrid
variants.

• In-depth survey of biological applications: we systematically categorize
and review the use of FM across three primary biological domains:
biological sequence modeling, molecule generation and design, and

protein generation. We further explore several other emerging
applications beyond this scope.

• Comprehensive benchmark anddataset survey:we compile and review
widely used biological datasets, benchmarks, and software tools
adopted in FM research.

• Trend, challenges, and emerging directions: we contextualize the
evolution of FM through bibliometric trends and identify key meth-
odological innovations. We further analyze domain-specific modeling
challenges which may motivate new FM research directions.

• Bridging modeling and biology communities: by mapping methodo-
logical advances inFMtodiverse biological challenges, we offer a cross-
disciplinary bridge that connects the machine learning community
developing FM algorithms with the biological sciences community
seeking powerful generative tools.

Connection to existing survey
Existing related surveys can be broadly categorized into three groups. The
first category focuses exclusively on generative modeling methodologies.
These surveys either provide comprehensive overviews of specific classes of
generative models61–63 or examine their applications within particular
domains, such as computer vision64, recommendation systems65, and
anomaly detection66. The second category surveys the use of generative
models in biology prior to the advent of FM. For example67, reviews gen-
erativemodels formolecular design68, focuses on de novo drug design, and69

provides a broad overview of machine learning methods in both predictive
and generative biological modeling. A concurrent survey70 emphasizes
practical guidance and open-source tooling, our survey offers a unified
taxonomy of flow-matching methodologies with fine-grained links to spe-
cific biological problem classes. Table 1 presents a comparison of existing
surveys on generative modeling, highlighting their covered model classes
and application domains. To the best of our knowledge, this work presents
the first comprehensive survey dedicated to FM and its applications in
biology and life sciences. By bridging recent developments in generative
modeling with their emerging applications in biological domains, this sur-
vey aims to fill a critical gap in the literature.

Outline of the survey
To provide a comprehensive understanding of FM in the context of biology
and life sciences, this survey is organized into several key sections.We begin
by introducing the fundamental concepts and methodologies underlying

Table 1 | Existing surveys related to this work

Reference Generative modeling Task domain

Jabbar et al.62 Generative adversarial network General

Xia et al.66 Generative adversarial network Anomaly detection

Greener et al.69 Various ML and generative modeling methods Biology, including protein design and DNA sequence

Li et al.61 Autoencoder General, including image classification and NLP tasks

Yang et al.27 Diffusion model General, including CV, NLP, multimodal tasks

Croitoru et al.64 Diffusion model Various tasks in computer vision

Liang et al.65 Variational autoencoder Recommendation

Cao et al.63 Diffusion model General, including image, video and audio generation

Guo et al.26 Diffusion model Biology, including protein, molecular, gene-expression tasks

Saad et al.254 Generative adversarial network Biomedical image synthesis

Tang et al.68 Various generative modeling methods De novo drug design

Du et al.67 Various generative modeling methods Molecular design

Zhang et al.255 Large language models Biology and chemistry, e.g., molecular, protein, genomic tasks

Morehead et al.70 Flow matching Biology, including molecule, single & multi-cellular, and bioimaging tasks.

Ours Flow matching Various tasks in biology and life science

We present the first comprehensive survey dedicated to flow matching and its applications in biology and life sciences.
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FM in Section “Flow-matching basics”, establishing a foundation for its
application in biological contexts. Next, in Section “Sequencemodeling”, we
delve into specific areas of application, starting with biology sequence
generation, followed by molecule generation and design in Section “Mole-
cule generation”, and then peptide and protein generation in Section
“Protein generation”, each highlighting recent advancements and repre-
sentative studies. In Section “Other bio applications”, we also discuss other
emerging applications of FM in biology. Finally, we conclude by outlining
future research directions andpotential challenges, aiming to inspire further
exploration and innovation in this rapidly evolving field. Figure 3 presents
the overall structure of this survey, with each section divided into various
subtopics for a more detailed exploration.

Background
Generativemodeling seeks to learn a probability distribution pdata(x) from a
dataset of examples fxigNi¼1, such that we can generate new samples bx �
pθðxÞ that resemble real data. These models underpin advances in biology
tasks ranging from molecular generation to protein design and cellular
imaging67,68,71–73, with AlphaFold11,12,74 standing out as one of the most
prominent and transformative examples, recognizedwith theNobel Prize in
2024. AlphaFold leverages deep generative principles to predict protein 3D

structuresdirectly fromaminoacid sequences, a task that had challenged the
field for decades13,60,75. By effectively modeling the conditional distribution
over protein conformations, AlphaFold not only revolutionized protein
structure prediction but also highlighted the broader potential of generative
models to capture complex, structured biological phenomena at scale. In
biologydomains, data is oftenhigh-dimensional,multimodal, andgoverned
by physical or biochemical constraints76–79, requiring generative models to
strike a careful balance between validity, diversity, and interpretability. In
this section, we provide a brief overview of the major paradigms in gen-
erative modeling, with the goal of establishing a conceptual and mathe-
matical foundation for understanding more recent developments such as
FM. For clarity and consistency, all symbols used throughout this paper are
summarized in Table 2. We also briefly compare different generative
modeling paradigms andFM inTable 3. To further enhance accessibility for
readers from diverse scientific backgrounds, we provide a glossary of key
technical terms in the Supplementary Information Section “Techni-
cal Terms”.

Variational autoencoder (VAE)
Variational autoencoders (VAEs)80–84 are a class of latent-variable generative
models that aim to model the data distribution pdata(x) through a learned

Fig. 3 |Overviewof the survey taxonomy.Webegin by introducing the foundations offlowmatching, including its coremodels and variants.Our taxonomy then categorizes
flow matching applications into major biological domains and tasks.
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probabilistic decoder pθ(x∣z), where z is a latent variable drawn from a prior
p(z), typically a standard Gaussian. Since the true posterior p(z∣x) is often
intractable, VAEs introduce an approximate posterior qϕ(z∣x), known as the
encoder, and optimize the model using variational inference. The training
objective is to maximize a variational lower bound, known as the evidence
lower bound (ELBO), on the marginal log-likelihood of the data:

log pθðxÞ ≥EqϕðzjxÞ½log pθðxjzÞ� � KLðqϕðzjxÞ k pðzÞÞ ð1Þ

Thefirst term encourages accurate reconstruction of the input data from the
latent variable z, while the second term regularizes the approximate pos-
terior to stay close to the prior distribution. During training, the repar-
ameterization trick is used to allow gradients to backpropagate through the
sampling process, typically by expressing z ~ qϕ(z∣x) as z = μ(x)+ σ(x)⊙ ϵ,
where ϵ � N ð0; IÞ. However, VAEs often suffer from over-regularization
and produce blurred outputs, especially in high-dimensional domains such
as images and molecular graphs85–87.

Generative adversarial network (GAN)
Generative adversarial networks (GANs)18 are a class of implicit generative
models that learn to generate realistic data by playing a two-playerminimax
game between two neural networks: a generatorGθ and a discriminatorDϕ.
The generator maps noise samples z ~ p(z), typically drawn from a simple
prior such as a Gaussian, into synthetic data samples Gθ(z). The dis-
criminator attempts to distinguish between real samples x ~ pdata and
generated samples Gθ(z). The original GAN objective is formulated as:

minGθ
maxDϕ

Ex�pdata
½logDϕðxÞ� þEz�pðzÞ½logð1� DϕðGθðzÞÞÞ� ð2Þ

GANs are known to suffer from several practical challenges, including
training instability, sensitivity to hyperparameters, and mode collapse
Numerous variants have been proposed to improve training dynamics and
sample diversity, such as Wasserstein GANs88, Least-Squares GANs89, and
conditional GANs90. In biological applications, GANs have been used for

generating realistic cell images91, synthesizing gene expression profiles20,92,
and augmenting scarce datasets93. Despite their limitations, their ability to
capture complex data distributions without explicit density estimation
makes them a compelling choice for modeling high-dimensional biological
data94.

Flow-based model
Flow-based models (also known as normalizing flows)95,96 are a family of
generative models that construct complex data distributions by applying a
sequence of invertible transformations to a simple base distribution, typi-
cally a standardGaussian distribution. Given a base variable z~ pz(z), a flow
model learns an invertible mapping x = fθ(z) such that the model dis-
tributionpθ(x) canbe computed exactly via the change-of-variables formula:

log pθðxÞ ¼ log pzðf �1
θ ðxÞÞ þ log det

∂f �1
θ ðxÞ
∂x

� �����
���� ð3Þ

The goal is to train the parameters θ to maximize the log-likelihood of
the observed data under this model. The invertibility of fθ allows for exact
and tractable likelihood computation, efficient sampling, and deterministic
inference.To ensure both tractability and expressivity,flowmodels are often
constructed as a composition of multiple simple bijective transformations:

f θ ¼ f K � f K�1 � � � � � f 1 ð4Þ

Each component fk is designed to allow efficient computation of the
Jacobian determinant and its inverse. Representative architectures include
NICE97, RealNVP98, Glow99, and Masked Autoregressive Flows (MAF)100,
which utilize affine coupling layers or autoregressive transforms tomaintain
invertibility.

However, the invertible constraint on fθ along with the need to com-
pute thedeterminantof the Jacobian ∂f θðxÞ

∂x imposes significant constraintson
model expressiveness and design flexibility. Continuous normalizing flow
(CNF)101 address these limitations by replacing the discrete sequence of
transformations (Eq. (4)) with a continuous-time dynamic system
dx
dt ¼ f ðxðtÞ; tÞ. This formulation leads to amoreefficient computationof the
log-density change:

∂ log pðxðtÞÞ
∂t

¼ �Tr
df

dxðtÞ

� �
ð5Þ

Notably, the vector field f is not required to be invertible.
CNFs serve as a foundational building block for FM.WhileCNFs allow

for more expressive modeling, their training via maximum likelihood still
demands computationally expensive ODE solvers. A core motivation
behind flow matching is to simplify the training of ODE-based generative
models, without sacrificing the benefits of continuous-time formulations.

Diffusion models (DM)
Diffusion models25,102–105 are a family of likelihood-based generative models
that generate data by reversing a gradual noising process. They define a
forward process that incrementally transforms data into noise, and

Table 2 | Notation used in generative modeling paradigms

Symbol Description

x Data sample

z Latent variable

pdata(x) True data distribution

pθ(x) Model distribution

fθ Invertible function (flow)

uθ(x, t) Velocity field in FM

pt(x) Intermediate distribution at time t

ϵ Noise in diffusion model

LFM Flow Matching loss

LDM Diffusion model loss

A glossary of technical terms is provided in the Supplementary Information Section
“Technical Terms”.

Table 3 | Comparison of major generative modeling paradigms

Model type Training objective Number of function evaluations Structured data support

VAE Likelihood Low Moderate (via extensions)

GAN Adversarial loss Low Weak (limited geometry)

Diffusion Likelihood SDE solver-dependent Strong (SE(3), graph diffusion)

Consistency model Likelihood SDE solver-dependent Strong (SE(3), graph diffusion)

Flow-based Likelihood Low Moderate (design-dependent)

Flow matching Velocity matching ODE solver-dependent Strong (geometry-aware, equivariant)
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parameterize a neural network to fit the groundtruth reverse process,
recovering data from noise step by step.

Forward process. The forward process defines a sequence of latent
variables fxtgTt¼0, which are the gradually corrupted version of the clean
data x0 ~ pdata. A typical forward process is formulated as a set ofGaussian
distributions conditioned on the previous step:

qðxtjxt�1Þ ¼ N ðxt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βt IÞ ð6Þ

where {βt} is called noise schedule. Usually, the distribution of the corrupted
data at any time t has a closed form:

qðxt jx0Þ ¼ N ðxt ;
ffiffiffiffi
αt

p
x0; ð1� αtÞIÞ; ð7Þ

�αt ¼
Yt
s¼1

ð1� βsÞ ð8Þ

Training. Similar to many likelihood-based models, negative log-
likelihood is a canonical choice of the loss function25,102,106. Beyond that,
cross-entropy or square error are also widely used25,107. Based on that,
neural networks (NNs) are used to parameterize various components of
the diffusion process, such as to predict the data108, predict the noise25,
and predict the score105. The following unweighted regression loss for
predicting the noise is a popular example:

LDM ¼ Ex0 ;t;ϵ
k ϵ� ϵθðxt; tÞ k2
� �

ð9Þ

xt ¼
ffiffiffiffi
αt

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt

p
ϵ; ϵ � N ð0; IÞ ð10Þ

Generation. Equipped with the NN-parameterized component, the
reverse process of the diffusion process is used for generation. For
example, the reverse process with the NN-predicted noise ϵθ can denoise
the Gaussian noise xT � N ð0; IÞ gradually:

xt�1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� βt
p ðxt �

βtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt

p ϵθðxt ; tÞÞ þ noise ð11Þ

A well-known limitation of diffusion models is their slow sampling
process, which often requires hundreds of iterative steps. To address this
inefficiency, several acceleration techniques have been proposed, including
the adoption of tailored numerical solvers109, model distillation108, and
continuous-time formulations105,106. Notably, Probability flow ODE104 and
DDIM105 demonstrate that there exists a deterministic ODEwhose solution
shares the same marginal distributions as the reverse-time stochastic dif-
ferential equation (SDE) used in diffusion models. This observation is
conceptually aligned with the idea behind flow matching (FM), although
both probability flow ODE and DDIM remain trained using the standard
loss functions of diffusion models, such as the evidence lower
bound (ELBO).

Consistency models
Consistency models (CMs)110 are a recent family of generative models built
upon the diffusion models. They aim to bypass the slow iterative denoising
procedure of diffusion sampling by learning a direct mapping from noise
to data.

Forward process. A consistency model is a neural function fθ(xt, t) that
approximates the solution of the Probability flow ODE (PF-ODE) in
closed form. Given a noisy sample xt at time t, fθ predicts its corre-
sponding clean data x0. A defining property of CMs is self-consistency: all
points on the same diffusion trajectory should map to the same output.

Training. CMs are trained from two main paradigms: Consistency dis-
tillation and Consistency training.

Consistency distillation (CD)110 distills a pretrained diffusion teacher
into fθ. Given adjacent states (xt, xt+Δ) along the teacher’s PF-ODE trajec-
tory, the student minimizes

LCD ¼ E k f θðxtþΔ; t þ ΔÞ � f θðxt ; tÞ k22
� � ð12Þ

Consistency training (CT)110,111 trains fθ from scratch without a teacher
by sampling two noisy versions (xs, xt) of the same data x0 via a shared noise
realization z: xt = x0 + σ(t)z, xs = x0 + σ(s)z:

LCT ¼ E k f θðxt ; tÞ � f θðxs; sÞ k22
� � ð13Þ

Beyond the original formulation110, several variants have extended this
idea. Multi-step CMs112 refine generation by repeatedly evaluating fθ over
decreasing times (tn→ 0). In addition, diffusionmodels are integrated with
consistency models113,114. Some recent approaches further emphasize later
noise stages during training115.

Flow-matching basics
In this section, we provide background knowledge on flow-matching (FM)
models, including general FM and discrete FM.

General flow-matching
Flow-matching is a continuous-time generative framework that generalizes
diffusion models by regressing a vector field that transports one distribution
into another116. In general, FM aims to construct a velocity field uθ(x, t) to
transport a source p0 to a target p1 via the continuity equation:

∂pt
∂t

þ ∇ � ðptuθðx; tÞÞ ¼ 0: ð14Þ

An FM can be trained by minimizing the squared loss between the neural
velocity field uθ(x, t) and a reference velocity field u�t ðx; tÞ as follows:

LFM ¼ Et�½0;1�;xt�pt ðxÞ k u�ðxt ; tÞ � uθðxt ; tÞk2: ð15Þ

Promising as itmight be, directly optimizing the objective in Eq. (15) is
impractical: the optimal velocityfieldu*(x, t) encodes a highly complex joint
transformation between two high-dimensional distributions117. To over-
come this challenge, conditional FM variants have been introduced to
enable more tractable training (Paragraph -0a). Concurrently, rectified FM
methods propose improved noise couplings along the straight-line prob-
ability path (Paragraph -0b). Finally, non-Euclidean FM extensions gen-
eralize the framework from flat Euclidean space to curved manifolds,
accommodating data with intrinsic geometric structure (Paragraph -0c).

Conditional FM116,118–120. To resolve the intractable u*(x, t), conditional
FM introduces a conditioning variable z, e.g., class label, and define a
conditional path p(x∣t, z) such that the induced global path p(x∣t) =
∫zp(x∣t, z)p(z)dz transforms p0 to pdata and the corresponding conditional
velocity field has analytical form. A conditional FM can be trained by
minimizing the quadratic loss between the neural velocity field uθ(x, t)
and the conditional velocity field u�t ðx; t; zÞ as follows:

Et�½0;1�;xt�pt ðxjzÞ;z�pz
k u�ðxt ; t; zÞ � uθðxt ; tÞk2: ð16Þ

The training procedure involves sampling a conditioning variable z, e.g., via
linear interpolation119,121 or Gaussian path116, and random time t, con-
structing xt along the prescribed path, and minimizing the corresponding
loss. Once the model is trained, the sampling/generation process is done by
solving the learned ODE dx/dt = uθ(x, t) using an ODE solver from t = 0
(noise) to t = 1 (data). The key theoretical foundation of conditional FM is
that the gradient of the FM objective in Eq. (15) is equivalent to gradient of
the CFM objective in Eq. (16). Building upon the conditioning variable z,
one can define velocity field in analytical forms with tractable training.
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Rectified FM49,120–123. Infinite probability path exist between source and
target distributions that can be leveraged by conditional FM, rectified FM
prefers the linear transport trajectory that best connect two
distributions121. proposes to train a velocity field carrying each sample x0
to its paired target x1 along nearly-straight lines via:

Eðx0;x1Þ�π

Z 1

0
k uθðxt ; tÞ � ðx1 � x0Þk2dt ð17Þ

where pi is a coupling of p0 and p1. It is shown that the optimal transport
(OT) coupling provides a straight coupling for p0 and p1, simplifying the
flow and reducing curliness120,122.

Non-Euclidean FM50,124–127. Non-Euclidean flows extend continuous
flows to curved data spaces. For example127, introduce Riemannian
Continuous Normalizing Flows, defining the generative flow by an ODE
on the manifold to model flexible densities on spheres, tori, hyperbolic
spaces, etc.126. propose Neural Manifold ODEs, integrating dynamics
chart-by-chart (e.g. via local coordinate charts) so that the learned
velocity field stays tangent to the manifold. More recently124, propose
Riemannian FM by using geodesic distances as a “premetric” they derive
a closed-form target vector field pushing a base distribution to the data
without any stochastic diffusion or divergence term. On simple mani-
folds (e.g. spheres or hyperbolic space where geodesics are known) Rie-
mannian FM is completely simulation-free, and even on general
geometries it only requires solving a single ODE without calculating
expensive score or density estimates125. introduce Fisher FM, treating
categorical distributions as points on the probability simplex with the
Fisher-Rao metric and transporting them along spherical geodesics. In
general, Riemannian flows replace straight-line interpolations with
intrinsic geodesics and explicitly account for the manifold’s metric (e.g.
via the Riemannian divergence in the change-of-density). These works
tackle the challenges of defining tangent vector fields and volume cor-
rections on curved spaces via chart-based integration, metric-adjusted
log-density formulas, or flow-matching losses that avoid divergence
estimates. Overall, they enable scalable generative modeling on curved
domains (spheres, Lie groups, statistical manifolds, etc.), respecting
curvature in ways standard Euclidean FM cannot.

Discrete flow-matching
Discrete FM has emerged as a powerful paradigm for generative modeling
over discrete data domains, such as sequences, graphs, and categorical
structures, covering a wide range of biological objects4,107. By extending the
principles of continuous FM to discrete spaces, DFM enables the design of
efficient, non-autoregressive generativemodels. This section delves into two
principal frameworks: Continuous-Time Markov Chain (CTMC)-based
methods (Paragraph -0a) and simplex-based methods (Paragraph -0b).

Continuous-time Markov chain (CTMC). CTMC-based approaches
model the generative process as a continuous-time stochastic evolution
over discrete states, leveraging the mathematical framework of
continuous-time Markov chains to define and learn probability flows128.
utilizes CTMCs to model flows over discrete state spaces. This approach
allows for the integration of discrete and continuous data, facilitating
applications like protein co-design by enabling multimodal generative
modeling. Fisher Flow125 adopts a geometric perspective by considering
categorical distributions as points on a statistical manifold endowed with
the Fisher-Raometric. This approach leads to optimal gradient flows that
minimize the forward Kullback-Leibler divergence, improving the
quality of generated discrete data129. expanded the design space of discrete
generative models by allowing arbitrary discrete probability paths within
the CTMC framework. This holistic approach enables the use of diverse
corruption processes, providing greater flexibility in modeling complex
discrete data distributions. DeFog130 is a discrete FM framework tailored
for graph generation. By employing a CTMC-based approach, DeFoG

achieves efficient training and sampling, outperforming existing diffu-
sion models in generating realistic graph.

Simplex-based discrete FM. Simplex-based methods operate within
the probability simplex, modeling flows over continuous relaxations of
discrete distributions. These approaches often employ differentiable
approximations to handle the challenges posed by discrete data.
SimplexFlow131 combines continuous and categorical flow matching for
3D de novo molecule generation, where intermediate states are guaran-
teed to reside on the simplex. Dirichlet FM51 utilizesmixtures of Dirichlet
distributions to define probability paths over the simplex, addressing
discontinuities in training targets and enables efficient. α-flow132 unifies
various continuous-state discrete FM models under the lens of infor-
mation geometry. By operating on different α-representations of prob-
abilities, this framework optimizes the generalized kinetic energy,
enhancing performance in tasks such as image and protein sequence
generation. STGFlow133 employs a Gumbel-Softmax interpolant with a
time-dependent temperature for controllable biological sequence gen-
eration, which includes a classifier-based guidance mechanism that
enhances the quality and controllability of generated sequences.

Sequence modeling
FM has emerged as a powerful framework for biological sequence genera-
tion, offering deterministic and controllable modeling of discrete structures
such as DNA, RNA, and whole-genome data. In this section, we survey
different FMmodels designed for biological sequence generation, including
DNA sequence, RNA sequence, whole-genome modeling, and antibody
design. By leveraging continuous transformations, flow matching enables
efficient generation of sequences conditioned on various biological con-
straints and properties.

DNA sequence generation
Early deepgenerativemodels, e.g.GANsor autoregressivemodels, struggled
to satisfy the complex constraints of functional genomics sequences. FM
models provide natural solutions to bridge this gap by mapping discrete
nucleotide sequences into continuous probabilistic spaces for training51.
Instead of simulating a stochastic diffusion51, FM models directly train a
continuous vector field that transports a simple base distribution, e.g.,
uniform distribution over nucleotides, into the empirical DNA data
distribution.

Fisher-Flow125 introduces a geometry-based flow matching approach,
which treats discrete DNA sequences as points on a statistical manifold
endowed with the Fisher-Rao metric. By allowing for continuous repar-
ameterization of discrete data, probabilitymass is transported along optimal
geometric paths on the positive orthant of a hypersphere, achieving state-of-
the-art performance on DNA promoter and enhancer sequence generation
benchmarks compared to earlier diffusion-based and flow-based models.

Besides categorical distribution, Dirichlet distribution is adopted to
handle discrete sequences. Dirichlet Flow51 utilizes mixtures of Dirichlet
distributions to define probability paths on the simplex, addressing dis-
continuities and pathologies in naive linear flow matching. Dirichlet Flow
enables one-step DNA sequence generation and achieves superior dis-
tributional metrics and target-specific design performance compared to
prior models on complex DNA design tasks.

In addition, STGFlow133 proposes straight-through guidance, com-
bining Gumbel-Softmax flows with classifier-based guidance to steer the
generation process toward desired sequence properties, facilitating con-
trollable de novo DNA sequence generation. MOG-DFM134 generalizes
discrete flow matching guidance into a multi-objective paradigm. It
leverages multiple scalar objectives and computes a hybrid rank-directional
score at each sampling step.

RNA sequence generation
Flow matching has recently been applied to RNA sequence and structure
design. Rather than focusing solely on sequence generation, existing FM
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methods prioritize structural fidelity, enabling advanced applications in
inverse folding, protein-conditioned design, and ensemble backbone sam-
pling. RNACG135 introduces a versatile flow-matching framework for
conditional RNA generation that supports tasks ranging from 3D inverse
folding to translation efficiency prediction. RNAFlow136 couples an RNA
inverse-foldingmodule with a pretrained structure predictor to co-generate
RNAsequences and their folded structures in the context of boundproteins.
RiboGen137 develops the first deep network to jointly synthesize RNA
sequences and all-atom 3D conformations via equivariant multi-flow
architectures. RNAbpFlow138 presents a SE(3)-equivariant flow-matching
model that conditions on both sequence and base-pair information to
sample diverse RNA backbone ensembles. More recently, RiboFlow139

proposes to synergize the design of RNA structure and sequence by inte-
grating RNA backbone frames, torsion angles and sequence features for an
explicit modeling on RNA’s dynamic conformation.

Whole-genomemodeling
At thewhole-genome level,flowmatching has been applied tomodel single-
cell genomics data. GENOT140 employs entropic Gromov-Wasserstein flow
matching to learn mappings between cellular states in single-cell tran-
scriptomics, facilitating studies of cell development and drug response.
cellFlow141 proposes a generativeflow-basedmodel for single-cell count data
that operates directly in raw transcription count space, preserving the dis-
crete nature of the data. CFGen142 introduces a flow-based conditional
generative model capable of generating multi-modal and multi-attribute
single-cell data, addressing tasks such as rare cell type augmentation and
batch correction.

Antibody sequence generation
FM has also been utilized for antibody sequence generation. IgFlow143

proposes a SE(3)-equivariant FM model for de novo antibody variable
region generation (heavy/light chains and CDR loops). IgFlow supports
unconditional antibody sequence-structure generation and conditional
CDR loop inpainting, producing structures comparable to those from a
diffusion-based model while achieving higher self-consistency in condi-
tional designs; it also offers efficiency benefits like faster inference and better
sample efficiency than the diffusion counterpart. dyAb144 proposes aflexible
antibody design FM, which integrates coarse-grained antigen-antibody
interface alignmentwith fine-grained flowmatching on both sequences and
structures. By explicitly modeling antigen conformational changes (via
AlphaFold2 predictions) before binding, dyAb significantly improves the
design of high-affinity antibodies in cases where target antigens undergo
dynamic structural shifts.

These advancements demonstrate the versatility of flow matching in
modeling complex biological sequences and structures, providing a unified
framework for deterministic and controllable generation across various
biological domains.

Molecule generation
Molecule generation is a fundamental task in biological modeling, playing a
crucial role indrugdiscovery,material design, andunderstandingmolecular
interactions145–147. The ability to generate novel molecules with desired
properties has significant implications for both theoretical and applied

research in life sciences148,149. Traditional approaches, such as rule-based
simulations and heuristic algorithms, often face challenges in scalability and
diversity150,151. In contrast, generativemodels, includingflowmatching, offer
a data-driven approach to efficiently explore the vast chemical space26,152,153.

In this section, we review recent advancements inmolecule generation
using flow matching techniques. We focus on methods that leverage con-
tinuous probability flow trajectories to generate novel molecular structures
and properties, highlighting how flow matching has enhanced molecule
generation.

2Dmolecule generation
Although real-worldmolecules are inherently three-dimensional objects, as
illustrated in Fig. 4, researchers often simplify the problem by using 2D
graph-basedmolecular modeling when the 3D structure is not the primary
focus154–156. This approach offers several advantages, including increased
computational efficiency and reduced information requirements during
inference.

Flow matching on graph data remains relatively unexplored, as the
concept of flow matching itself is still under development. Nevertheless,
existing studies often use 2Dmolecule generation as a preliminary test case
to evaluate newly proposed flow matching variants. For instance, Eijkel-
boom et al.157 combine flow matching with variational inference to intro-
duce Variational Flow Matching for graph generation and CatFlow for
handling categorical data. Additionally, GGFlow158 presents a discrete flow
matching generative model that integrates optimal transport for molecular
graphs. This model features an edge-augmented graph transformer,
enabling direct communication among chemical bonds, thereby improving
the representation of molecular structures. DeFoG159 introduces a discrete
formulation of flow matching tailored to the graph domain, explicitly
decoupling the training and sampling phases to overcome inefficiencies in
traditional diffusion-based models. By leveraging permutation-invariant
graph matching objectives and exploring a broader sampling design space,
DeFoG achieves strong empirical results on molecular graph generation
with significantly fewer refinement steps.

3Dmolecule generation
Generating accurate 3D molecular structures is a critical task in drug dis-
covery and structural biology160. As illustrated in Fig. 5, unlike 2D graph-
based approaches, which primarily capture atomic connectivity, 3D mole-
cular representations inherently encode spatial information, including bond
angles, torsions, and stereochemistry. This spatial fidelity is essential for
modeling interactions such as molecular docking, binding affinity, and
conformational stability. While 2D representations cannot distinguish
between stereoisomers or capture geometric nuances, 3D methods accu-
rately model spatial conformation, enabling a more precise understanding
of molecular properties145,161,162.

SE(3)-equivariant. To ensure physically meaningful and symmetry-
consistent outputs, recent advancements have incorporated SE(3)-
equivariant neural architectures intoflowmatchingmodels. Thesemodels
leverage the inherent symmetries of molecular systems, modeling graph
generation as a continuous normalizing flow over node and edge features.

Fig. 4 | 2D graph representations of example molecules generated from the
GEOM-Drugs241 (left two) and QM9239 (right two) datasets. Each molecule is
visualized as a 2D graph, where atoms are nodes and chemical bonds are edges,
capturing both structural and topological properties.

Fig. 5 | 3D graph representations of example molecules generated from the
GEOM-Drugs241 (left two) and QM9239 (right two) datasets. Atoms are shown as
nodes positioned in 3D Euclidean space, and bonds are represented as edges con-
necting them. These visualizations capture spatial geometry and stereochemistry
important for molecular property prediction.
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For instance, Megalodon163 introduces scalable transformer models with
basic equivariant layers, trained using a hybrid denoising objective to
generate 3D molecules efficiently, achieving state-of-the-art results in
both structure generation and energy benchmarks. EquiFM45 further
improves the generation of 3Dmolecules by combininghybridprobability
transport with optimal transport regularization, significantly speeding up
sampling while maintaining stability. EquiFlow164 addresses the challenge
of conformation prediction using conditional flowmatching and anODE
solver for fast and accurate inference. By leveraging equivariantmodeling,
these methods improve the generation of valid and physically consistent
molecular conformations, advancing the field of 3Dmolecule generation.
Equivariant Variational Flow Matching165 frames flow matching as a
variational inference problem and enables both end-to-end conditional
generation and post-hoc controlled sampling without retraining. The
model further provides a principled equivariant formulation of VFM,
ensuring invariance to rotations, translations, and atom permutations,
which are essential for molecular applications.

Efficiency. Generating high-quality 3Dmolecular structures efficiently is
a major challenge in drug discovery and structural biology. While gen-
erative models have shown promise in modeling complex molecular
structures, many existing approaches suffer from slow sampling speeds
and computational inefficiency. Flow matching-based methods leverage
optimal transport and equivariant architectures to achieve faster and
more reliable generation. For instance, GOAT166 formulates a geometric
optimal transport objective to map multi-modal molecular features
efficiently, using an equivariant representation space to achieve a double
speedup compared to previous methods. MolFlow167 introduces scale
optimal transport, significantly reducing sampling steps while main-
taining high chemical validity. SemlaFlow168 combines latent attention
with equivariant flow matching, achieving an order-of-magnitude
speedup with as few as 20 sampling steps. A recent work introduces
SO(3)-Averaged Flow Matching with Reflow169, targeting both training
and inference efficiency for 3D molecular conformer generation. The
proposed SO(3)-averaged training objective leads to faster convergence
and improved generalization compared to Kabsch-aligned or optimal
transport baselines. ET-Flow170 leverages equivariant flow matching to
generate low-energy molecular conformations efficiently, bypassing the
need for complex geometric calculations.

Guided generation. Guided and conditional generation enables the
creation of structures that align with specific biological properties or
conditions. In the context of flow matching, guided generation incor-
porates domain-specific knowledge to steer the generative process, while
conditional generation aims to produce diverse outputs based on given
inputs or contexts. These approaches are especially valuable in applica-
tions where accurate constraints are available. Recent advancements in
flow matching have introduced several methods to enhance guided and
conditional generation. FlowDPO171 addresses the challenge of 3D
structure prediction by combining flowmatching with Direct Preference
Optimization (DPO), minimizing hallucinations while producing high-
fidelity atomic structures. In conditional generation, Extended Flow
Matching (EFM)172 generalizes the continuity equation, enabling more
flexible modeling by incorporating inductive biases. For mixed-type
molecular data, FlowMol173 extends flow matching to handle both con-
tinuous and categorical variables, achieving robust performance in 3D de
novo molecule generation. 3D energy-based flow matching174 further
enhances conditional generation by explicitly incorporating energy sig-
nals into both training and inference, improving structural plausibility
and convergence. Together, these advances highlight the growing
adaptability of flow-based approaches in generating biologically mean-
ingful 3D molecular structures under domain constraints. Additionally,
OC-Flow175 leverages optimal control theory to guide flow matching
without retraining, showing superior efficiency on complex geometric
data, including protein design.

Conditional molecule design and applications
Recent advancements in flow matching for property-driven molecule
design focus on not only generating the molecules themselves, but also
predicting potential functionalities of the generatedmolecules. In scenarios
requiring precise geometric control, GeoRCG176 enhances molecule gen-
eration by integrating geometric representation conditions, achieving sig-
nificant quality improvements on challenging benchmarks. Additionally,
conditional generation with improved structural plausibility has been
addressed by integrating distorted molecules into training datasets, as
demonstrated in Improving Structural Plausibility in 3D Molecule
Generation177. This method leverages property-conditioned training to
selectively generate high-quality conformations. Stiefel Flow Matching178

tackles the problem of structure elucidation under moment constraints by
embeddingmolecular point clouds within the Stiefel manifold, allowing for
efficient and accurate generation of 3D structures with precise physical
properties. Finally, IDFlow179 adopts an energy-based perspective on flow
matching formolecular docking, where the generative process learns a deep
mapping function to transform random molecular conformations into
physically plausible protein-ligand binding structures. PropMolFlow180

further advances property-guidedmolecule generation througha geometry-
complete SE(3)-equivariant flow matching framework integrating five dif-
ferent property embedding methods with a Gaussian expansion of scalar
properties. TemplateFM181 introduces a ligand-based generation framework
that leverages flowmatching for template-guided 3D molecular alignment.

Structure-Based Drug Design (SBDD) is a key task in AI-assisted drug
discovery, aiming to design small-molecule drugs that can bind to a given
proteinpocket structure.Themain challenges in this domain lie inmodeling
the target protein structure, capturing protein-ligand interactions, enabling
multimodal generation, and ensuring the chemical validity of generated
molecules. In recent years, generative models have shown great potential in
addressing these challenges, with Flow Matching (FM) models demon-
strating unique advantages in multimodal modeling and generation effi-
ciency. MolFORM182 applies multimodal FM to the SBDD setting and
employs DPO to optimize molecular binding affinity. FlexSBDD183 further
introduces protein pocket flexibility into the model, making it more
reflective of real-world binding scenarios. In addition,MolCRAFT184 adopts
a Bayesian Flow Network (BFN) to model multimodal distributions in
continuous parameter space, where BFN similarly defines a flow distribu-
tion. Moreover185, reveals the equivalence between BFN, diffusion models,
and stochastic differential equations (SDEs). PocketXMol186 provides a
unified generative model for handling a variety of protein-ligand tasks.
PAFlow187 introduces prior-guided flow matching with a learnable atom-
number predictor to steer generation toward high-affinity regions and
aligning molecule size with pocket geometry.

Protein generation
"Protein generation” can encompass a variety of tasks. To avoid confusion,
we provide a brief comparison in Table 4.

Unconditional generation
Backbone generation. Protein backbone generation aims to rapidly
synthesize physically realizable 3D scaffolds that are diverse, designable,
and functionally conditionable, while adhering to SE(3)-equivariance,
local bond constraints, and global topological consistency. Recent efforts
approach this challenge from two directions: enhancing the flow
matching framework and improving protein feature representation
learning. From the flow matching perspective, FrameFlow188 accelerates
diffusion by reframing it as deterministic SE(3) flow matching, cutting
sampling steps five-fold and doubling designability over FrameDiff.
Rosetta Fold diffusion 2 (RFdiffusion2)189 uses the RosettaFold All-Atom
neural network architecture and is trained with flow matching for
improved training and generation efficiency. FoldFlow-SFM47 further
extends this by introducing stochastic flows on SE(3) manifolds using
Riemannian optimal transport, enabling the rapid generation of long
backbones (up to 300 residues) with high novelty and diversity.
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Complementarily, recent work also advances architectural designs for
protein representation learning. Yang et al.190 combine global Invariant
Point Attention (IPA) with local neighborhood aggregation to extract
meaningful features, and further use ESMFold and AlphaFold3 to filter
the invalid generated backbones.Wagner et al.191 proposes Clifford frame
attention (CFA), an extension of IPA by exploiting projective geometric
algebra and higher-order message passing to capture residue-frame
interactions, yielding highly designable proteins with richer fold topol-
ogies. FoldFlow-2192 augments SE(3) flows with PLM embeddings and a
multi-modal fusion trunk, enabling sequence-conditioned generation
with reinforced reward alignment and state-of-the-art diversity, novelty,
and designability on million-scale synthetic-real datasets. Proteina193

scales unconditional FM to a 400 M-parameter non-equivariant trans-
former trained on 21 M synthetic backbones, using hierarchical CATH
conditioning to transport isotropic noise to native-like Cα traces.
ProtComposer194 augments aMultiflow128 backbonewith SE(3)-invariant
cross-attention to user-sketched 3-D ellipsoid tokens, steering the FM
vector field toward compositional spatial layouts while preserving
unconditional diversity.

Co-design generation. Recent work reframes sequence-structure co-
design as learning a unified vector field that jointlymodels discrete amino
acid identities and continuous 3D coordinates, bypassing the traditional
two-stage pipeline that separately samples a backbone before fitting a
compatible sequence. This co-generative setting is especially challenging
due to the need to reconcile fundamentally different data manifolds,
enforce SE(3) symmetry, and ensure bidirectional invertibility, all while
scaling to the vast combinatorial space of long proteins. CoFlow195 pro-
poses a joint discrete flow thatmodels residue identities and inter-residue
distances as CTMC states, augmented with a multimodal masked lan-
guage module that allows structural flows and sequence tokens to con-
dition each other. Discrete Flow Models (DFM)128 formalize flow
matching on arbitrary discrete spaces by interpreting score-based gui-
dance as CTMC generator reversal. Instantiated as MultiFlow, this fra-
mework enables sequence-only, structure-only, or joint generation
within a single architecture-agnostic model, achieving state-of-the-art
perplexity and TM-scores while being orders of magnitude faster than
diffusion-based baselines. Finally, APM196 introduces a Seq&BB module
that jointly learns continuous SE(3) flows for backbone frames and dis-
crete token flows for sequences, leveraging protein language models,
Invariant Point Attention, and Transformer encoders to capture residue-
level and pairwise interactions. APM supports precise interchain mod-
eling and de novo design of protein complexes with specified binding
properties.

Conditional generation
Motif-scaffolding generation. Motif-scaffolding generation: condi-
tional SE(3) flow-matching models embed fixed functional motifs into
de-novo backbones by learning equivariant vector fields that respect both
local motif geometry and global fold constraints, overcoming the diver-
sity and fidelity limits of earlier diffusion approaches. FrameFlow-
Motif197 augments FrameFlow188 with motif amortization and inference-
time motif guidance, enabling scaffold generation around functional

motifs with special-designed data augmentation and estimated condi-
tional scores. EVA198 casts scaffolding as geometric inverse design,
steering a pretrained flow along motif-aligned probability paths to
accelerate convergence and boost structural fidelity. RFdiffusion2189

conducts catalytic site motif scaffolding at a much higher success rate,
enabling de novo design of enzymes.

Pocket & binder design. Conditional pocket and binder design tackles
the dual challenge of sculpting a protein interface that both accom-
modates a specific ligand conformation and retains global fold stability,
all while respecting SE(3) symmetry and the rich geometric-chemical
priors that govern non-covalent recognition. Flow-matching models
address these hurdles by learning equivariant vector fields that map an
easy base distribution to the manifold of ligand-compatible protein-
ligand complexes in a single, differentiable pass, avoiding the slow gui-
dance loops and hand-crafted potentials of earlier diffusion or docking
pipelines. AtomFlow199 unifies protein and ligand atoms into “biotokens”
and applies atomic-resolution SE(3) flowmatching to co-generate ligand
conformations and binding backbones directly from a 2-D molecular
graph. Additionally, FLOWR200 frames structure-aware ligand design as
SE(3)-equivariant flow matching on a mixed continuous-categorical
space. It learns themanifold of pocket-compatible molecules by coupling
continuous FM for 3D atomic coordinates with categorical FM for
fragment/chemotype identities, using equivariant optimal transport and
an efficient pocket-conditioning mechanism to enforce interaction-
aware constraints in a single pass. Building on FLOWR200,
FLOWR.root201 unifies de novo generation, pharmacophore/interaction-
conditional sampling, and fragment elaboration with joint heads for
multi-endpoint affinity prediction and confidence estimation, sharing
the conditional vector field while supervising downstream properties for
multi-purpose structure-aware design. FlowSite202 introduces a self-
conditioned harmonic flow objective that first aligns apo proteins to a
harmonic potential and then co-generates discrete residue types and 3-D
ligand poses, supporting multi-ligand docking and outperforming prior
generative and physics-based baselines on pocket-level benchmarks.
PocketFlow203 incorporates protein-ligand interaction priors (e.g.,
hydrogen-bond geometry) directly into the flow, then applies multi-
granularity guidance to produce high-affinity pockets that significantly
improve Vina scores and generalize across small molecules, peptides, and
RNA ligands. To efficiently recover all-atom structures from coarse-
grained simulations, FlowBack204 utilizes flow matching to map coarse-
grained representations to all-atom configurations, achieving high fide-
lity in protein and DNA structure reconstruction.

Structure prediction
Conformer prediction. Accurately sampling the conformational
ensembles underlying protein function remains challenging due to the
cost of exhaustive molecular dynamics. Recent work leverages sequence-
conditioned, SE(3)-equivariant flow matching to efficiently generate
diverse, physically consistent states aligned with experimental obser-
vables. AlphaFold Meets Flow Matching205 repurposes single-state pre-
dictors (AlphaFold, ESMFold) as generative engines by fine-tuning them
under a harmonic flow-matching objective, yielding AlphaFlow/

Table 4 | Comparison of major protein modeling tasks

Task Input Output Objective

Protein structure
prediction

Amino acid sequence Full 3D structure (backbone+ side
chains)

Predict natural folded conformation

Protein design Target structure or functional
constraint

Amino acid sequence (or full structure) Design a sequence that folds into a desired structure or
achieves a function

Protein backbone
generation

Partial structure, constraints, or
motifs

Backbone atomic coordinates (N, Cα, C) Generate realistic backbone conformations as design
templates

We highlight the distinctions in input, output, objective, and representative methods.
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ESMFlow ensembles that surpass MSA-subsampled AlphaFold on the
precision-diversity trade-off and reach equilibrium observables faster
than replicate MD trajectories. P2DFlow206 augments SE(3) flow
matching with a latent “ensemble” dimension and a physics-motivated
prior, enabling it to reproduce crystallographic B-factor fluctuations and
ATLAS MD distributions more faithfully than earlier baselines.

Side-chain packing. Predicting rotameric states for each residue
requires joint compliance with steric constraints, energetic preferences,
and SE(3)-equivariance. Recent work has explored constrained side-
chain prediction through flow matching. FlowPacker207 formulates side-
chain placement as torsional flow matching, coupling the learned vector
field to EquiformerV2208, an SE(3)-equivariant graph attention backbone.
PepFlow209 generalizes this approach to full-atom peptides using a multi-
modal flow that captures joint distributions over backbone frames, side-
chain torsions, and residue identities. Partial sampling from this flow
achieves state-of-the-art results in fixed-backbone packing and receptor-
bound refinement, while maintaining full differentiability for down-
stream design applications.

Docking prediction. Recent work reframes protein-ligand docking as a
flow-matching (FM) generative problem, replacing diffusion with a
simulation-free objective that learns a bijective map from unbound
receptors (apo) to bound complexes (holo). FlowSite202 introduces a self-
conditioned FM objective that harmonically couples translational, rota-
tional and torsional degrees of freedom. By leveraging GAT and TFN
layers for ligand-protein interaction modeling, it further extends to
jointly generate contact residues and ligand coordinates, substantially
improving sample quality, simplicity, and generality in pocket-level
docking. Meanwhile, FlowDock210 learns a geometric flow mapping
unbound to bound structures, while predicting per-complex confidence
and binding affinity estimates. ForceFM211 reframes protein-ligand
docking as force-guidedmanifold flowmatching, injecting physics-based
energy gradients into translational, rotational, and torsional flows to steer
generation toward low-energy, physically realistic conformations.

Peptide and antibody generation
Recent work206,209,212–214 formulates peptide design as conditional flow
matching over multiple geometric and categorical manifolds, explicitly
modeling residue type, spatial position, orientation, and angles in a unified
generative framework. PepFlow209 introduces the first multi-modal flow
matching framework for protein structure design, jointly modeling residue
positions via Euclidean CFM, orientations via Spherical CFM, angles via
Toric CFM, and types via Simplex CFM. This unified approach achieves
excellent performance on sequence recovery and side-chain packing in
receptor-conditioned design tasks. D-Flow206 extends this paradigm to
D-peptides by augmenting limited training data through a chirality-aware
mirror transformation and incorporating a lightweight structural adapter
into a pretrained protein language model. PPFlow212 formulates peptide
torsion generation as flow matching on a (3n − 3)-torus with n being the
number of amino acids, whilemodeling global transitions and residue types
via Euclidean flows and employing SO(3)-CFM for rotations. This for-
mulation enables effective conditional sampling for diverse tasks such as
peptide optimization and docking. Finally, NLFlow213 pioneers non-linear
conditional vector fields by employing polynomial interpolation over the
positionmanifold, enabling faster convergence toward binding pockets and
effectively addressing temporal inconsistencies across modalities. This
approach leads to improvements in structural stability and binding affinity
compared to prior linear flowmodels. Collectively, these studies underscore
the importance of manifold-specific flows, conditioning strategies, and
geometric priors for scalable, high-fidelity peptide generation. In contrast to
these geometry-intensive approaches, ProtFlow214 treats peptides as amino
acid sequences and bypasses non-Euclidean representations by embedding
each residue using a pretrained protein language model (PLM). In the
embedding space of PLMs, ProtFlow trains a reflow-enabled sequence flow

model that supports both single-step generation andmulti-chain co-design.
Collectively, these studies highlight the critical role of manifold-specific
flows, conditioning strategies, and geometric priors in enabling scalable and
high-fidelity peptide generation.

The study of antibody structure designwith flowmatching is emerging
as well. For instance, FlowAB215 utilizes energy-guided SE(3) flowmatching
to improve antibody structure refinement, integrating physical priors to
enhance CDR accuracy with minimal computational overhead.

Other bio applications
Dynamic cell trajectory prediction
Dynamic cell trajectory: generative trajectorymodels seek to reconstruct the
continuously branching, stochastic evolution of cells from high-dimen-
sional, sparsely sampled single-cell readouts, which is an endeavor ham-
pered by severe noise, irregular time points, and the risk that straight
Euclidean interpolants stray outside the biological manifold. CellFlow216

tackles this by framing morphology evolution under perturbations as an
image-level flow-matching problem on cellular masks, enabling realistic,
perturbation-conditioned movies of shape change that outperform diffu-
sion and GAN baselines in both faithfulness and diversity. GENOT-L140

introduces an entropic Gromov-Wasserstein flow that couples gene-
expression geometry across time points, producing probabilistic lineage
trajectories that capture heterogeneity and branching better than optimal-
transport predecessors while remaining simulation-free. Metric Flow
Matching217 instead learns geodesic vector fields under a data-induced
Riemannian metric, yielding smoother interpolations that respect the
manifold’s curvature and achieving state-of-the-art accuracy on single-cell
trajectory benchmarkswith fewer artifacts than Euclidean flows.Diversified
Flow Matching218 extends this line of work by ensuring translation iden-
tifiability across diverse conditional distributions, a key challenge in mod-
eling heterogeneous cellular states. Unlike prior GAN-based solutions, this
work formulates the problem within an ODE-based flow matching fra-
mework, offering stable training and explicit transport trajectories. Collec-
tively, these works highlight the importance of geometry-aware objectives
and probabilistic conditioning for faithful dynamic cell-state generation.

Bio-image generation and enhancement
Leveraging continuous probability flow to efficiently model biological
structures, flow matching has shown great potential for bio-image genera-
tion and enhancement, enabling faster and more accurate modeling of
complex biological data. One notable application is FlowSDF219, which
introduces image-guided conditional flow matching for medical image
segmentation. By modeling signed distance functions (SDF) instead of
binary masks, FlowSDF achieves smoother and more accurate segmenta-
tion. Thismethod also generates uncertaintymaps, enhancing robustness in
prediction tasks. For medical image synthesis, an optimal transport flow
matching approach220 addresses the challenge of balancing generation speed
and imagequality. By creating amoredirectmappingbetweendistributions,
thismethod reduces inference timewhilemaintaining high-quality outputs,
and supports diverse imaging modalities, including 2D and 3D. In MR
image reconstruction, Multi-Modal Straight FlowMatching (MMSFlow)221

significantly reduces the number of inference steps by forming a linear path
between undersampled and reconstructed images. Leveraging multi-modal
information with low- and high-frequency fusion layers, MMSFlow
achieves state-of-the-art performance in fastMRI and Brats-2020
benchmarks.

Cellular microenvironments from spatial transcriptomics
Flow matching has also emerged as a powerful framework for modeling
spatial transcriptomics (ST) data, which captures gene expression levels
across spatial locations within a tissue. The core task in ST involves
reconstructing or generating spatially-resolved gene expression maps that
reflect underlying cellularmicroenvironments and tissue organization. One
such method is STFlow222 which introduces a scalable flow matching fra-
mework for generating spatial transcriptomics data from whole-slide
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histology images. It models the joint distribution of gene expression across
all spatial spots in a slide, thereby explicitly capturing cell-cell interactions
and tissue organization. Complementarily, Wasserstein Flow Matching
(WFM)223 generalizes flow-based generative modeling to families of dis-
tributions. It introduces a principled way to model both 2D and 3D spatial
structures of cellular microenvironments, and leverages the geometry of
Wasserstein space to better match distributional characteristics across
biological contexts. Together, these methods highlight the utility of flow
matching in capturing the spatially-aware, high-dimensional distributions
characteristic of modern transcriptomics datasets.

Neural activities
Flowmatching has recently shownpromise inmodeling and aligningneural
activity, particularly for time series and brain-computer interface (BCI)
applications, where neural signals are often stochastic and nonstationary.
Stream-level FlowMatchingwithGaussian Processes224 extends conditional
flow matching by introducing streams, which are latent stochastic paths
modeled with Gaussian processes. This reduces variance in vector field
estimation, enabling more accurate modeling of correlated time series such
as neural recordings. Flow-Based Distribution Alignment225 tackles inter-
day neural signal shifts in BCIs through source-free domain adaptation. By
learning stable latent dynamics via flow matching and ensuring stability
through Lyapunov analysis, it enables reliable few-trial neural adaptation
across days. These approaches highlight the versatility of flowmatching for
neural data, supporting both high-fidelity generation and robust adaptation
with limited supervision. DIFFEOCFM226 introduces Riemannian flow
matching for brain connectivity matrices by leveraging pullback metrics to
performconditional FMonmatrixmanifolds, enabling efficient vector-field
learning and fast sampling while preserving manifold constraints.

Evaluation tasks and datasets
In this section, we summarize evaluation tasks and datasets used for
assessing flow matching methods in biology and life sciences. As listed in
Tables 5 and 6, these tasks span a wide spectrum of domains, including
genomics, transcriptomics,molecular chemistry, and structural biology. For
each dataset, we also report its data scale or number of samples. Flow
matching has been applied to a diverse set of generation and modeling
problems, such as biological sequence generation, cell trajectory inference,
molecule design, and protein structure modeling.

Sequence-level generation: flow matching models have been evaluated
on tasks likeDNA51,125,133, RNA227–229, and protein230–232 sequence generation.
These datasets range from promoter and enhancer sequences to large-scale
protein andmetagenomic corpora, covering both canonical and noncoding
regions of the genome.

Single-cell modeling and trajectory inference: flow matching has been
used to model temporal or conditional transitions in high-dimensional
single-cell gene expression data, including developmental trajectories233,
perturbation responses234, and modality prediction235. Datasets such as
PBMC236, dentate gyrus237, and Tabula Muris238 provide diverse experi-
mental contexts for evaluating these tasks.

Molecular generation and conformation modeling: datasets such as
QM9239, ZINC240, GEOM-Drugs241, and MOSES242 provide chemically
diverse molecular structures, enabling evaluation of molecular validity,
novelty, and 3D geometry. Flowmatchingmodels are tested on their ability
to generate, edit, or align molecular graphs and conformers.

Protein and complex design: structural datasets like SCOPe243,
ATLAS244, and curated PDB subsets support evaluation of flow-based
models on protein backbone generation, folding, and structural refinement.
Complementary datasets such as Binding MOAD245, CrossDocked246,
BioLip2247, and PepBDB248 enable studies on molecular docking, peptide-
protein interactions, and binder generation.

Notably, many datasets are reused across different tasks due to their
structural richness and biological relevance. For instance, the Protein Data
Bank (PDB)232 is used in tasks ranging from protein sequence design and
backbone generation to modeling conformational dynamics andT
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performing docking. Similarly, SAbDab249 supports antibody sequence
generation, structural modeling, and binder discrimination.

Despite the growing adoption offlowmatching in biology, thefield still
lacks unified benchmarks for many tasks. This is likely due to the inherent
heterogeneity of biological problems, ranging from sequence to structure,
from single-cell to population scale, which makes standardized evaluation
more challenging. This stands in contrast to fields like computer vision or
NLP, where well-defined benchmarks are more prevalent250–253. Continued
efforts in dataset curation and task formulation are needed to support
consistent and reproducible assessment of generative models in the life
sciences.

Future direction
Flowmatching for discrete sequence generation
Flow matching has recently emerged as a promising generative modeling
paradigm, offering a compelling balance between generation quality and
training stability. While its success in continuous domains like image and
molecule generation has been widely documented, applying FM to discrete
sequence generation, especially in domains such as natural language,
genomics, and code, remains a vibrant and largely underexplored frontier.

One of the most intriguing directions lies in understanding the
representational advantages of discrete Flow Matching compared to tradi-
tional paradigms such as Masked Language Modeling (MLM). Unlike
MLM, which relies on partial observation and tokenmasking, FM provides
a direct mapping from a base distribution to the target sequence via a
continuous probability flow. This raises the question: Can discrete FM yield
more semantically coherent representations and facilitate better down-
streamperformance in tasks such as classification? Recent advances, such as
Fisher Flow125 and Dirichlet FM51, demonstrate that geometry-aware for-
mulations over the probability simplex can encode meaningful geometric
constraints and structure-aware trajectories, enabling more faithful mod-
eling of discrete data distributions.

Another fundamental question concerns the generation capabilities of
discrete FM relative to autoregressive (AR) models. While AR models
remain the gold standard in natural language generation due to their strong
likelihoodmodeling and contextual fluency, they suffer from slow sampling
and exposure bias. In contrast, discrete FM supports parallel generation
through ODE integration or sampling over learned Markov trajectories,

offering substantial efficiency gains. However, its generation quality still lags
behind state-of-the-art AR transformers in language generation125,
prompting future research into architectural refinements andbetter training
objectives.

Furthermore, the integration of FM with Transformer architectures
remains an open challenge. Existing Transformer-based FM models either
operate in latent embedding space or use discrete-continuous relaxations
(e.g., Gumbel-Softmax) to approximate gradient flows. Yet, the Transfor-
mer’s causal attention structure may be suboptimal for non-autoregressive
FM-based sequence generation, especially in domains where left-to-right
order is arbitrary or non-existent (e.g., protein sequences, biological path-
ways). This invites research into order-agnostic architectures or the use of
permutation-invariant encoders to better align with FM-based modeling.

Finally, flow matching may offer unique advantages in non-language
sequence modeling tasks, such as biomolecular design and genome mod-
eling, where biological constraints (e.g., base-pairing, structural motifs)
must be enforced. Unlike language, these sequences often lack natural
generation order and exhibit richmulti-modal dependencies. FM’s ability to
incorporate conditioning, geometry-aware constraints, and structure-
guided generation (e.g., via SE(3)-equivariant or manifold-aware flows)
makes it a particularly attractive candidate. Future work may focus on
developingdiscreteFMformulations that arenot onlydomain-adaptive, but
also biologically interpretable and sample-efficient.

Small molecule generation and modeling
Small molecule generation is a core task in cheminformatics and drug
discovery, where FM has recently shown promising capabilities in both
unconditional and conditional generation settings. Bymodeling continuous
probability flows between simple priors and molecular distributions, FM
offers an appealing alternative to diffusion models, with improved sample
efficiency and thepotential to integratedomainknowledge.However, due to
the scarcity of molecular structure data and the complexity of structural
constraints, several key challenges remain before FM can fully realize its
potential for small molecule generation.

One fundamental limitation lies in the data scarcity and structural
heterogeneity of small molecule datasets. Unlike macromolecules such as
proteins, which benefit from large-scale structural repositories (e.g., PDB),
small molecule datasets are often limited in size and diversity, especially for

Table 6 | Datasets and software in biology and life science to test flow matching methods (part II)

Task Dataset Scale/Number of samples Links Used by

Cell morphology profiling BBBC021276 39,600 images Paper; Homepage; 216

RxRx1277 125,510 images Paper; Homepage; Code; Paper
With Code

216

JUMP Cell Painting278 1.6 billion profiles Paper; Code; AWS 216

Medical image segmentation MoNuSeg279 30 train+ 14 test images Paper; Homepage; 219

GlaS280 85 train+ 80 test images Paper; Homepage; 219

CAMUS281 450 patients; 1600 images Paper; Homepage 220

MSD Brain MRI282 750 scans (T1-weighted) Paper; AWS; PapersWithCode 220

MRI reconstruction fastMRI283 Knee: 1398 scans; Brain: 7002 scans Homepage; Paper; Code 221

BraTS-2020 (Brain Tumor
Segmentation)284

494 subjects, 240 × 240 Homepage; Paper; Kaggle 221

Spatial transcriptomics HEST-1k285 1229 profiles Paper; Code 222

STImage-1K4M286 1149 slides (4,293,195 spots) Paper; Code; HuggingFace 222

Single-cell omics seqFISH287 351 genes; 29 cells per niche Paper; Code 223

scRNA-seq288 32 PCs per meta-cell Paper; Code 223

Neural time series Mouse brain LFP289 50 marginals (50–500ms) Paper; Code 224

Neural population dynamics CO-C (Monkey C)290 5 sessions; 957 units DREAM; Paper 225

CO-M (Monkey M)291 9 sessions; 1728 units pmd-1; Paper 225

RT-M (Monkey M)292 1 session; 130 units NLB-RTT; Paper 225
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annotated 3D conformers. As a result, FMmodels trained on these datasets
may struggle to generalize across different chemical scaffolds, limiting their
utility in low-resource or out-of-distribution scenarios. Addressing this
issue may require more effective data augmentation strategies (e.g., using
force field simulations or generative conformer expansion), transfer learn-
ing pipelines, or semi-supervised flowmatching objectives that make better
use of unlabeled data.

To improve the physical plausibility and functional relevance of gen-
erated smallmolecules, a key direction lies in incorporating domain-specific
inductive priors into both the training and sampling stages of flow
matching. Small molecules are governed by well-defined chemical and
physical constraints, such as bond lengths and angles, valence rules, charge
distributions, and conformational energetics, which can be explicitly
modeled to constrain the learned probability flow. Embedding such priors
into the vector field design or generation trajectories (e.g., via energy-guided
loss functions or structure-aware conditioning) can substantially improve
the realism and synthesizability of generated compounds.

At the same time, enhancing the conditional generation capabilities of
FM is essential for tasks that demand goal-directed molecular design, such
as generatingmolecules with desired pharmacological properties, satisfying
functional group templates, or fitting into predefined binding pockets.
Conditional flow matching offers a natural framework for structure- and
property-guided generation, enabling fine-grained control over outputs via
learned trajectories that satisfy specific constraints. Futureworkmayexplore
more expressive conditioning schemes, multi-property guidance, or
interaction-aware control mechanisms, paving the way for FM-based
models to support precision molecular design in high-stakes domains such
as drug discovery and materials engineering.

A further challenge lies in modeling molecular interactions and
dynamic processes. Molecular docking and binding affinity prediction
remain critical tasks in early-stage drug design, requiringmodels to account
for conformational flexibility in small molecules and the adaptive nature of
protein binding pockets, particularly with respect to side-chain rearrange-
ments. Evenmore challenging tasks, such as enzymedesign, involve not just
molecular recognition but also modeling of specific reaction mechanisms.
Thus, leveraging the FM framework to capture inter-molecular interactions
and reaction dynamics represents a crucial and promising direction for
future research.

Protein
In the field of protein modeling, Flow Matching (FM) has emerged as an
efficient approach for sequence and structure modeling, demonstrating
complementary advantages to traditional methods. Proteins, as highly
complex biological macromolecules, exhibit a unique combination of dis-
crete primary sequences and continuous three-dimensional structures,
which poses distinct challenges for the design and training of FM-based
models.

One important future direction is to establish effective matching
mechanisms across different protein modalities. For example, in mapping
from amino acid sequences to 3D structures, FM could serve as a bridge
between discrete and continuous spaces, enhancing the model’s expres-
siveness in structure prediction and generation tasks. Furthermore, in
applications such as protein-protein docking and complex assembly mod-
eling, FMoffers a promising framework for capturing transformation paths
in high-dimensional, complex spaces.

In addition, modeling protein dynamics, such as conformational
changes or ligand-inducedfit, remains a core challenge in structural biology.
Future work may explore integrating FM with physical simulations (e.g.,
molecular dynamics) or diffusion-based processes, enabling the learning of
natural transition paths between protein states and improving interpret-
ability of their functional mechanisms.

Conclusion
Flow matching has become a compelling alternative to diffusion-based
generativemodeling, offering advantages in stability, efficiency, and control.

In this survey, we provide a structured overviewof its growing use in biology
and life sciences, covering a diverse range of tasks from sequence generation
and molecular design to protein modeling. We also compile a compre-
hensive list of datasets used for evaluation, including their scale and cross-
task applicability. Despite promising progress, we also summarize the
challenges that the field faces. We hope this survey could clarify current
trends and motivate future research at the intersection of generative mod-
eling and the life sciences.
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No datasets were generated or analyzed during the current study.
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