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Understanding themolecular mechanisms underlying cognitive resilience in Alzheimer’s disease (AD)
is essential for identifying novel drivers of preserved cognitive function despite neuropathology.
Rather than directly searching for individual genetic factors, we focus on latent factors and deep
learning modeling as a systems-level approach to capture coordinated transcriptomic patterns and
address the problem of missing heritability. We developed a conditional-gaussian mixture variational
autoencoder (C-GMVAE) that integrates single-cell transcriptomic data with behavioral phenotypes
from a genetically diverse BXDmouse population carrying 5XFADmutations. This framework learns a
structured latent space that captures biologically meaningful variation linked to cognitive resilience.
The resulting latent variables are highly heritable and reflect genetically regulatedmolecular programs.
By projecting samples along phenotype-aligned axes in the latent space, we obtain continuous
gradients of genetic features associated with AD cognitive resilience. These findings highlight the
potential of latent variable approaches not only to model high-dimensional biological data but also to
reveal hidden factors driving phenotypic variability in neurodegeneration.

Alzheimer’s disease (AD) is characterizedbyprogressiveneurodegeneration
and cognitive decline1,2, yet there exists considerable heterogeneity in how
individuals respond to similar levels of neuropathological burden3,4. Some
individuals maintain relatively preserved cognitive function despite sig-
nificant amyloid and tau pathology, a phenomenon referred to as cognitive
resilience5–7. Understanding the molecular mechanisms that underlie this
resilience offers a promising path toward identifying protective factors and
novel therapeutic targets that go beyond traditional amyloid-centric
approaches8,9.

Most transcriptomic studies of cognitive resilience in AD have relied
onbulkRNAsequencing,which averages gene expression across diverse cell
types within a tissue10,11. This approach obscures cell-type-specific signals
andmasks the heterogeneity ofmolecular responses across different cellular
populations12–14. As a result, it can overlook critical resilience-related path-
ways that are active only in specific cell types or subclasses15,16. To address

this, recent efforts have turned to single-cell transcriptomics, which provide
the resolution necessary to resolve cell-type-specific mechanisms17–20.
However, many of these studies remain focused on individual molecular
markers by evaluating one gene or protein at a time19,21, thereby missing
higher-order transcriptional patterns such as coordinated regulatory
modules or latent molecular states22–24. This reductionist approach con-
tributes to the phenomenon ofmissing heritability, in which a large portion
of phenotypic variation remains unexplained by known genetic or mole-
cular features25,26.

Latent variable modeling provides a promising framework to address
these limitations by capturing multivariate and potentially nonlinear
structures embedded in high-dimensional transcriptomic data24,27–29. Rather
than examining genes in isolation, latent variable approaches uncover low-
dimensional representations that summarize coordinated gene activity
across cells24,30. When applied to transcriptomics data, they can reveal
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biologicallymeaningful axes of variation that are not apparent at the level of
individual genesnor linear combinationsof genes. Importantly, unlike some
traditional methods, which aim to analyze groups of genes, such as gene set
enrichment analysis (GSEA)22, which rely on predefined gene sets or
pathways, latent variable models are data-driven and exploratory in nature.
This allows them to identify novel, unanticipated patterns of transcriptional
coordination that may be missed by methods constrained by predefined
biological annotations. These latent features can also serve as endopheno-
types, which are intermediate and heritable traits that bridge the gap
between molecular variation and complex phenotypic outcomes such as
cognitive resilience31,32.

However, extracting meaningful latent structure from transcriptomic
data poses several challenges. First, single-cell transcriptomic data are
inherently sparse and noisy, complicating the learning of robust and gen-
eralizable latent features33,34. Second, the latent space must be able to inte-
grate multiple sources of variation, such as gene expression and behavioral
phenotypes, while disentangling biologically relevant signals from technical
confounders35. Third, many conventional dimensionality reduction tech-
niques commonly used in transcriptomics, such as principal component
analysis (PCA)36, rely on linear assumptions and are inappropriate for
capturing complex gene-gene relationships or nonlinear biological trajec-
tories. Nonlinear dimensionality reduction techniques like t-distributed
stochastic neighbor embedding (t-SNE)37 and uniform manifold approx-
imation and projection (UMAP)38 reveal local clustering structures but lack
an explicit generative framework and often distort global geometry, making
themunsuitable for tasks that require continuous interpolation ormodeling
phenotypic gradients39. These limitations highlight the need for latent
modeling approaches that can learn nonlinear yet globally coherent
representations and support integrative, interpretable analyses across phe-
notypic and molecular domains.

Variational autoencoders (VAEs)40 have been widely applied in the
analysis of high-dimensional single-cell transcriptomic data, especially for
tasks such as cell type identification41,42, clustering43–45, and trajectory
inference46,47. In contrast to traditional methods like PCA, which assume
linearity, VAEs canmodel complex, nonlinear gene-gene relationships and
learn latent dimensions that reflect underlying biological structure48. Unlike
t-SNE and UMAP, which are limited to visualization and often distort
distances between samples, VAEs provide a generative framework that
enables interpolation across the latent space, denoising, and probabilistic
interpretation of uncertainty49. These properties make VAEs particularly
well-suited for modeling continuous biological processes and for dis-
covering latent trajectories aligned with complex phenotypic traits. Existing
applications of VAEs in single-cell studies have largely focused on classifi-
cation or unsupervised annotation tasks, rather than explicitly modeling

phenotypic variation across disease states. Few studies have leveragedVAE-
based latent variable modeling to explore phenotype-driven axes of varia-
tion learned by combining genetic and behavioral data, such as resilient
versus susceptible states in neurodegenerative disease, despite the unique
capacity of VAEs to reveal continuous and multivariate structure aligned
with behavioral outcomes. This represents a major gap in the current lit-
erature and necessitates the use of deep generative models to capture bio-
logically and clinically meaningful dimensions of variation.

The primary goal of our study is to extract hidden factors that
underlie cognitive resilience to autosomal dominant human AD muta-
tions in a set of genetically diverse AD-BXD mice. The AD-BXDs are a
panel of mice that incorporates the 5XFADmutation into the genetically
diverse BXD genetic reference panel50. In this study, we define cognitive
resilience as the ability of 5XFAD transgenic mouse strains to exhibit
better behavioral performance at 14 months of age compared to their
non-transgenic counterparts of the same genetic background at
6 months, quantified using a cognitive resilience trait. To address the
challenges in latent variable modeling, we developed a conditional-
Gaussian mixture variational autoencoder (C-GMVAE), a latent vari-
able model designed to integrate single-cell transcriptomic data with
behavioral phenotypes while imposing structured organization by cog-
nitive resilience traits on the latent space.

Results
C-GMVAE efficiently learns a stable data representation
Our C-GMVAE model builds upon the basic VAE structure with encoder
and decoder layers trained to reconstruct our input data while subject to a
central state, called the latent space, that is low-dimensional and follows a
probability distribution of a mixture of Gaussians (Fig. 1A)51,52. We chose a
Gaussian mixture design rather than the standard single Gaussian to
encourage our encoder to regularize the latent space to reflect the hetero-
geneous structure of cognitive resilience conditions. To further enhance the
model’s capacity to disentangle phenotypic variation, we incorporated
condition labels derived from a quantitative resilience trait (QRT), which
quantifies each sample’s cognitive resilience class based on contextual fear
memory (CFM) measured in a contextual fear conditioning (CFC) beha-
vioral experiment. This conditional structure enables the model to learn
phenotype-aware latent representations by aligning each sample with a
Gaussian component corresponding to its resilience class and encouraging
the emergence of distinct yet continuous phenotypic gradients in the latent
space53. As a result, the model preserves phenotype-specific and heritable
variation, enhances the clustering of biologically similar samples, and
enables smooth class-conditional interpolation across the cognitive resi-
lience spectrum.

Fig. 1 | Overview of the C-GMVAE model and training performance.
A C-GMVAE model architecture. B Convergence of loss terms for the C-GMVAE
model during training. Matrix loss: reconstruction loss of the reduced gene

expression count matrix; CFM loss: reconstruction loss of the contextual fear
memory (CFM) score; and KL loss: Kullback–Leibler (KL) loss.
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Our C-GMVAE model integrates multi-modal data as input with
single-cell transcriptomic profiles and behavioral outcomes. Specifi-
cally, the model was trained using a gene expression count matrix
derived from the hippocampus of 14-month AD-BXDmice, with CFM
scores at the same age serving as behavioral input. We chose a 10-
dimensional space as the internal latent representation of all data. To
evaluate model performance, we calculated loss functions including
three terms (see Methods for details): (1) reconstruction loss of the
reduced gene expression count matrix, (2) reconstruction loss of the
CFM score, and (3) Kullback–Leibler (KL) loss. Successful training of
our models was indicated by stable convergence and a consistent
reduction in loss values across epochs (Fig. 1B). Notably, both the CFM
reconstruction loss and the KL loss decreased in tandem, reflecting
effective learning of phenotypically relevant structure in the latent
space. Overall, the loss convergence demonstrates effective training of
the model on combined molecular and behavioral inputs, laying the
foundation for downstream assessment of latent space structure and
biological relevance.

Learned latent spaces characterizing cognitive resilience
Following model training, we analyzed the 10-dimensional latent space
learned by the C-GMVAE to identify axes of variation aligned with
cognitive resilience. A two-dimensional t-SNE visualization of the 10-
dimensional latent space learned by the C-GMVAE model revealed
clear boundaries between different resilience conditions, with samples
from the same condition tightly clustered together (Fig. 2A). Consistent
with this visual pattern, the latent space exhibited a low Davies Bouldin
Index (DBI ≈ 0.5), reflecting high intra-group compactness and distinct
separation between groups. This structure suggests that the model
captures latent representations that are well-aligned with cognitive
resilience phenotypes. In contrast, latent spaces derived from other
comparative models that lack key features performed less well. We
compared against a standard VAE with a single Gaussian prior, a C-
VAE, which added a conditional layer to the standard VAE, and a
GMVAE, which has a Gaussian Mixture prior yet no conditional layer.
These latent spaces presented as more diffuse in t-SNE visualizations
(Supplementary Fig. 2) and yielded higher DBI values, providing
reference examples of less compact and less structured latent organi-
zation (Supplementary Fig. 3).

To further evaluate the phenotypic relevance of the latent space, we
calculated a phenotypic extremal projection, which is a single directional
axiswithin the latent space spanning fromsampleswith strong susceptibility

to those with strong resilience (see the “Methods” section).We projected all
samples onto this axis, effectively overlaying the full dataset along the dis-
covered resilience gradient in the latent space. Analysis of the phenotypic
extremal projection revealed a clear and continuous modulation of resi-
lience conditions (from strongly susceptible to strongly resilient) (Fig. 2B).
Kernel density estimate (KDE) plots showed that samples from different
resilient conditions were distributed in distinct yet marginally overlapping
regions along this axis. This distribution reflects the stratification observed
in the original QRT scores, supporting the phenotypic relevance of the
learned latent representation. To assess the contribution of specific model
design elements (conditioning layer and the Gaussian mixture prior), we
also compared the sample distribution in this phenotypic extremal pro-
jection axis ofC-GMVAEto the standardVAE,C-VAE, andGMVAE. In all
cases, the resulting phenotypic projections exhibited greater overlap
between resilience conditions and reduced separation between the centroids
of each condition (Supplementary Fig. 4), suggesting that neither con-
ditioning nor mixture priors alone are sufficient to capture a coherent
phenotypic gradient.

To quantify the degree of separation among resilience conditions
captured by each model, we computed the pairwise Euclidean distance
between the centroids of each condition in the projection space. The
C-GMVAE exhibited substantially greater separation compared to the
alternative models (Supplementary Fig. 5), supporting its ability to disen-
tangle phenotypic variation along the cognitive resilience spectrum.
Importantly, while these conditions represent segments along a continuum
rather than fully discrete groups, the smooth yet ordered separation
observed here enables refined modeling of resilience as a gradient, rather
than an artificial dichotomy, consistent with the continuous nature of
cognitive resilience.

In addition, to complement the visual assessment of the phenotypic
extremal projection, we designed a quantitativemetric, termed the ordering
and separation degree (OSD), to evaluate how coherently the latent space
captures the phenotypic resilience gradient (see the “Methods” section for
details). The OSD integrates two aspects of the projection: the monotonic
orderingof conditionpeaks and the separability of adjacentdistributions. By
construction, the OSD ranges from –1 to+1, where positive values indicate
that samples from higher resilience bins are consistently shifted along the
projection relative to lower bins (reflecting a correctly ordered and well-
separated gradient), values near zero denote weak or inconsistent ordering,
and negative values correspond to an inverted relationship. Applying this
metric to theC-GMVAEmodel yielded anOSDof 0.98, substantially higher
than that of other VAE architectures (VAE, C-VAE, andGMVAE, all < 0.3;

Fig. 2 | Visualization of latent space representation and phenotypic extremal
projection by resilience condition. A Scatter plot of a 2D t-SNE embedding derived
from the 10-dimensional latent space. B Kernel density estimation (KDE) plot of

phenotypic extremal projection values computed from the same latent space;
Ordering and Separation Degree (OSD) = 0.98. Both plots are colored by resilience
condition labels derived from our quantitative resilience trait (QRT).
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Supplementary Fig. 4), confirming that the latent representation encodes a
continuous and phenotypically consistent progression from susceptible to
resilient states.

Next, we assessed the association between phenotypic extremal
projections and the QRT by computing Pearson correlation coefficients
across all cell subclasses. The phenotypic extremal projection demon-
strated a strong and statistically significant correlation with the QRT,
with subclass-specific Pearson r values ranging from 0.725 to 0.973
(Fig. 3A). As a reference, correlation coefficients below 0.5 or associations
withp-values≥ 0.05 are generally consideredweakornon-significant in this
context and were occasionally observed in alternative VAE model archi-
tecture (Fig. 3A,B). The consistently high correlations observedbetween the
C-GMVAE-derived phenotypic extremal projections and the QRT suggest
that the model captures biologically meaningful variation aligned with
cognitive resilience across cell types. Notably, this resilience spectrum
emerges even though cell-type information was not provided during
training. As shown in Supplementary Fig. 1, the distribution of phenotypic
extremal projection values within each cell subclass mirrors the subclass-
specific QRT distribution, indicating that the latent space regularization
encourages phenotype-relevant structure to form independently within

diverse cellular contexts. This highlights the model’s ability to disentangle
resilience-associated variation in a cell type-agnostic yet biologically
coherent manner.

To assess whether these latent variables captured more variance in
cognitive resilience than traditional dimensionality reduction techniques,
we performed linear regression using features derived from PCA, t-SNE,
UMAP, and our C-GMVAEmodel, with the QRT as the response variable.
Analyses were conducted separately for each subclass, and both R² values
and adjusted p-values were calculated to quantify the strength and sig-
nificance of each association. The results were visualized in a dot plot
(Fig. 4), where spot color indicates variance explained (R²) and spot size
reflects statistical significance. Latent variables from the C-GMVAE model
consistently exhibited the highest R² values, often exceeding 0.5 across
subclasses, and demonstrated strong statistical significance (adjusted
p < 0.05), outperforming all other feature types. Unlike features from tra-
ditional methods, even non-linear ones, such as PCA, t-SNE, or UMAP,
which either isolate orthogonal axes of variance or prioritize local structure
without preserving global relationships, latent variables learned by the
C-GMVAEmore effectively capture biologicallymeaningful transcriptomic
and behavioral variation associated with cognitive resilience.

Fig. 3 | Correlation between phenotypic extremal projection and cognitive
resilience trait. A Line plot showing the correlation coefficients between the phe-
notypic extremal projection and the quantitative resilience trait (QRT), computed

separately for each cell subclass.BBox plot comparing the distribution of correlation
coefficients across different model architectures, computed separately for each cell
subclass.
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C-GMVAE demonstrates strong reconstruction capacity
While the loss function convergence (Fig. 1) demonstrated that our
C-GMVAEmodel learned to reconstruct CFM, its reconstruction capacity
is further evaluated by visualizing the distribution of reconstructed CFM
values across training epochs and comparing them to the original CFM
distribution. As shown in Fig. 5, the reconstructedCFMvalues generated by
C-GMVAE increasingly resemble the distribution of the original CFMover
the course of training. Critically, in our model, the goal of reconstruction is
not to perfectly replicate the original distribution, but to strike a balance
between reconstruction accuracy and maintaining a continuous and well-
structured latent space for capturing biologically meaningful variation and
enabling smooth interpolation across phenotypic states. The C-GMVAE

achieves this balance, producing realistic behavioral reconstructions while
preserving latent space continuity necessary for downstream phenotypic
analysis.

To quantitatively assess the alignment between reconstructed and
observed behavioral outcomes, we calculated the Pearson correlation
between the reconstructed and original CFM values at selected
training epochs. The correlation values remained consistently high
throughout training (Fig. 5), further supporting the model’s capacity
to accurately reconstruct individual-level behavioral variation. These
results demonstrate that the C-GMVAE captures meaningful beha-
vioral signals and successfully integrates them into the latent
representation.

Fig. 4 | Dot plot summarizing linear regression analyses between different types
of latent variables andquantitative resilience trait (QRT).For each feature—PC, t-
SNE, UMAP, and latent variable (LV) from our C-GMVAEmodel, linear regression
was performed with QRT as the response variable. R² values and adjusted p-values
were computed separately for each subclass, withmultiple testing corrected using the

Benjamini–Hochberg method. Dot color represents the R² value (ranging from 0 to
1), and dot size reflects statistical significance. This visualization highlights both the
strength and reliability of each association. Significance levels: ns not significant
(adjusted p ≥ 0.05); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Fig. 5 | Reconstruction of contextual fear memory
(CFM) by the C-GMVAE model. Distribution of
reconstructed CFM values at selected training
epochs, illustrating progressive alignment with the
original CFM distribution. Line plot showing the
similarity between reconstructed and original CFM
values across epochs, quantified by Pearson corre-
lation coefficients.
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For context, we also examined the reconstructed CFM distributions
generated by theVAEmodelswith different configurations (Supplementary
Fig. 6). Thesemodels served as illustrative examples in which reconstructed
values deviated noticeably from the original CFM distribution with lower
correlation values (Supplementary Fig. 7). These findings suggest that both
conditioning on behavioral phenotypes and enforcing a structured prior are
essential for preserving accurate reconstruction in the decoder.

Latent variables exhibit high heritability
To evaluate the biological relevance of the C-GMVAE latent space, we
estimated the broad-sense heritability (H²) of each latent variable as well as
the phenotypic extremal projection derived from the 10-dimensional
representation. Heritability was calculated using a linear mixed model with
strain identity as a random effect, capturing the proportion of variance
attributable to genetic background (see Methods). The C-GMVAE pro-
duced a latent space characterized by consistently high heritability, with
individual latent variables exhibitingH² values ranging from 0.946 to 0.963
(Fig. 6).Thephenotypic extremal projection alsodemonstrated a substantial
heritability estimate (H² = 0.964), indicating that the resilience-relevant
variation embedded in the latent space is strongly shaped by inherited
transcriptomic and behavioral patterns.

To contextualize these findings, we applied the same heritability esti-
mation procedure to latent spaces derived from other VAE architectures,
including the standard VAE, C-VAE, and GMVAE. These alternative
models yielded markedly lower heritability across most latent dimensions
(typically below 0.2), suggesting that the combination of conditional inputs
and a Gaussian mixture prior in the C-GMVAE is critical for capturing
genetically structured molecular variation (Fig. 6). This result implies that
using either conditioning or aGaussianmixture prior alone is insufficient to

produce a heritable latent structure. It is the joint contribution of both
components that enables the model to disentangle and preserve genetically
driven transcriptomic signals.

Latent space interpolation reflects continuous resilience
trajectories
Part of the power of generative models like VAEs is their ability to produce
new samples from the latent space via the trained decoder layer. The space
between where experimental data lies can be sampled from and used to
generate realistic data, effectively interpolating between observations in a
potentially highly nonlinear manner. To thus examine trajectories of how
genetic features change across the spectrum of resiliency, we developed a
density-guided interpolation framework leveraging kernel density estima-
tion (KDE) and local label estimation.We specifically examined continuous
trajectories between extreme phenotypic conditions—from strong suscep-
tible to strong resilient states as indicated by the decoded CFM scores.

For each such trajectory, we optimized a latent space path under
density regularization to maintain locally nearby existing data in the latent
spacewith the added constraint of decoding continuousCFMvalues (see the
“Methods” section). Our C-GMVAE model demonstrates successful con-
tinuity ofCFMdecoding (Fig. 7), with smoothCFMtransitions that reflect a
continuous transition from data associated with cognitive susceptibility to
those associatedwith cognitive resilience or the reverse.As the latent space is
fully generative, we also decoded latent genetic features along these opti-
mized paths to identify which sets of latent factors are most strongly co-
modulated with cognitive outcomes. From these latent factors, we then
reconstructed gene expression values across all genes and considered only
genes highly connected to the top latent factors. Individual genes show
different trends across the trajectory (e.g., Acadm increases expression from

Fig. 6 | Comparison of heritability across latent
factors and phenotypic projections derived from
different VAE architectures. Bar plots show herit-
ability (H²) estimates for the first ten latent variables
(LV1 - LV10) and the phenotypic extremal projec-
tion (PP) obtained from four models: VAE, C-VAE,
GMVAE, and C-GMVAE.

Fig. 7 | Visualization of bidirectional latent space trajectories and associated gene
expression dynamics. A Trajectories in latent space decoded into CFM values
across multiple trajectories, both forward (moving from susceptible to resilient
locations, solid lines) and backward (from resilient to susceptible, dashed lines).
B Normalized expression of the top latent genetic factor strongly correlated with

CFM (|r| = 0.948), shown for all forward and backward traversals of the latent space
(black line denotes average trajectory). C Top highly weighted genes (normalized
expression) along the average trajectory in (B) yield trends with decoded CFM as a
function of step through the latent space.
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susceptible to resilient locations), but their collective pattern is what the
C-GMVAE identifies as a novel latent factor that is potentially driving
cognitive resilience.

Together, these analyses outline a clear conceptual workflow for using
latent variable models like the C-GMVAE to progress from discovery to
mechanism. The process begins with training a model that learns a struc-
tured latent space aligned with phenotypic outcomes, followed by con-
firming that individual latent dimensions and phenotypic projections are
heritable and thus genetically grounded. Mechanistic hypotheses can then
be derived by examining themost significantmolecular features along latent
traversals or phenotypic axes, such as the trajectory shown in Fig. 7, where
coordinated shifts in the expression of multiple genes, including Acadm,
Nat10, and others, reflect systematic transcriptional changes across the
resilience continuum.These analysesgenerate testablehypotheses regarding
gene sets that may underlie heritable variation in resilience. In future work,
genome editing, perturbation assays, or other functional validation
approaches could be used to experimentally manipulate these candidate
genes or their networks to test their causal roles in cognitive resilience. This
stepwise framework demonstrates how deep generative models can bridge
statistical representation learning with mechanistic and translational
neuroscience.

Discussion
The results of our study demonstrate that the C-GMVAE effectivelymodels
the complex and heterogeneous landscape of cognitive resilience in AD-
BXD mice by integrating behavioral and transcriptomic data. The model’s
architecture, which leverages both a mixture of Gaussians and a con-
ditionally informed latent space, proved especially powerful in capturing
biologically and phenotypically meaningful structure in the data. The
convergence of loss functions, particularly the KL divergence and CFM
reconstruction losses, indicates that the C-GMVAE learns a stable and
interpretable latent representation that reflects underlying behavioral
variability.

Although the C-GMVAE is a deep learning framework with greater
architectural complexity than traditional dimensionality reduction meth-
ods, this complexity is warranted for modeling the nonlinear and multi-
modal structure of this biological data. Simpler linear models are limited in
capturing hierarchical and conditional dependencies amongmolecular and
phenotypic features. The conditional and probabilistic design of the
C-GMVAE enables it to represent these dependencies more faithfully,
yielding latent dimensions that generalize across cell types and align with
genetically driven resilience. These design choices were made to enhance
interpretability and ensure that model outputs reflect meaningful biological
mechanisms.

Compared with the established methods included in our bench-
marking analyses, such as PCA, t-SNE, UMAP, and baseline VAE variants
(VAE, C-VAE, GMVAE), the C-GMVAE differs in both objective and
modeling scope. Traditional linear and nonlinear approaches capture var-
iance or local structure in the data but do not explicitly model conditional
relationships between molecular features and behavioral outcomes. The C-
GMVAE’s conditional and mixture-based architecture overcomes this
limitation by learning latent dimensions that directly align with phenotypic
variation, thereby linking molecular patterns to cognitive resilience.

A key strength of the model lies in its ability to generate a novel
phenotypic extremal projection from the latent space that exhibits strong
correlationwith theQRTacrossmultiple cell subclasses. This cross-cell-type
consistency suggests that the learned latent features are not only statistically
robust but also biologically conserved, enabling insight into shared mole-
cular signatures of cognitive resilience. To further assess the strength of
latent variables as endophenotypes, we performed linear regression analyses
to compare the association of latent variables learned by C-GMVAE and
traditional methods with the quantitative resilience trait (QRT) across
subclasses. Several latent variables exhibited significantly higher R² values
than other types of latent variables (e.g., PCs), particularly among features
passing the adjusted p-value threshold, indicating that the latent space

captures a larger proportion of variance in cognitive resilience. These results
underscore the advantage of latent variables in summarizing nonlinear and
multivariate patterns that are aligned with cognitive resilience, highlighting
their value over traditional dimensionality reduction approaches.

Our learned structured latent space facilitates interpretation and
enables downstreamanalyses suchas interpolation, trajectory inference, and
heritability estimation. The latter is particularly noteworthy—heritability
estimates of individual latent dimensions and the phenotypic projection
revealed remarkably high values. This suggests that the latent space effec-
tively captures genetically regulated transcriptomic patterns that are linked
to behavioral resilience, thus bridging the gap between genotype and phe-
notype in a biologically meaningful way. Moreover, the model’s ability to
reconstruct individual-level behavioral scores with high fidelity provides
strong evidence of its capacity to encode salient phenotypic variation.
Notably, the C-GMVAE showed markedly outstanding performance rela-
tive tobaselineVAEmodels in this regard, suggesting that both theGaussian
mixture structure and the conditional alignment to resilience classes con-
tribute substantially to reconstruction accuracy.

Finally, our interpolation framework illustrates a novel application of
the learned latent space to infer hypothetical molecular trajectories across
phenotypic states. The smooth and continuous transitions of decodedCFM
values along density-regularized interpolation paths suggest that the model
is not merely clustering data but learning a meaningful continuum of
resilience. This capacity opens new avenues for exploring potential mole-
cular pathways that mediate transitions from cognitive susceptibility to
resilience and for identifying candidate genes or regulatory programs that
shape these trajectories.

Collectively, these results position C-GMVAE as a powerful tool for
modeling high-dimensional, multimodal biological data and extracting
interpretable latent representations that alignwithbothbehavioral traits and
genetic architecture. The model provides a framework not only for under-
standing the molecular basis of cognitive resilience but also for generating
new hypotheses about how genetic and transcriptional factors drive phe-
notypic variability in neurodegenerative disease contexts.

Future directions include extending this framework to male AD-BXD
mice to investigate sex-specific molecular mechanisms of resilience and to
assess how the identified latent dimensions generalize across sexes. Because
females show both molecular susceptibility and resilience earlier in disease
progression, their inclusionprovided amorediverse rangeofphenotypes for
modeling these processes. In addition, the candidate genes identified
through mapping trajectories across the latent space represent computa-
tional predictions that warrant experimental validation. Follow-up pertur-
bation studies, including gene knockdown or overexpression, functional
assays in neuronal systems, and sequencing-based validation approaches,
will be critical for confirming their causal roles and translating thesefindings
to human biology.

Methods
Animals
All mice used in this study were group-housed (2–5 per cage) at either the
University of Tennessee Health Science Center or The Jackson Laboratory,
maintained under a standard 12-h light/dark cycle with ad libitum access to
food and water. Female 5XFAD mice on a C57BL/6 J background, har-
boring five human familial Alzheimer’s disease mutations, were crossed
with males from the genetically diverse BXD recombinant inbred panel
derived from C57BL/6J ×DBA/2J strains50. The resulting F1 offspring
represent recombinant inbred backcross progeny, each carrying a mater-
nally inherited B6-5XFAD allele and a paternally inherited B or D allele
from theBXD lineage54. Additionally, F1 populations ofAD-B6 andAD-D2
mice were generated by crossing 5XFAD females (C57BL/6J background)
with C57BL/6J or DBA/2J males, respectively (Fig. 8A). Only female mice
were used in this study. Genotyping to confirm transgene carrier status was
performed either in-house at The Jackson Laboratory’s Transgenic Geno-
typing Services or by Transnetyx (TN, USA). All procedures were approved
by the Institutional Animal Care and Use Committees (IACUC) at both
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institutions and were conducted in accordance with the National Institutes
of Health Guidelines for the Care and Use of Laboratory Animals.

Contextual fear conditioning
A total of 92mice underwent behavioral testing using a standard contextual
fear conditioning (CFC) protocol, including training and testing sessions
(Fig. 8B)50,55,56. The training session began with a 3-min (180-s) baseline
period, followed by four mild foot shocks (1 s duration, 0.9mA), each
spaced approximately 115 ± 20 s apart. Following each shock, a 40-s post-
shock (PS) interval was included, during which the proportion of freezing
period of themouse was recorded. Freezing behavior was again recorded as
contextual fear memory (CFM) was measured when mice were recalled to
the same chamber 24 h later for a 10-min testing session. All animals were
tested using this CFC paradigm at either 6 or 14 months of age.

Tissue collection and transcriptomics data acquisition
Following behavioral testing, brain tissue from the hippocampus was har-
vested from one mouse per strain for RNA extraction (Fig. 8C). Frozen
nuclei were isolated and visually assessed using brightfield microscopy.
More than 10,000 nuclei per sample were loaded onto a single lane of the
10X Genomics Chromium Controller. Single-nucleus encapsulation, bar-
coding, and library preparationwere conductedusing theChromiumSingle
Cell 3’ Reagent Kits v3 (10X Genomics). The sequencing data were
demultiplexed using Illumina’s bcl2fastq software to generate FASTQ files.

Transcriptomics data preprocessing
Base call files were converted to FASTQ files using bcl2fastq (version
2.20.0.422). Reads were aligned to a custom reference genome based on
GRCm39 pre-mRNA transcriptome, incorporating 5XFAD mutations to
generate sample-level cell count matrices using the Cell Ranger count
pipeline with intronic reads included (version 7.0.0, chemistry V3, 10x
Genomics). To confirm the genetic integrity of B6 x BXD samples, RNA-
strain-match (v.1.0.0)57 assessed alignment of reads to strain-specific SNP
data. Read counts in the ddx3y and xist regions verified the assigned sample
sex for each sample. Three samples that did not meet the sample integrity
criteria were excluded, resulting in a final set of 53 samples included for
analysis. Ambient RNA background noise was removed using CellBender
(v.0.3.0)58 with a learning rate of 1e-5 across 150 epochs.

All sample processing was done using Seurat (version 5.1.0)59 in R
(version 4.4.1). Initial cell-levelfiltering retained cellswith uniquemolecular
identifiers (nUMIs) from 500 to 20,000, and mitochondrial and ribosomal

gene content (Rps, Rpl, and pseudogenes) up to 5%. After filtering, each
sample was individually normalized using SCTransform followed by
dimensionality reduction via PCA. Samples were integrated using
Harmony60. Subsequently, the construction of a shared neighbor graph,
Louvain community detection clustering, and visualization using UMAP
were executed on the integrated data space.

DoubletFinder (version 2.0.3)61 was used to identify and filter doublets
starting with a doublet rate estimate of 5%. For each sample, the algorithm
was executed twice: initially using parameter sweeps to find optimal para-
meters for expected doublet counts, and then with adjustments based on
homotypic doublet proportions. Clustering was performed at high resolu-
tion to determine the proportions of doublets within clusters. A two-stage
filtering process was implemented: initially removing individual cells
marked as doublets and then filtering out clusters exhibiting over 70%
doublet proportions. Nuclei belonging to these high-doublet clusters were
flagged and removed from further analysis.

Cell type and subclass annotation
Following doublet removal, cell type annotation was conducted using the
MapMyCells (RRID:SCR_024672) from the Allen Brain Institute, which
compares input data to high-quality reference datasets. For this analysis, the
10x Whole Mouse Brain (CCN20230722) taxonomy62 was selected, and a
hierarchical mapping algorithm was employed. Doublet-filtered data in
Seurat format was converted to H5AD format, suitable forMapMyCells, by
aligning raw counts with SCT features and incorporating necessary cell
metadata and gene annotations.

After cell-type annotation, nuclei were assigned class labels based on
hierarchical taxonomy. Initial filtering involved excluding top-level classes
with fewer than 10 nuclei. Nuclei were then grouped into specific cell types,
including excitatory neurons, inhibitory neurons, astrocytes, oligoden-
drocytes, immune, and vascular. Expected and mixed class markers were
defined for each nucleus type based on canonical markers to guide the
cleanup process. For each nuclear type, clustering was conducted at high
resolution within the integrated data space (Seurat, FindClusters, resolu-
tion = 1.5), and the resulting data were visualized in UMAP (Seurat,
RunUMAP, dims = 1:30). Iterative removal of clusters with mixed marker
signals was performed based on marker-based cluster summaries, ensuring
refined, type-specific groupings. Thefinal cleaneddatasetwas clusteredwith
a resolution of 0.5 to establish the definitive groupings for further analysis.

A custom regional reference file was developed from the Allen Brain
Institute’s whole brain taxonomy to establish ground truth and aid in

Fig. 8 | Single-nucleus RNA-sequencing of the hippocampus fromgenetically diverse ADmousemodels. A Schema of theAD-BXDmouse population.BContextual fear
acquisition (CFC) paradigm to assess contextual fear acquisition (CFA) and contextual fear memory (CFM). CHippocampus tissue collection and snRNA-seq generation.
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subclass annotations. Raw files across all chemistries for the region of
interest were downloaded. Taxonomic annotations, including class, sub-
class, supertype, and cluster, were then integrated with the expression data.
Subsequently, datawerefiltered to ensure sufficient representation across all
classes and subclasses for each chemistry, retaining only datasetswhere each
class contained at least 50 cells. This filtering step led to the exclusion of
10 xMulti chemistry due to insufficient cell counts. The resulting datasets
were combined into a single Seurat object. For each cell type, the reference
dataset was further refined by filtering subclasses with at least 30 counts,
ensuring only valid subclasses were included. Each cell type reference file
underwent SCTransform normalization to regress out the effects of library
preparation methods, creating a tailored reference for subclass annotation.

To address increased subclass diversity beyond what marker-based
methods could resolve, subclass annotation was reinforced through inte-
gration with the custom regional reference file. Initial filtering ensured valid
subclasses by using count thresholds, retaining only data with sufficient
representation. For eachcell type,both the referenceandquerydatasetswere
subsampled to ensure equal representation across all top-level classes. This
subsampling facilitated a balanced comparison and parameter optimization
for optimal integration settings.

Using the rliger package (version 2.1.0), the subsampled datasets were
first used to determine the optimal parameters, k and λ, for UINMF-based
alignment63. Subsequently, full datasets were integrated with refined para-
meters, typically set to k = 30 and a lambda value tailored for each cell type,
allowing for robust integration and precise alignment of cell identities. k-
nearest neighbors (kNN) was employed to transfer subclass annotations
from reference to query samples, leveraging the integration results. Factor
loadings obtained through Liger integration allowed for the identification of
the nearest reference cells, with subclass annotations assigned based on the
predominant class among the top five closest neighbors for each query cell.
The predicted subclass annotations underwent validation using predefined
subclass markers for each cell type. Marker gene expression patterns were
compared across the integrated data space to assess whether each subclass
exhibited the expected marker profiles in both the reference and query
datasets.

Quantitative resilience trait
To quantify AD cognitive resilience, we leveraged the CFM of aged AD-
BXDmice harboring the 5XFAD transgene with that of younger Ntg-BXD
mice of the same strain that did not have the transgene. First, we calculated
the average CFM score for each AD-BXD strain at 14 months of age (51

mice total, 2–8mice per strain) and for each correspondingNtg-BXD strain
at 6months of age (41mice total, 2–5mice per strain).We then performed a
weighted linear regression of the 14-month CFM score for AD-BXD mice
against the 6-month Ntg-BXD strain means (Fig. 9A). This strain-level
regression allowedus to estimate residuals that reflect cognitive decline from
expected age and genotype-matched baselines64.

In this regression of 14-month CFM scores for 5XFAD mice on the
correspondingNtg-BXDstrainmeans,we observed a statistically significant
butmodest explanatory power (R² = 0.062, p < 0.05), with a regression slope
less than 1 (Fig. 9A). This result suggests that while the 5XFAD transgene
generally impairs cognitive function, much of the individual variability in
cognitive decline remains unexplained by baseline strain performance
alone. We quantified this unexplained variance as “14-month AD-BXD vs.
6-monthNtg-BXDCFMresiduals”, whichwere standardized, resulting in a
z-score as the quantitative resilience trait (QRT), representing a continuous
measure of cognitive resilience. To stratify strains for conditionalmodeling,
we applied k-means clustering to the QRT values and selected k = 4 as the
smallest number of clusters beyond abinary susceptible–resilient split,while
maintaining balanced representation across the 12 strains (three strains per
group). This choice ensured sufficient biological diversity within each
category while avoiding over-fragmentation, resulting in four cognitive
resilience conditions: Strong susceptible, Weak susceptible, Weak resilient,
and Strong resilient (Fig. 9B).

Conditional–Gaussian mixture variational autoencoders
(C-GMVAE)
To model the heterogeneous transcriptomic and behavioral features
underlying cognitive resilience, we developed a conditional Gaussian mix-
ture variational autoencoder (C-GMVAE) (Fig. 1A). The architecture builds
upon the basic VAE framework, consisting of an encoder and decoder
network trained to reconstruct high-dimensional input data through a
lower-dimensional latent space constrained by a probabilistic prior. The
encoder network compresses the input features through a series of fully
connected layers with decreasing dimensionality: 128, 64, and 32 neurons,
respectively, before projecting the data into a 10-dimensional latent space
(the bottleneck layer). The decoder mirrors this structure, taking the latent
representation as input and sequentially expanding it through layers of 32,
64, and 128 neurons, ultimately reconstructing the data back to the original
input dimensionality.

The C-GMVAE was trained using multi-modal input data that inte-
gratesmolecular and behavioral features. Transcriptomic input consisted of

Fig. 9 | Deriving a quantitative trait for cognitive resilience to 5XFADmutations.
AWeighted least squares analysis of all 14-month AD-BXD contextual fearmemory
(CFM) observations against the strain means of 6-month Ntg CFM. Observations
are weighted by nBXD

�1 (where nBXD is the number of mouse samples per BXD
strain) to ensure equal weight is given to each BXD strain. BMean residual was used
as QRT, a measure to stratify AD-BXD strains into different resilient conditions.

Strains were assigned a number generated by k-means clustering based on their
QRT. Cluster numbers from 0 to 3 correspond to the following cognitive resilience
conditions: Strong susceptible, Weak susceptible, Weak resilient, and Strong resi-
lient, respectively. This cluster numberwas subsequently used as a conditioning label
in the C-GMVAE model.
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a gene expression count matrix with 31,483 genes acquired from the hip-
pocampus of 14-monthAD-BXDmice. Due to the high dimensionality and
data sparsity in single-cell transcriptomic datasets, we first appliedGaussian
random projection65,66 to the original gene expression count matrix before
incorporating it with behavioral measurement. This step was designed to
improve computational efficiency and reconstruction capability, which are
particularly pronounced when working with tens of thousands of gene
features in sparse expression matrices. Gaussian random projection works
by projecting the data into a lower-dimensional subspace using a random
matrix whose elements are drawn from a Gaussian distribution. The
minimum number of projected dimensions was determined by the
Johnson–Lindenstrauss lemma67, which provides theoretical guarantees
that the pairwise distances between data points are preserved with high
probability under projection. By applying Gaussian random projection as a
preprocessing step, we ensured that essential biological variation was pre-
servedwhile reducing noise and redundancy. To validate this, we computed
pairwise sample distances in both the original and projected spaces and
observed a correlation coefficient of ~0.7, indicating a moderate preserva-
tion of global structure. This facilitatedmore stable model convergence and
enabled the C-GMVAE to focus on extracting meaningful latent features
from a compressed, yet representative, input space.

To incorporate behavioral context, we used CFM scores measured at
14 months of age for each AD-BXD mouse. These continuous behavioral
values were concatenated with the random projected features and provided
as part of the input vector to the encoder. Prior to concatenation, both the
projected gene expression features and the behavioral CFM scores were
standardized (z-scored) to ensure comparable numerical ranges and pre-
vent scale-related biases in gradient updates and loss optimization. This
normalization follows standard neural network practice for stabilizing
training and avoiding feature dominance due to differing variances68 and is
consistent with best practices in multimodal learning for balancing het-
erogeneous inputs69.

Resilience condition labels derived from QRT were used to condition
both the encoder and decoder with sampling steps, while aligning each data
point with a specific Gaussian component in the latent prior. In our model,
we generated priors in the form of aGaussianmixturemodel for each latent
dimension. For initialization, four distinct values were randomly selected as
the centers (means) of theGaussian components for each dimension. These
values were chosen to ensure that the range and pairwise distances between
centers were unique across dimensions, introducing variability and
encouraging dimension-specific structure in the latent space. Each of the
four selected centerswas pairedwith afixed standarddeviationof 2, defining
moderately overlapping Gaussian components that remained sufficiently
separated to preserve cluster identity. Using these parameters, we generated
512 samplesper latent dimension tomatch thebatch size usedduringmodel
training. The resulting samples formed a mixture distribution where indi-
vidual components exhibited partial overlap but remained visually and
statistically distinguishable, thus supporting the formation of separable and
interpretable modes in the latent space. All VAE models were trained with
28,247 single-cell samples representing 41 cell subclasses, spanning five
major cell types (excitatory neurons, inhibitory neurons, microglia, astro-
cytes, and oligodendrocytes), across 12 mouse strains.

Loss functions of VAE models
The total loss function applied in VAE models is defined as the sum of all
reconstruction losses40 and the Kullback–Leibler (KL) divergence loss40,70.
Specifically, it includes (1) the reconstruction loss of the random projection
of the gene expression count matrix, (2) the reconstruction loss of the CFM
score, and (3) theKLdivergence loss between the approximate posterior and
the condition-specific Gaussian mixture prior. This combined objective
balancesaccurate reconstructionofbothmolecular andbehavioral datawith
regularization of the latent space, guiding the model to learn compressed
representations that are both generative and biologically structured. The
neural network weights were optimized using the Adam optimizer to
minimize the total loss function, enabling efficient backpropagation and

stable convergence during training. The model was trained for 15,000
epochs to ensure stable optimization and thorough exploration of the
latent space.

The reconstruction loss in ourmodel is composed of two components,
each reflecting a distinct aspect of the input data. First, we calculated the
reconstruction loss of the random projected count matrix. This loss is
computed using the average value ofmean squared error (MSE) of all input
features (4842 randomprojection features),whichquantifieshowaccurately
the decoder can reconstruct the transcriptomic data from the latent
representation71. It ensures that the core transcriptomic features compressed
via random projection are preserved during encoding and decoding. Sec-
ond, we incorporated a reconstruction loss for the CFM score, which was
provided alongside the countmatrix input during training. Thedecoderwas
trained to reconstruct this scalar phenotype value as part of the model’s
output, and the corresponding loss was also computed using MSE. We
compared reconstruction losses across multiple model configurations, with
standardVAE, C-VAE,GMVAE, and our proposedC-GMVAE to evaluate
each architecture’s ability to capture both transcriptomic and behavioral
structure. These comparisons were performed separately for thematrix loss
(Supplementary Fig. 8B) and behavioral reconstruction (CFM loss in Sup-
plementary Fig. 8C). The enhanced performance of C-GMVAE suggests
that incorporation of both Gaussian mixture priors and conditional label
information enables the model to more accurately reconstruct high-
dimensional, multimodal data reflective of cognitive resilience.

In VAE models, the latent space is optimized not only to encode
compressed representations of the input data but also to align with a pre-
defined prior distribution. This regularization is achieved through the KL
divergence loss, which encourages the approximate posterior distribution
learned by the encoder to match the specified prior. Enforcing such prior
helps promote more interpretable and disentangled latent representations
while also enabling generative capabilities such as sampling, interpolation,
and conditional synthesis. We monitored the KL divergence loss through-
out model training as a key indicator of successful latent space regulariza-
tion. A progressive decrease and eventual stabilization of the KL loss across
epochs indicated that the encoder was learning to generate posterior dis-
tributions that closely matched the predefined priors. Additionally, com-
paring KL loss across different model configurations (provided insight into
how effectively each architecture preserved the structure of the Gaussian
mixture, with lower KL divergence reflecting better alignment and more
coherent latent representations (Supplementary Fig. 8D). While lower KL
loss typically reflects better alignment with the imposed prior and more
coherent latent representations, direct comparisons between models using
different prior distributions, specifically, a single Gaussian prior in the VAE
and C-VAE versus a Gaussian mixture prior in the GMVAE and C-
GMVAE, are not strictly equivalent or fully interpretable. Nevertheless,
these comparisons offer valuable insight into how each model regularizes
the latent space relative to its prior assumptions.

Phenotypic extremal projection
While the 10-dimensional latent space captures rich transcriptomic varia-
tion, interpreting or modeling all 10 latent variables simultaneously is
challenging due to their complexity and potential correlations. To address
this, we developed a phenotypic extremal projection, which is amethod that
reduces the latent space to a single scalar coordinate aligned with a biolo-
gically defined axis of cognitive resilience, ranging from strongly susceptible
to strongly resilient.

This projection offers several key advantages. First, it enhances inter-
pretability byproviding an intuitivemeasure ofwhere each sample lies along
the cognitive resilience spectrum, as opposed to requiring interpretation of a
multidimensional vector. Second, it facilitates comparability across indivi-
dual samples, mouse strains, or cell types by anchoring them to a shared,
biologically grounded coordinate system. Third, by collapsing the multi-
dimensional latent space into a single value, the projection reduces model
complexity and mitigates the curse of dimensionality, thereby improving
statistical power for downstream analyses such as heritability (H²)
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estimation and cell type-specific correlation analysis. In summary, this
approach ensures that the projected values explicitly align with known
phenotypic extremes, thereby focusing on variation most relevant to cog-
nitive resilience.

The phenotypic extremal projection is computed through the follow-
ing steps. First, we identify the centroids of the latent space representations
for samples in the strong susceptible condition and the strong resilient
condition. These centroids represent the average position of each pheno-
typic extremal group within the 10-dimensional space. Next, we define a
vector referred to as the phenotypic extremal axis that connects these two
centroids. This axis captures the primary direction of phenotypic variation
relevant to cognitive resilience. Each sample’s 10-dimensional latent
representation is then projected onto this axis by calculating the scalar
projection,which is thedot product of the sample’s latent vector and theunit
vector of the extremal axis. The resulting scalar value represents the sample’s
position along the resilience gradient and serves as its phenotypic extremal
projection score.

Ordering and separation degree
To quantitatively evaluate the structure of the phenotypic extremal pro-
jection, we developed a composite metric termed the ordering and
separation degree (OSD), which was applied exclusively to this projection
axis. The OSD quantifies how coherently the phenotypic gradient—from
the most susceptible to the most resilient—is represented within the latent
space. Each cell sample was first projected onto the phenotypic extremal
axis, and for each resilience bin b 2 f0; 1; 2; 3g, corresponding respectively
to Strong Susceptible, Weak Susceptible, Weak Resilient, and Strong Resi-
lient conditions, we estimated the distribution of projection values using
KDE. The mode (peak location) of each distribution, denoted crnb, repre-
sented the characteristic coordinate of that condition along the resilience
gradient. The global monotonic relationship among these conditions was
quantified using Spearman’s rank correlation72 between the ordered bin
indices and their corresponding KDE peaks:

ρSpearman ¼ CORRrankð½0; 1; 2; 3�; ½crn0; crn1; crn2; crn3� ð1Þ

where Spearman’s ρ approaching positive 1 indicates a perfectly mono-
tonically increasing order along the resilience gradient, near 0 indicates no
consistent ordering, and approaching negative 1 indicates a reversed
pattern.

Local separability between adjacent conditions (0 vs. 1, 1 vs. 2, 2 vs. 3)
was evaluated using the area under the receiver operating characteristic
curve (AUC), treating the higher bin as the positive class. Each AUC was
converted to Somers’ D73 to standardize its range as

Db;bþ1 ¼ 2 ×AUCb;bþ1 � 1 ð2Þ

where positive values indicate stronger directional separation between
neighboring phenotypic states.

The mean adjacent Somers’ D summarized the average pairwise
separability:

�Dadjacent ¼
1

n� 1

Xn�2

b¼0

Db; bþ1 ð3Þ

where n is the total number of resilience bins included in the analysis (here
n = 4); n−2 is the upper bound of the summation index, representing the
last adjacent bin pair considered when computing the mean Somers’ D.

Finally, the ordering and separation degree was defined as

OSD ¼ ρSpearman× �Dadjacent ð4Þ

This compositemetric integrates globalmonotonic orderingwith local
separability, yielding a single interpretable measure in the range [−1,1],
where positive values indicate a correctly ordered and well-separated

resilience gradient, values near zero reflect weak or inconsistent ordering,
and negative values denote an inverted pattern.

Heritability estimates
To assess the genetic basis of the learned latent variables, we estimated their
heritability (H²) using a variance decomposition approach74. Heritability
was defined as the proportion of total variance attributable to genetic factors
and was calculated using the following equation:

H2 ¼
σ2g

σ2g þ σ2e
ð5Þ

where σ2g is genetic variance attributed to genotype or strain; σ2e is the
residual error term that captures all non-genetic variations, including
environmental noise, technical variability, and biological variability within
strains (e.g., single-cell data aggregated across diverse cell types).

To estimate these variance components, we employed a linear mixed
model (LMM) framework, which enables partitioning of total variance into
strain-level (genetic) and residual components75. Specifically, for each latent
variable and phenotypic projection, we modeled its value across single cell
samples using the following formulation:

zij ¼ μþ ui þ ϵij ð6Þ

where zij is the latent variable value for the jth cell in strain i; μ is the overall
intercept (fixed effect); ui�N ð0; σ2gÞ is a random effect associated with
strain i, capturing the contribution of genetic background; and
ϵij�N ð0; σ2e Þ is the residual error for each observation which serves to
model all non-genetic sources of variation such as environmental influences
and intrinsic biological variability within strains (e.g., heterogeneity among
cells of the same strain and cell type subclass).

Association between latent variables and cognitive resilience
To evaluate the biological relevance of latent space representations in rela-
tion to cognitive resilience, we quantified their association with the QRT
scores. Specifically, we performed Pearson’s correlation between the stan-
dardized values of the phenotypic extremal projection and the corre-
sponding QRT scores. The resulting p-values were used to assess the
statistical significanceof each correlation.To investigate the role of cell-type-
specific variation, this analysis was conducted separately for each cell sub-
class, allowing us to examine how different cellular contexts influence the
relationship between transcriptomic latent space and resilience phenotypes.
To correct multiple hypothesis testing across comparisons, we applied the
Benjamini–Hochberg procedure76 to control the false discovery rate (FDR)
at a threshold of 0.05.

To further quantify the proportion of variance inQRT captured by the
latent variables, we performed linear regression with one latent variable as
thepredictor andQRTas the response variable. This analysiswas conducted
independently for each cell subclass. For each regression, we computed the
coefficient of determination (R²) to measure the variance explained, along
with p-values to assess statistical significance. Multiple comparisons were
also correctedusing theBenjamini–Hochbergprocedure to control theFDR
at a threshold of 0.05.

Latent space clustering
To assess howwell the learned latent space reflected underlying phenotypic
structure,we used a combinationof qualitative andquantitative approaches.
Evaluating the structure of the latent space is critical for determining
whether the model captures biologically meaningful variation rather than
noise or irrelevant features. In the context of phenotypic stratification, a
well-organized latent space should separate samples according to mean-
ingful biological or behavioral differences, such as cognitive resilience or
disease state. Without such an evaluation, it is unclear whether the latent
representation supports downstream tasks such as classification, clustering,
or trajectory inference. Therefore, assessing both the visual structure and
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quantitative separability of conditions in the latent space is essential for
validating model interpretability and biological relevance. For qualitative
evaluation, we applied t-SNE to project the 10-dimensional latent repre-
sentations into two dimensions. This nonlinear dimensionality reduction
method preserves local relationships between points, allowing for visual
inspection of how samples are organized in latent space. We generated
t-SNE plots for each model at the final training epoch, with each sample
colored by its resilience condition.Well-clustered latent representations are
expected to showcompact, non-overlappinggroups in the t-SNEprojection,
corresponding to distinct phenotypic categories.

For quantitative evaluation, we calculated the Davies–Bouldin Index
(DBI)77 to measure clustering quality at multiple stages of training (epochs
100, 300, 1000, up to 15,000). DBI evaluates the average similarity between
each cluster and itsmost similar neighboring cluster based onwithin-cluster
compactness and between-cluster separation. Lower DBI values indicate
better clustering, with more compact and well-separated groups; value
below 1 typically suggests that clusters are well-defined and distinct relative
to their internal variability. This metric was used to compare clustering
performance across different models and to monitor how the latent space
structure evolved during training. Among the models tested, lower DBI
scoreswere interpreted as evidence of amorediscriminative andbiologically
meaningful latent space.

Latent space trajectories
We began by identifying representative trajectory endpoints by selecting
cells from the bottom and top deciles of the decoder-predicted CFM dis-
tribution in latent space. These endpoints were further constrained to differ
in their susceptibility class labels, ensuring that interpolations reflected
meaningful phenotypic transitions. For each low-to-high CFM pair, we
generated continuous trajectories in the 10-dimensional latent space using a
density-guided interpolation method. A Gaussian kernel density estimator
(KDE) was first fitted to all latent representations to estimate the data
manifold. At each step t, a new point was computed via a weighted blend of
the vector toward the target and the local log-density gradient:

ztþ1 ¼ zt þ η � ½ð1� λÞdgoal þ λ∇z log pðztÞ� ð7Þ

where dgoal is the normalized direction to the endpoint, ∇z log p zt
� �

encourages the path to remain within regions of high latent density. The
trade-off parameter and λ 2 0; 1½ � control the influence of local density
versus the direct interpolation direction. The step size η is adaptively
increased to reach the next sufficiently dense region when the KDE log-
density drops sharply between steps to ensure biological plausibility.

The step size η was initialized as the Euclidean distance between the
trajectory endpoints divided by the total number of interpolation steps
(chosen here as 24) and was adaptively reduced by 10% whenever the
proposed next point entered a low-density region where the log-density
dropped by more than 0.5 log-units relative to the previous step. The final
λ ¼ 0:5 value was selected empirically after comparison with λ ¼ 0:1 and
λ ¼ 0:9, as it consistently produced smooth and biologically plausible tra-
jectories (Fig. 7A). These heuristic settings yielded stable, reproducible
trajectories across runs and achieved a balance between trajectory
smoothness, computational efficiency, and biological interpretability.

To assign interpretable identities along the trajectory, we applied a
Dirichlet neighborhoodmodel. At each point, class frequencies of k-nearest
neighbors in the latent space were used to compute a Dirichlet distribution
over susceptibility labels. The expected label (argmax of the posteriormean)
was assigned, and per-step uncertainty was estimated using the entropy of
the distribution, allowing us to track label transitions and ambiguity.

Each trajectory point, along with its assigned label, was decoded into
two outputs: the reconstructed gene expression vector and a predictedCFM
score (Supplementary Fig. 9). Projected gene features were reverse trans-
formed into the original gene space by un-scaling and applying the pseu-
doinverse of the random projectionmatrix used during data preprocessing.

This enabled full recovery of gene-level trajectories corresponding to
modulation along the cognitive resilience axis.

Functional enrichment analysis
To investigate gene-level contributions to behaviorally relevant latent gene
features, 10 pairs of trajectory endpoints were selected to represent transi-
tions in both forward (low to high CFM) and backward (high to low CFM)
directions. For each of the resulting 20 trajectories, projected gene features
and their gene-level trajectories were reconstructed. Among the top 0.1%of
high-dimensional genes (ranked by the absolute value of their connection
weights to latent gene features), only those associated with latent features
showing an absolute Pearson correlation with CFM ≥ 0.65 were retained.
From this subset, unique geneswere extracted and divided into positively or
negatively effective groups based on their directional effect on CFM.

Predicted genes, RIKEN cDNAs, unannotated entries, and duplicates
were excluded, and only genes annotated as “protein-coding” according to
MyGeneInfo (https://mygene.info/) were retained, ensuring that the final
lists included only curated protein-coding genes with either positive or
negative effective correlation toCFM.Curated gene lists fromall trajectories
were further filtered by selecting only those genes present in the intersection
of all positive (or all negative) lists across the 20 trajectories, ensuring that
downstream analysis focused on genes consistently and robustly associated
with CFM in every comparison. The final list for the 20 trajectories con-
sidered above contained 256 protein-coding genes. Functional enrichment
analysis (over representation analysis) was performed using g:GOStmodule
of g:Profiler (https://biit.cs.ut.ee/gprofiler/gost), mapping the final gene sets
to Gene Ontology Biological Process (GO:BP) terms for Mus musculus
(Supplementary Fig. 10). Enrichment significance was assessed using
g:Profiler’s built-in multiple testing correction method (g:SCS), with a sig-
nificance threshold of 0.05.

Data availability
All code files developed for this study are available. The datasets generated
and/or analyzed during the current study are available from the corre-
sponding author upon reasonable request.
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