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Integrated genomic analysis and CRISPRi
implicates EGFR in Alzheimer’s
disease risk
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Genome-wide association studies (GWAS) have identified numerous loci linked to late-onset
Alzheimer’s disease (LOAD), but the pan-brain regional effects of these loci remain largely
uncharacterized. To address this, we systematically analyzed all LOAD-associated regions reported
by Bellenguez et al. using the FILER functional genomics catalog across 174 datasets, including
enhancers, transcription factors, and quantitative trait loci. We identified 41 candidate causal variant-
effector gene pairs and assessed their impact using enhancer–promoter interaction data, variant
annotations, andbrain cell-type-specificgeneexpression.Notably, theLOAD risk allele of rs74504435
at the SEC61G locus was computationally predicted to increase EGFR expression in LOAD-related
cell types: microglia, astrocytes, and neurons. Functional validation using promoter-focused Capture
C, ATAC-seq, and CRISPR interference in the HMC3 human microglia cell line confirmed this
regulatory relationship. Our findings reveal a microglial enhancer regulating EGFR in LOAD,
suggesting EGFR inhibitors as a potential therapeutic avenue for the disease.

Alzheimer’s disease (AD) is the leading cause of dementia in the United
States and currently lacks effective treatments or prevention strategies. The
most common form, late-onset Alzheimer’s disease (LOAD), typically
begins after age 60 and is highly heritable (60-80%), indicating a significant
genetic component in its development1.While theAPOE locus remains the
strongest genetic risk factor2, LOAD is complex and highly polygenic3.
Previous genome-wide association studies (GWAS) identified over 20
LOAD-associated loci2,4; recent studies using UK Biobank proxy-AD or
proxy-control samples have expanded this list to 75 loci5,6. Although pro-
gress has been made in linking LOAD genetic risk to microglial-mediated
innate immune processes7–9, the broader cellular contexts of these variants
remain incompletely understood. Emerging evidence suggests that LOAD-
associated variants also affect other brain cell types, including myeloid

cells10, astrocytes, and neurons, but the mechanisms across these diverse
cellular environments remain largely uncharacterized.

Over 90% of GWAS variants are located in non-coding regions of the
genome, outside of protein-coding sequences10,11. These non-coding var-
iants are widely hypothesized to affect gene regulatory elements, such as
enhancers12–14, which can influence the expression of distant target genes15.
The difficulty in identifying such distal genes arises from the challenges
related to linkage disequilibrium (LD) with nearby non-causal variants and
the variability in the biological contexts of the corresponding target ‘effector’
genes. Despite these, some studies have applied various statistical and
computational methods, along with new data types, to analyze non-coding
GWAS signals for AD10,16–18. This effort is important because drugs with
genetic support are twice as likely to gain approval19–21.
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However, these studies face limitations in their analytical strategies.
First, they traditionally focus only on top GWAS signals (sentinel variants),
restricting the understanding of AD’s full genetic landscape5,6,16. Since any
variant in LD with a sentinel could be causal, comprehensive analyses
should include both sentinel and nearby LD variants. Second, genome-wide
functional genomics data for brain tissues or specific cell types remain
limited and relatively small compared to data from other cell types or cell
lines22–24. Third, prior computational analyses of non-coding variants often
failed to integrate eQTLs from independent sources to confirm consistency
and replication of effect alleles and signal direction5,6,10,11. Finally, no pre-
vious analyses have combined eQTLs and enhancer–promoter interactions
(EPI) to prioritize variant-to-gene (V2G) pairs in LOAD.

To address these limitations, we developed an enhanced post-GWAS
non-coding variant analysis framework25. This approach systematically
identifies candidate causal variants and relevant regulatory genomic features
to improve our understanding of genetic loci associated with LOAD.

Results
We summarize our strategy in Fig. 1, which comprises four key steps:
“Preprocessing,” “Characterization,” “In silico validation,” and “Functional
validation”.
1. In the “Preprocessing” stage, we obtained pairwise-independent tag

variants through LD-based pruning (1000 Genome panel) on all
genome-wide significant LOAD GWAS variants (p < 5 × 10−8)5. To
produce a larger pool of candidate causal variants, we included all
proxy variants through LD-based expansion of the tag variant
set (r2 > =0.7).

2. In the “Characterization” step, these variants were annotated using
FILER26 (a large-scale genomic data queryr tool), and their potential
functional context(s) were predicted using SparkINFERNO25 (a
scalable pipeline for inferring non-coding variants' molecular
mechanisms). We identified candidate causal genes per variant using

eQTL data. Additionally, we used HOMER27 to predict transcription
factor binding site (TFBS) disruptions caused by the variants. Only
variants within brain enhancers were retained in subsequent analysis
steps. Together with their corresponding genes, this set formed the
enhancer-based causal V2G pairs with TFBS.

3. For the “In silico validation” step, we annotated and ranked the V2G
pairs, putative causal variants, and effector genes using independent
assays from new data sources. These include regulatory features (EPIs,
QTLs, and open chromatin regions) and expression datasets (bulk
RNA-seq, proteomics). We also performed consistency checks on
QTLs across data sources.

4. Finally, in the “Functional validation” step, we specifically con-
textualized one V2G pair using our existing datasets frommultiple cell
types, and in vitro validation using CRISPR interference (CRISPRi).

Overall, we defined context-specific regulatory elements (variants and
genes) across different cellular and tissue contexts, leveraging 174 datasets
from 10 data sources. The number of regions, variants, and genes identified
in each of the 4 steps in Fig. 1 is summarized in Supplementary Data 1. This
enabled independent in silico validation of 41 variant-effector-gene (V2G)
pairs. The rs74504435-EGFR V2G pair underwent further functional
characterization, confirming it as a therapeutically tractable target.

Preprocessing: identification of genomic regions and candidate
variants of interest
Todefine regions of interest and establish an initial discovery set of plausible
candidate variants for further analyses,we leveraged the set of 5586 genome-
wide significant variants (p < 5 × 10−8) from the full GWAS summary
statistics5.We performed LDpruning using the 1000 genomes EURpanel28,
obtaining 580 pairwise-independent (tag) variants (r² < 0.7). For each tag
variant, we expanded its region of interest to include all proxy variants
(r² ≥ 0.7) within 1Mbps, with boundaries set by the most distant proxies.

Fig. 1 | Analysis strategy. Our post-GWAS framework consists of the following
steps: “Preprocessing,” “Characterization,” “In silico validation,” and “Functional
validation.”Genome-wide significant variants fromBellenguez et al.5 were leveraged
to identify regions of interest. Putative causal variants were analyzed for functional
contexts and linked to potential causal genes using enhancers, eQTL data, and TFBS

predictions. These variant-to-gene (V2G) pairs were characterized in brain tissues
and cell types. Independent assays, including enhancer–promoter interactions
(EPI), QTLs, and open chromatin regions from new data sources, were used for in
silico validation. Functional validation included promoter-focused Capture C,
ATAC-seq, RNA-seq, and CRISPRi in microglial cells.

https://doi.org/10.1038/s44400-025-00049-5 Article

npj Dementia |            (2025) 1:42 2

www.nature.com/npjdementia


This LD-based expansion yielded a total of 9144plausible candidate variants
across all identified regions of interest (Preprocessing in Fig. 1, Methods:
Preprocessing), increasing the candidate pool by 64% (from 5586 to 9144).
Most candidate variants were non-coding, predominantly intergenic (38%)
or intronic (24%), with 35% located in 5′ and 3′ UTR introns (Supple-
mentary Fig. 1).

Characterization: identification of putative causal variants,
genes, and variant-gene pairs
To explore the regulatory roles of candidate variants, we adapted the
SparkINFERNO framework25 and overlapped variants with 174 brain-
related functional genomics (FG) tracks in FILER26. These tracks cover 35
brain regions and 7 brain cell types across 10 data resources, representing
five regulatory types: enhancers, histone modifications, QTLs, EPIs, and
topologically associating domains (TADs) (Supplementary Fig. 2).

We quantified the probability of a candidate regulatory variant co-
localizing with an eQTL signal. Among 9144 variants (including 1355 on
chr19 in the APOE region), 229 had at least one colocalized signal (locus-
level posterior colocalization probability (PP.H4.abf) >0.7), individual SNP-
level posterior colocalization probability (SNP.PP.H4 > 0.5; see Supple-
mentary Data 2 for the summary of colocalization results when using more
stringent PP.H4.abf thresholds) in any of 13 GTEx29 brain tissue-specific
eQTL tracks (see Supplementary Data 3 for the colocalized signals with
FDR < 0.05, i.e., PP.H4.abf >0.95). These 229 variants defined 1601 tissue-
V2G pairs, putatively regulating 232 genes. Notably, 14 variants were
identified in≥10brain regions,while 103variants (44.9%)werebrain-region
specific. Figure 2A highlights a subset of the top colocalization results
(defined by locus-level posterior colocalization probability (PP.H4.abf)
>0.99 and fewer than 100 SNPs per locus) across GTEx brain tissues.

A single line of functional evidence is often considered insufficient to
robustly implicate regulatory activity at a given locus. To address this lim-
itation, we developed an unbiased confluent context identification strategy
(Methods: “Steps for unbiased confluent context identification”) to integrate
multiple lines of evidence to prioritize putative causal variants, genes, and
V2G pairs for subsequent experimental validation. Of the 229 colocalized

candidate variants, 68 (29.69%) overlap predicted HOMER27 TFBS
(Method: Transcription factor binding site (TFBS) disruption). Among these,
15 (22%) and 23 (34%) fall within brain enhancers defined byROADMAP30

and EpiMAP31, respectively (Method: Enhancers overlap). Overall, we
identified 24 putatively causal variants (14 beyond the APOE locus) over-
lapping a brain eQTL, a brain enhancer (ROADMAP or EpiMAP), and a
TFBS, forming 279 candidate tissue-V2G pairs involving 32 potential
effector genes. Among non-APOE variants, 36% colocalized with >50% of
GTEx brain tissues, with each variant interacting with an average of three
(maximum11) candidate effector genes.Notably, sevennon-APOE variants
did not affect the annotated (typically closest) genes in the original GWAS
(Table 1)5. All selected colocalized candidate variants were common (non-
reference allele frequency >0.05 in GWAS and 1000G). Table 1 summarizes
the 14 candidate regulatory variants (beyond APOE) identified by this
unbiased confluent context identification approach (see Supplementary
Data 4 for robustness/sensitivity analysis of our V2G set under different/
more stringent LD pruning thresholds). All eQTL effector genes and coloc
results are detailed in Supplementary Data 5.

To further explore the genetic architecture of gene regulation in the
brain, we examined loci with multiple candidate causal variants and their
effects on gene expression across brain regions. Figure 2B highlights the
significant colocalization results for the TSPAN14 locus, where three can-
didate causal variants were associated with the expression of four genes
across nineGTExbrain regions. Figure 2C shows three independent signals,
L1, L2, andL3 (pairwise r2 = 0.501, 0.364, and0.709, respectively) at theACE
locus, each correlating with ACE gene expression across five GTEx brain
regions. Figure 2D shows the two variants (r2 = 1.00) inside the EGFR locus.
Together, these figures illustrate the complexity and diversity of genetic
regulation, demonstrating howmultiple independent variants can influence
gene expression across diverse brain regions.

Potential biological roles of the identified transcription factor
binding motifs
We found that the candidate regulatory variants are predicted to disrupt
binding sites for 12 transcription factors (TFs) based on PWM analyses

Fig. 2 | Colocalization results. A A subset of significant colocalization results across 59 loci and 13 GTEx brain regions. B All significant brain colocalization results of
TSPAN14. C Significant brain colocalization results from multiple independent loci inside the ACE region. D All significant brain colocalization results of EGFR.
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(Table 1). Several of these TFs are involved in mechanisms related to AD.
Notably, GLIS3 (GLIS family zinc finger 3) is the only motif strongly linked
to tau and amyloid pathology through transcriptional regulation32–34.
SMAD2 (Mothers against decapentaplegic homolog 2), a key intracellular
protein in the SMAD family, transduces signals from TGF-β ligands and
mediates cellular responses. The TGF-β/SMAD2 pathway plays a complex
role in AD, potentially affecting cell growth, differentiation, and immune
responses35. Dysfunction in TGF-β signaling may lead to blood-brain bar-
rier breakdown, and blocking TGF-β-SMAD2/3 signaling in peripheral
macrophages has been proposed as a therapeutic strategy for AD36.

In silico validation: identification of putative causal signals with
further support
Outside theAPOE region, we identified 41 candidate V2Gpairs comprising
14 variants and 26 protein-coding genes that are likely functional in brain
tissues or cell types. For additional in silico support, we leveraged inde-
pendent FG datasets. Recent FG data from large consortia37, harmonized
studies38–41, and individual publications42,43 provided complementary or
orthogonal evidence for in silico validation. We processed these datasets
using hipFG44 and integrated them into FILER26, including two QTL
(MetaBrain39, eQTL Catalogue45) and three EPI datasets (3DGenome41,
4DGenome40, Nott et al.43), standardizing all with metadata for efficient
querying.

We first assessed the consistency of V2G pairs identified in brain
regions across different data sources. Consistency in directionality means
that a genetic variant’s effect on an eQTL (i.e., increasingordecreasing target
gene expression) is the same across brain regions and data sources. Such
consistency suggests shared genetic regulatory mechanisms across brain
regions. However, eQTL directionality, represented by Z-scores, can vary
between datasets due to (a) sampling differences, (b) QTL generation
methods, or (c) statistical approaches. SinceQTL datasets lack standardized
presentation, harmonizing them with tools like hipFG44 can reduce these
biases and improve interpretation.

In Fig. 3, the left panel shows hipFG-normalized Z-scores for each
brain region (“System” in legend: Frontal Cortex, Limbic System, Basal
Ganglia, Brain Stem) from two data sources (MetaBrain or eQTL Catalo-
gue), along with average Z-scores across 13 GTEx brain regions (middle
panel). The original, non-normalizedZ-scores (Supplementary Fig. 3) show
that 35 out of 41V2G pairs had inconsistent directionality over >50% of the

grouped brain regions. Strikingly, after Z-score normalization, incon-
sistencies dropped to only 6, an 83% improvement (McNemar’s Test,
p < 0.0001), as shown in Fig. 3 (left panel).

A ranking system integrating in silico evidence on genes, var-
iants, and V2G pairs for selected putative causal signals
When an eQTL and anEPI co-occur for a given variant-to-gene (V2G) pair,
it provides stronger evidence that the variant causally regulates gene
expression46,47. To prioritize V2G pairs, we developed a ranking system
based on four components: eQTL evidence (V2G_eQTL tier, assesses
consistency of V2G pairs across gene expression datasets), EPI evidence
(V2G_EPI tier, checks for V2G pairs in brain EPIs), variant properties
(V_tier, evaluates variant characteristics), and gene expression (G_tier,
considers gene relevance and expression). Each tier was generated by
integrating data from multiple sources (Methods: Ranking of variant-gene
pairs (Tier system). This structured approach helps prioritize V2G pairs
based on robust, multi-source evidence.

The V2G_eQTL and V2G_EPI information are presented in Fig. 3,
while overall tier rankings are displayed in Fig. 4. The top-ranked V2G pair
was chr1:161186243:C:A_NDUFS2 (tier 11), followed by four pairs at tier 9
(chr7:54881563:A:G_EGFR, chr1:161186243:C:A_FCER1G,
chr7:100373690_PVRIG, and chr17:63492371:G:A_ACE). These five pairs
are hypothesized to have the greatest likelihood of functional study success.

Functional validation: an enhancer region harboring rs74504435
influences EGFR expression
We selected the second-highest-ranking V2G pair - rs74504435-EGFR - for
further validation due to two main reasons. The LOAD risk allele at
rs74504435 is associated with increased EGFR expression inmultiple eQTL
datasets (Fig. 5a), suggesting EGFR as a promising candidate for therapeutic
targetingwith existingEGFR inhibitors. This pair rankedhighest in both the
V2G_eQTL and V tiers, indicating robust support from diverse eQTL
datasets and consistent functional annotations predicting a regulatory
(enhancer) function for rs74504435 (Fig. 5a). Figure 5a visualizes this V2G
pair using FILER tracks and Bellenguez GWAS summary statistics.
rs74504435 regulates EGFR in 4 eQTLs: ROSMAPDLPFC, CommonMind
DLPFC, GTEx Frontal Cortex, and GTEx cortex. It is also located within
four brain-related enhancers fromchromHMMandEpiMAP.Wenote that
this top rs74504435 variant is also detected when using the most stringent

Table 1 | Genome-wide analysis of AD GWAS data implicates 14 candidate regulatory variants (outside chr19/APOE) with
potential roles in brain tissue using the confluent context identification approach

From GWAS Colocalization Enhancers TFBS

Variant rsID Loci Closest gene Causal
genes

Brain
regions

ROADMAP EpiMAP HOMER Motif logo

chr1:161186243:C:A rs11585858 Not reported ADAMTS4 2 3 6 32 GLIS3

chr1:161189357:C:T rs4233366 Not reported ADAMTS4 1 1 0 1 PAX6

chr7:100242838:A:G rs866500 Not reported PVRIG 11 12 6 13 GLIS3

chr7:100373690:T:C rs2405442 ZCWPW1/
NYAP1

PILRA 7 10 2 8 ERRA

chr7:100374211:A:G rs1859788 ZCWPW1/
NYAP1

PILRA 5 4 2 6 ERRA

chr7:100561944:A:G rs2734897 Not reported AGFG2 12 12 0 1 PPARE

chr7:143410495:G:T rs12703526 EPHA1 EPHA1 1 1 3 10 SCL

chr7:54881563:A:G rs74504435 SEC61G SEC61G 1 2 3 4 OCT6

chr8:27354759:A:C rs10109834 PTK2B PTK2B 1 2 0 1 NANOG

chr16:31122128:C:T rs1060506 KAT8 KAT8 1 1 0 1 SMAD2

chr16:31143037:G:A rs78924645 Not reported PRSS36 3 9 0 1 C-MYC

chr16:81739604:A:G rs12444183 PLCG2 PLCG2 1 1 0 1 TATA-BOX

chr17:63492371:G:A rs4351 ACE ACE 3 5 0 1 PRDM10

chr21:26161943:T:C rs4817090 APP APP 3 12 6 6 CUX2
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pruning (LD = 0.1) and colocalization (PP.H4.abf >0.99) thresholds (Sup-
plementary Data 4).

To investigate a potential regulatory role for rs74504435 on EGFR
expression, we next validated this V2G pair by leveraging our collection
of promoter-focused Capture C, ATAC-seq, and RNA-seq datasets
from human brain-relevant cell types48–50, as well as Hi-C data from
iPSC-derived astrocytes, microglia51, neurons, and oligodendrocytes52

(Supplementary Data 6). Via the ATAC-seq dataset, we observed that
rs74504435 lies within open chromatin in several brain-relevant cell
types, including iPSC-derived cortical neural progenitors and
neurons49, primary astrocytes50, and iPSC-derived microglia48. We also
observed a chromatin conformation capture contact (Capture C data)
between this variant andEGFR in iPSC-derived cortical progenitors and
neurons, primary astrocytes, and the microglial cell line HMC3. Using

Fig. 3 | Comparison of the directionality of selected putative V2G pairs across
QTL and EPI datasets used for in silico validation. All functional genomics data
were processed using hipFG44, with effect directionality normalized. For both the left
andmiddle panels, triangles pointing upwards (and in red) mean a positive Z-score,
indicating that the alternative allele of a variant increases the gene expression, while
those pointing downwards (and in green) mean the opposite effect. The size of the

triangles represents the absolute value of the Z-score. The left panel shows the
directionality (Z-scores) based on 23 QTL datasets from two data sources. The
middle panel presents the average GTEx Z-scores, while the right panel displays the
orthogonal support of EPI data for the V2G pairs (with a red square indicating the
presence of EPI for that particular data source). The six loci with inconsistent
directionalities were shown in yellow.
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our RNA-seq datasets, we observed that EGFR was indeed expressed in
these cell types48–50. From the Hi-C data, we observed that interactions
between rs74504435 and EGFR exist in iPSC-derived neurons and
oligodendrocytes. These findings are illustrated in Fig. 5b. Results for
the other four top-ranked V2G pairs are summarized in Supplementary
Data 7. While one of the three additional candidate SNPs (rs11585858)

did show an open chromatin signature in iMg, the other 2 (rs4351 and
rs2405442) resided in closed chromatin. Furthermore, none of the four
V2G pairs was validated by Capture C in any of the cell types investi-
gated; specifically, rs2405442 did not show any loop in any cell type,
while rs11585858 had a loop toCFAP126 in HMC3 cells and rs4351 had
loops to CYB561 in HMC3 and NPC, to KCNH6 in NPC, and to

Fig. 4 | Rankings (V2G_eQTL tier, V2G_EPI tier, V_tier, G_tier, and overall tier)
of the 42 V2G pairs identified in this study. To prioritize variant-to-gene (V2G)
pairs for functional validation, we developed a ranking system based on four

components: eQTL evidence (V2G_eQTL tier), EPI evidence (V2G_EPI tier), var-
iant properties (V_tier), and gene expression (G_tier). Each tier was generated by
integrating data from multiple sources.
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MARCHF10 in iMg. Therefore, we prioritized the V2G pair involving
rs74504435 and EGFR for further experimental validation.

Tovalidate the regulatory role for the regionharboring rs74504435 and
its influence on EGFR expression, we leveraged CRISPR interference
(CRISPRi). We engineered the human microglial cell line HMC3 to stably
express dCas9-KRAB (tagged with GFP). We transduced this line with
lentivirus containing one of three sgRNAs targeting this region (G1,G2, and
G4) or two control non-targeting sgRNAs (tagged with mCherry). After
double selection for the presence of the guides and the dCas9-KRAB by
FACS, we performed qPCR to assess EGFR levels.We found that two out of
three targeting guides led to a consistent and significant decrease in EGFR
expression levels compared to controls (one-way ANOVA p = 0.0002). G1
significantly decreased EGFR levels by 47% compared to the mean of the
non-targeting controls (Tukey test p = 0.0004), and G2 by 27% (p = 0.04).

G4 did not affect EGFR levels. Non-targeting guides did not show any
effect when compared to a no-guide control. These results are shown
in Fig. 5c.

Overall, our results support the hypothesis that the AD-associated
variant rs74504435 is locatedwithin anenhancer region that regulatesEGFR
expression levels.

Discussion
Functionally characterizing non-coding AD GWAS loci is crucial for suc-
cessful drug target discovery, and FG datasets can aid in this challenging
task. However, FG data are often sparse and unharmonized, which hinders
progress in this field. Here, we leveraged hipFG44, a tool that integrates FG
data into FILER, and selected brain-profiled FG data to systematically
validate non-coding AD signals for their regulatory potential. Our new

Fig. 5 | Functional annotation and follow-up for the selected V2G pair:
chr7:54881563:A:G (rs74504435) and EGFR.AGenome browser plot showing the
functional annotation of the selected V2G pair in GRCh38 using FILER tracks at the
discovery phase, including enhancers from chromHMM and EpiMAP, eQTLs from
GTEx and eQTL Catalogue. Bellenguez GWAS identified the sentinel SNP
rs76928645 (chr7:54873635:C:T) (p = 1.6 × 10−10), in high LD (r2 = 0.94) with our
variant of interest rs74504435, which is annotated to reside in a brain enhancer in
four different data sources. Plot is generated using NIAGADS genomicsDB.
B ATAC-seq, promoter-focused Capture C, and Hi-C data in brain-relevant cell
types showing chromatin state and looping between chr7:54881563:A:G
(rs74504435) and EGFR. rs74504435 (highlighted by a yellow line) resides in open

chromatin in our own iPSC-derived neural progenitors, neurons, andmicroglia, and
in primary astrocytes. It is involved in a chromatin loopwithEGFR in our own iPSC-
derived neurons, primary astrocytes, and the microglial cell line HMC3 (promoter-
focused Capture C data); as well as in our own iPSC-derived neurons and oligo-
dendrocytes (Hi-C data). C CRISPRi results in a human microglia cell line. We
performed CRISPRi in a human microglial cell line (HMC3) expressing dCas9-
ZIM3-KRAB using lentiviral delivery of three sgRNA guides targeting the
rs74504435 region (G1, G2, and G4) and two non-targeting guides (NTC: mean of
control guides). Bar plots show the mean EGFR relative expression compared to a
no-guide control as assessed by qPCR; error bars are SEM;N = 3. Statistical analysis
via one-way ANOVA followed by Tukey test, **p < 0.001; *p < 0.05.
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framework combines confluent FG evidence and directionality checks to
prioritize V2G pairs for functional validation.

Starting with AD GWAS variants from Bellenguez et al.5, we defined
independent loci using the 1000G28 LD structure. For each locus, we eval-
uated functional contexts, conducted Bayesian colocalization of GWAS and
eQTL signals, and identified putative causal variants, genes, and V2G pairs.
We performed in silico validation using independent assays and data
sources, followed by experimental validation with promoter-focused Cap-
ture C, ATAC-seq, and CRISPRi. This approach identified five plausible
V2G pairs with highest tiers: chr1:161186243:C:A_NDUFS2 (tier 11),
chr7:54881563:A:G_EGFR (tier 9), chr1:161186243:C:A_FCER1G (tier 9),
chr7:100373690_PVRIG (tier 9), and chr17:63492371:G:A_ACE (tier 9).
We successfully validated one of these pairs and its regulatory effect in a
human microglia cell line.

Unlike prior post-GWAS methods, which rely on pre-selected top
GWAS variants11,25, our framework utilized full GWAS summary sta-
tistics. We implemented QC steps to normalize genetic data against FG
datasets in FILER, enabling a more systematic and comparable analysis
of potential causal variants, genes, and V2G pairs. Our tiering system,
which integrates support from eQTL, enhancer–promoter interactions,
variant effects, and gene/protein expression, enabled improved prior-
itization of V2G pairs.

By leveraging full GWAS summary statistics and LD expansion in
post-GWAS analyses, we uncovered additional candidate causal signals that
were missed in previous studies5. When we compared the number of
colocalization signals (the first step in our pipeline, GTEx brain data alone)
to analyses that did not perform LD pruning or expansion11, we found that
using the full summary statistics, rather than only top variants, yielded 4.5
times more candidate variants (9144 vs. 2024), 5 times more unique colo-
calized variants (2040 vs. 408), and twice as many candidate target genes
(1529 vs. 762) across all GTEx data. Details for the candidate variants,
colocalized variants, and corresponding targets from both the top variant
analyses as well as the genome-wide approach we used in our current
analyses can be found in Supplementary Data 8-11.

In our multi-tiered framework, colocalization served as an initial,
relatively permissive filter rather than the final criterion. We then applied
additional validation steps and external datasets to refine these signals.
While others have usedmore stringent cutoffs as final criteria, we selected a
>0.7 threshold at the first stage to capture a broader set of candidate variant-
gene pairs (6971 at >0.7 vs 3404 at >0.9; Supplementary Data 3, 9).
Importantly, overhalf of the signals confirmed inour in silico validation (23/
41)would have beenmissedhadweused stricter thresholds (>0.95 or >0.99)
at the outset.

Using eQTL data for colocalization explained only a small fraction of
the GWAS signals53. In our approach, we did not restrict analysis to signals
with EPI support. Instead, we first prioritized eQTL colocalization and then
sought additional in silico validation. 41 eQTLs were validated using
independent eQTL datasets, and 37 out of 41 also had EPI support. EPI data
can help prioritize V2G pairs when eQTL signals are weaker (e.g., loci
chr7:100374211:A:G_CNPY4 and chr7:100373690:T:C_AP4M1). How-
ever,V2Gpairs supported by both types of evidence are not always superior,
as discrepancies may arise from biological differences or the uneven avail-
ability of FG assays, which limits cross-cell-type comparisons. More cell-
type-specific assays, currently unavailable, could further improve V2G pair
identification.

A potential concern when integrating multiple QTL datasets is the
risk of circularity, where validation may inadvertently rely on over-
lapping information. In our study, we minimized this risk by strictly
separating discovery from validation. Candidate loci were defined
exclusively using GTEx v829 eQTL data, and validation was performed
using independent datasets (MetaBrain39, MiGA42, and the eQTL
Catalogue45), which are based on distinct cohorts, tissue sources, and
analytical pipelines. Because these datasets do not share individuals or
genotype data with GTEx, concordant colocalization signals represent
independent replication rather than re-analysis of the same association.

Importantly, we also incorporated orthogonal functional data types,
including chromatin interaction datasets (3DGenome41, 4DGenome40,
Nott et al.43), enhancer annotations (Nott et al.43), and TFBS
information27, which are methodologically distinct from QTL-based
approaches. This multi-tiered framework reduces the likelihood of
circularity and increases the robustness of our gene prioritization
strategy.

UsingCRISPRi in amicroglial cellular setting,we successfully validated
EGFR as a target gene whose regulation is influenced by the AD variant
rs74504435. The EGFR (Epidermal Growth Factor Receptor) gene product
is a receptor tyrosine kinase that controls cell proliferation, survival, dif-
ferentiation, and inflammation. In AD, it has been connected to disease
progression54, with elevated levels associated with increased Aβ plaque
formation. Additionally, EGFR inhibition modulates neuroinflammation
and cognitive function in AD animal models55.

Interestingly, we found evidence supporting a role for the rs74504435-
EGFRV2Gpair inmultiple brain-relevant cell types: (1) rs74504435 resides
in open chromatin regions of neurons, microglia, and astrocytes in ATAC-
seq data; (2) rs74504435 contacts the 3′UTR region of EGFR in promoter-
focused Capture C data generated from microglia, neurons and astrocytes;
(3) rs74504435 also contacts the EGFR promoter inHi-C data derived from
iPSC-derived oligodendrocytes and neurons; (4) rs74504435 is associated
with EGFR expression in single-nucleus RNA-seq data from astrocytes
(p = 3.2 × 10−24, Z-score =−12.53) and oligodendrocyte progenitor cells
(p = 0.003, Z-score =−2.95) derived from the dorsolateral prefrontal cortex
in ROSMAP samples (Supplementary Fig. 4)56. In Bellenguez et al., another
variant, rs76928645, was reported to interact with EGFR. Using our
promoter-focused Capture C data and ATAC-seq data, we observed a loop
via the Capture C experiment in NPC cells, but the loop does not reside in
the open chromatin region. As a consequence, we conclude that EGFR’s
functional role inAD likely involves several cell types, and further research is
required to investigate whether the underlying mechanisms are distinct or
shared across different brain cell types and whether pathogenesis is driven
by a specific cell type.

Because APOE has an outsized effect on AD genetics and a complex
haplotype structure, we removed this locus and the entire chr19 in themain
analyses. To assess its contribution,we compared colocalization signalswith
and without chr19 (Supplementary Data 10). chr19 contributed 15% of
candidate variants (1355/9144), covering 40% of candidate regions (417/
1043), and accounted for 26% of colocalized signals. These results confirm
the APOE region as a major driver of colocalization but also highlight
substantial signals outside APOE and other chr19 loci, indicating additional
genes and pathways likely contribute to AD pathogenesis.

There are two limitations to our study that can be addressed in future
research. First, we restricted our analyses to SNPs. Indels were excluded
because they are not consistently represented in most QTL datasets cur-
rently available,which limited our ability to integrate them across resources.
Additionally, out of the three QTL data sources used for validation (eQTL
Catalogue45, MetaBrain39, and MiGA42), only eQTL Catalogue had indels.
Furthermore, indel detection and quantification vary substantially across
genotyping arrays, in contrast to SNPs, which are more uniformly assayed.
As QTL studies increasingly leverage whole-genome sequencing and stan-
dardized approaches for indel calling, incorporating indels into future
pipelines will be important, especially given evidence for their role in LOAD
(e.g., the TOMM40 region57). Second, our analyses were performed on
GWASdata fromEuropean-ancestry populations.We did not include non-
European GWAS in these analyses because of their small sample sizes. Our
modular framework could, in principle, be adapted to diverse cohorts by
incorporating ancestry-matched LD reference panels (e.g., 1000 Genomes
Project28, Alzheimer’s Disease Sequencing Project58) and population-
specific QTL datasets. The current scarcity of functional genomics resour-
ces from non-European populations is a major barrier. As more multi-
ancestry GWAS and QTL datasets become available, extending this fra-
mework to diverse cohorts will be essential for improving the general-
izability of genetic discoveries and for reducing health disparities in AD.
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In conclusion, by combining an unbiased, confluent context identifi-
cation framework, in silico V2G pair validation using QTL directionality,
and a comprehensive scoring system that considers variant, gene, and V2G
pair effects, we identified 41 AD-associated V2G pairs. The FILER-curated
brain FGdatasets andhipFG-harmonizedFGdatawere instrumental to this
success. Among the top findings, five V2G pairs achieved tier 9 or higher,
and we demonstrated that AD-associated variant rs74504435
(chr7:54881563:A:G) resides in a regulatory region influencing EGFR
expression, as validated by promoter-focused Capture C and CRISPRi
functional experiments. Given that EGFR inhibitors are already approved
for cancer therapy, EGFR could represent a promising candidate for
repurposing as a therapeutic target for LOAD. Our framework and results
provide valuable insights for future AD research.

Methods
Description of the AD GWAS
We analyzed Stage 1 genome-wide summary stats from Bellenguez et al.5,
(downloaded fromGWAS catalog http://ftp.ebi.ac.uk/pub/databases/gwas/
summary_statistics/GCST90027001-GCST90028000/GCST90027158/).
This dataset aggregates samples from International Genomics of Alzhei-
mer’s Project (IGAP), with the inclusion of cohorts from European Alz-
heimer’s & Dementia BioBank (EADB), Alzheimer’s Disease Genetics
Consortium (ADGC), and others, including clinically defined AD cases/
controls and UK Biobank dementia samples, totaling 788,989 individuals
with an effective sample size of 382,472. It contains 19,767,628 SNPs and
1,333,486 indels; our analysis focused on SNPs. For details, refer to the
original publication5.

Identifying regions of interest for downstream analyses
We performed LD pruning using the 1000 Genomes Phase 3 EUR
reference panel on all genome-wide significant variants (p < 5 × 10−8),
identifying pairwise-independent tag variants (r2 < 0.7) using a 500 kb
window. For each tag variant, we defined an analysis region by
including variants that are in LD with the tag variant (r2 > =0.7), are
within 1 M base pairs (bps), and are within 1000 variants of the tag.
These variants, along with the tag variants, are considered candidate
regulatory variants. Each analysis region is bounded by the outermost
variants in LD with the tag. We note that not only the candidate var-
iants, but all variants within these regions, even if some have no
association with AD, will be included in colocalization analyses.

The LD-based thresholds used in our analyses are adjustable. Here, we
use an r2 < 0.7 threshold for pruning the set of genome-wide significant
(p < 5 × 10−8) variants. This threshold effectively removes variants in high
LD (r > 0.83) and allows for ensuring the relative pairwise independence
between the variants in the pruned set. At the LD expansion step, using
r2 > 0.7 adds all the other variants that are in high LD (r = 0.83 ormore)with
the tag variants from the pruned set. Similar LD thresholds were used in
previous studies (e.g., non-coding variant analysis59; or selecting a maxi-
mally informative set of SNPs60).

Genome partition analysis of all candidate regulatory variants
Variantswere categorized into different genomic categories using theUCSC
knownGene61,62, UCSC RepeatMasker62,63, and GENCODE v43 lncRNA
annotations64 for the GRCh38/hg38 genome build. The 5′ UTR exons and
introns, exons, introns, and 3′UTR exons and introns were extracted from
the knownGene annotation for each protein-coding gene. Promoter
annotations were defined as 1000 bps genomic regions upstream of the
transcription start site. To create a hierarchical genomic partition into dis-
joint 5′ UTR exon, 5′ UTR intron, 3′ UTR exon, 3′ UTR intron, promoter,
exonic, and intronic regions (in this order), each region set was obtained by
subtraction of the merged regions higher in the genomic hierarchy. For
example, starting from merged 5′ UTR exonic regions, distinct 5′ UTR
intronic regionswereobtainedby subtractionof 5′UTRexonic regions from
themerged 5′UTR intronic regions, and3′UTRexon regionswere obtained
by subtracting both 5′ UTR exonic and intronic regions.

During analysis, GWAS variants were then assigned to mutually
exclusive genomic element annotations using the created hierarchy: 5′UTR
exon > 5′UTR intron > 3′UTR exon > 3′UTR intron > promoter >mRNA
exon > mRNA intron. Overlaps, if any, with repeat element annotations
(e.g., SINE, LINE) were also reported for all variants. Variants overlapping
any of GENCODE lncRNA annotations were additionally classified into
lncRNAexonic and/or lncRNA intronic variants. A variant not overlapping
with any class of elements above (mRNA, lncRNA, repeat) was classified as
intergenic.

Functional genomic annotations of all candidate regulatory
variants
Genomic annotations from the FILER (functional genomic database which
contains harmonized genomic annotation data across >30 primary data
sources26) were used. 140 of these are used in the “Characterization”, i.e.,
discovery phase (including genome partition analyses, colocalization ana-
lyses, and unbiased confluent context identification), while 34 are used in
“In silico validation”. See SupplementaryData 11 fordetails. In thediscovery
phase, the datasets included fundamental genome annotations and refer-
ence variant information (dbSNP65, GENCODE gene annotations64),
genome-wideHOMER27 transcription factor binding tracks, and 140 brain-
related FILER tracks (tissues and cells only) for variant characterization,
including enhancers (10 fromROADMAP30, 55 fromEpiMAP31),QTLs (26
from GTEx v829), and epigenetics (49 from ENCODE66).

Variant-Gene (V2G) pair identification (colocalization)
Wehypothesized that putative causal variants affect gene expression in a cis-
regulatory manner. To do so, we have performed a colocalization analysis
within each genomic region to identify a shared (AD+eQTL) causal variant,
if any. The colocalization analysis considers all possible causal configura-
tions when computing the posteriors for colocalization (H4), including a
null (H0) probability of no association for bothAD and eQTL in the region,
and the probabilities for AD-only association (H1), eQTL-only association
(H2), anddifferent/non-colocalized causal variants (H3). P(H4) provides an
accurate measure of the colocalization probability, with the FDR corre-
sponding to the cumulative probability of the alternative scenarios,
P(H0)+ P(H1)+ P(H2)+ P(H3) = 1− P(H4), i.e., the probability that the
AD and eQTL do not share the same causal variant in the region. A
PP.H4.abf value of >0.95 is equivalent to FDR < 5%.

By aligningGWASandeQTL signals via colocalization,we can identify
genesmost likely affected by disease-associated variants. Using the COLOC
Rpackage v5.2.367, we performedBayesian colocalization on9144 candidate
variants against nominally significant eQTLs from 13 brain tissues in the
GTEx v8 dataset. We defined a V2G pair as colocalized if the candidate
variantwas themost likely causal variant in the locus (SNP.H4.abf >0.5), the
posteriorprobability for colocalizationwas greater than0.7 (PP.H4.abf), and
the locus contained more than one variant.

Transcription factor binding site (TFBS) disruption analyses of all
candidate regulatory variants
HOMER (Hypergeometric Optimization of Motif EnRichment)27 is a cus-
tom motif database derived from high-quality ChIP-Seq data. A positional
weight matrix (PWM) represents transcription factor (TF) DNA binding
specificities. The delta PWM score (difference between reference and
alternate alleles) estimates binding activity changes due to nucleotide var-
iation. A candidate causal variant is selected for the next steps if it disrupts a
TF binding site with a delta PWM score >|2| for any TF.

Enhancers overlap analyses of all candidate regulatory variants
Enhancers are DNA regulatory elements that activate gene transcription by
forming chromatin loops to interact with target genes in a cell-type-specific
manner. Databases like ROADMAP30 and EpiMAP31 catalog enhancers
across various cell types and tissues.A candidate causal variant is considered
potentially regulatory if it overlaps a brain enhancer found in either
ROADMAP30 or EpiMAP31.
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Unbiased confluent context identification of a putative
causal V2G
We define a putative causal V2G pair as one with strong colocalization
(“Variant-Gene (V2G) pair identification (colocalization)” section). The
associated genes are considered putative causal genes. The putative causal
variant is predicted to disrupt a TFBS (“Transcription factor binding site
(TFBS) disruption analyses of all candidate regulatory variants” section) and
overlap a tissue- or cell-type-specific enhancer (“Enhancers overlap analyses
of all candidate regulatory variants” section) in any brain FG data. To
identify which AD genetic signals may function in the brain-specific con-
fluent context, we included all relevant tracks in FILER. We then required
the colocalization tissue context to match the enhancers’, forming the final
set of putative causal V2G pairs. A pair is excluded if it fails to meet any of
these criteria.

Harmonizing in silico datasets by hipFG
In the validation phase, selected brain tracks include chromatin interactions
(5 from 3DGenome41, 1 from 4DGenome40, 2 from Nott et al.43), QTLs (18
from eQTL Catalogue45, 4 fromMetaBrain39, 4 fromMiGA42). These tracks
were generated from primary tissues/cell types but not cell lines. Each
dataset was processed using hipFG (Harmonization and Integration Pipe-
line for Functional Genomics)44, an automated pipeline that standardizes,
indexes, and integrates diverse functional genomics data (e.g., EPI, genomic
intervals, QTLs) for scalable, searchable analysis.

In silico validation on candidate variant-gene pairs and genes
Wevalidate selectedV2Gpairs and genes in silico using a set of independent
FG resources (Fig. 1, “In silico validation”). Validation requires evidence
from at least one, but not all, of the following categories. For V2G pairs,
topologically associating domain (TAD) validation was based on TADs
shared by the 3DGenome41, where a V2G pair was considered in silico
validated if it overlapped with both anchors of the interaction.
Enhancer–promoter interaction (EPI) validation included data profiled by
PLAC-seq, 3C, 4C-Seq, 5C, Hi-C, ChIA-PET, and promoter-focused
Capture C from Nott et al.43, 3DGenome41, and 4DGenome40 using only
brain-relateddatasets; aV2Gpairwas in silico validated if it overlappedwith
both anchors of the interaction. Bulk tissue eQTL validation used brain
tissue or region-related eQTLs from the eQTL Catalogue45 and the
MetaBrain39, covering four brain regions. AV2G pair was in silico validated
if it overlapped with, contained the same effect allele, and carried the same
effect direction on the same gene as any eQTL profiled in these resources.

For genes, validation was based on two sources of evidence. Biological
contextwas derived from theHumanProteinAtlas (HPA)68,69; a genewas in
silico validated if it was identified in the HPA as a protein-coding gene
expressed in any brain region or cell type. Disease specificity was assessed
using information fromtheAgoraAMP-ADplatform37,where a genewas in
silico validated if it was included in the nominated list of genes.

Independent regulatory evidence and potential functions of
selected variants
In addition to functional evidence from in silico validation, annotations
from other sources can further support a variant’s regulatory or functional
potential. As with previous analyses, evidence from any (not all) of the
following categories is sufficient for confirming a variant as in silico
functional.

Functional annotation based on active histone marks (H3K27ac) was
derived from ENCODE66, where a variant was considered functional if it
significantly overlapped any active histonemark peak (q-value < 5%). Open
chromatin regions were analyzed using ATAC-seq data from ENCODE66,
and a variant was considered functional if it was located within an ATAC-
seq peak. Variant effect prediction was assessed using the Combined
Annotation Dependent Depletion (CADD) score70 and
RegulomeDB2 score71. CADD scores estimate variant deleteriousness, with
higher scores indicating greater impact, while RegulomeDB2 integrates
functional genomic assays to assign heuristic rankings for regulatory

potential. A variantwas considered functional if it had aCADDscore >10 or
a RegulomeDB2 score of 1a-1e. Genetic association evidence was evaluated
using the GWAS Catalog72 and NIAGADS GenomicsDB73 to determine
whether a putative causal variant was linked to Alzheimer’s disease (AD)-
related traits. The GWAS Catalog contains variant-trait associations from
over 130,000 GWASs across more than 18,000 traits (as of February 2025),
and NIAGADS GenomicsDB is an interactive AD genetics database with
476.9K annotated variants from over 80 AD GWASs. A variant was con-
sidered functional if, in addition to being reported in Bellenguez et al.5 AD
GWAS, it was also associated with a phenotype in any other AD GWAS.

Ranking of variant-gene (V2G) pairs (tier system)
Given the large number of variant-gene pairs identified after the confluence
analyses, it remains challenging for wet-lab scientists to prioritize pairs for
further functional work. We introduced a tiered system that integrates
evidence from eQTLs (V2G_eQTL tier), EPIs (V2G_EPI tier), variants
(V_tier), and genes (G_tier), each combining data from multiple sources
(Methods: Ranking of variant-gene pairs (Tier system)).

The V2G_eQTL tier assessed four features: directionality across non-
GTEx eQTLs (Metabrain39, eQTL Catalogue45), the presence of non-GTEx
brain eQTLs, consistency between non-GTEx and GTEx brain-region
eQTLs, and a negative, consistent Z-score across brain regions (we note that
our directionality/Z-score consistency checks are not using formal
hypothesis testing). Each criterion was assigned a score of 1, and the total
V2G_eQTL tier score ranged from 1 to 4.

The V2G_EPI tier evaluated whether a V2G pair appeared in brain
enhancer–promoter interaction datasets from 3DGenome41, 4DGenome40,
or Nott et al.43. A score of 1 was assigned for each presence, and the total
V2G_EPI tier ranged from 0 to 2.

The V_tier evaluates variant-level properties, including overlap with
active histone marks, open chromatin regions, CADD scores70, Reg-
ulomeDB2 rankings71, and statistical significance in GWAS (GWAS
Catalog72, NIAGADS GenomicsDB73). Variants meeting the ‘functional’
definition in each category were assigned a score of 1, resulting in a total
V_tier range of 0–4.

The G_tier considered gene-level evidence, including nomination by
the AMP-AD Agora37 and expression in brain regions or cell types
according to the Human Protein Atlas (HPA)68,69. A score of 1 was assigned
for each presence, and the total G_tier ranged from 0 to 2.

The overall tier for theV2Gpair is the sumof all four components. The
overall tier ranges from 1 to 11.

Hi-C data generation from iPSC cells for functional validation
Details of the iPSCcells used in this analysis canbe found in theprevious two
studies51,74. To understand the potential function of the intergenic SNP
rs74504435, we examined chromatin interactions using Hi-C analysis in
iPSC-derived astrocytes, microglia cells, oligodendrocytes, and neurons52.
An in situ Hi-C library was prepared using the protocol adapted from Rao
et al.75. For each library, 450~550million paired-end reads at 150 bps length
were obtained. Sequencing data were processed using BWA76 to map each
read end separately to the GRCh38 reference genomes. Duplicate and non-
uniquely mapped reads were removed. For each library, over 270 million
non-redundant, uniquely mapped, paired reads were used for further
analysis. For robust enhancer–promoter interaction mapping, Chromatin
loops were called using HiCorr77 to correct bias and LoopEnhance78 to
remove noise.

Chromatin interaction analysis
We queried our existing genomic datasets (see Supplementary Data 12),
including high-resolution promoter-focused Capture C, ATAC-seq, and
RNA-seq from brain-relevant cell types (iPSC-derived neural progenitors
and neurons48, iPSC-derived microglia and the human microglia cell line
HMC349, and primary astrocytes50) to assess whether candidate variants
were residing in open chromatin regions and contacting the promoter of an
expressed gene.
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Chromatin interactions calls obtained from promoter-focused
Capture C datasets were available from the references provided for each
cell type: briefly, paired-end reads were pre-processed using the HiCUP
pipeline79 and aligned with bowtie280 to the reference genome, and
significant interactions at 1-DpnII and 4-DpnII fragment resolutions
were called using CHiCAGO80 with default parameters except for
binsize, which was set to 2500. Open chromatin region calls from
ATAC-seq datasets were also available from the same referenced stu-
dies: peaks were called using the ENCODEATAC-seq pipeline (https://
www.encodeproject.org/atac-seq/), selecting the resulting IDR optimal
peaks. When more than two technical replicates were available for one
cell type (i.e., for primary astrocytes, iPSC-derived microglia, and
HMC3 cells), peaks were also called using a custom pipeline (“repro-
ducible peaks”), where a peak is called if it’s present in the majority of
the technical replicates available, and the union of IDR optimal peaks
and reproducible peaks was used in the analysis. The queries to intersect
these annotations with the candidate variants of interest were per-
formed in GRCh37/hg19, and the results were lifted over to GRCh38
with the UCSC tool liftOver80 for comparison with other annotations.

EGFR sgRNA design
The genomic coordinate location for rs74504435 was obtained using the
UCSCgenomebrowser (buildGRCh37/hg19). This genomic coordinate for
rs74504435 plus and minus 200 bps was then entered into the software
CHOPCHOP81 to generate a table of possible single guide RNAs (sgRNAs)
for CRISPRi (repression) using Cas9. The Cas-OffFinder software82 was
used to access the off-target mismatches of the possible sgRNAs generated
from CHOPCHOP. After assessing the efficiency and off-target mis-
matches, three sgRNAs targeting rs7450443 (G1, G2, G4) were selected.
Two non-targeting control guides (N2 and NTC3, Millipore Sigma) were
used asnegative controls for theCRISPRi experiments.As apositive control,
we utilized a guide targeting an enhancer of the gene TSPAN14, since we
previously validated this construct for CRISPRi experiments in HMC3.

Cloning the sgRNAs in a lentiviral plasmid
We leveraged a lentiviral vector created in the Chesi lab (SL33 Lenti-
sgRNA(Tp2)-mCherry) to generate the backbone and the insert required
for NEB HiFi DNA Assembly cloning. This lentiviral vector contains a U6
promoter driving the expression of one sgRNA; it also contains an sgRNA
scaffold region and mCherry as a selection marker. To clone the sgRNA of
interest into this vector, forward and reverse primers were designed and
ordered through Azenta. The forward primer included: the sequence of the
sgRNA of interest, complementary bases to the sgRNA scaffold, and over-
hanging bases (complementary to the vector - which is needed for Hifi
cloning). The reverse primer was designed in such a way that when used
with the forward primer in PCR, the ampliconwould be theHiFi insert, i.e.,
the sequence of the sgRNAof interest, the sgRNA scaffold, and overhanging
bases complementary to parts of the HiFi backbone. The SL33 Lenti-
sgRNA(Tp2)-mCherry vector was digested with restriction enzymes XhoI
and BsrG1 and run on a gel to isolate and extract the HiFi backbone. The
forward and reverse primers were used in a PCR cycle with the SL33 Lenti-
sgRNA(Tp2)-mCherry as template in order to obtain the HiFi insert. The
backbone and the insert were combined in HiFi cloning to generate the
respective sgRNA lentiviral plasmids. The plasmids were then transformed
using NEB 5 alpha competent bacteria. After colony picking andminiprep,
plasmids were submitted to Plasmidsaurus for Nanopore sequencing for
validation.We cloned three sgRNAs designed to target rs74504435 (G1,G2,
G4) and two non-targeting sgRNAs (N2 and NTC3).

Virus generation
On day 0, 400,000 HEK 293T cells per well were plated on PDL-coated 6-
well plates. On day 1, cells were transfected with the respective sgRNA
lentiviral plasmid in addition to envelope (Addgene plasmid #12259) and
packaging (Addgene plasmid #12260) plasmids using the Lipofectamine

3000 reagent.Onday 2, completemedia changeswere performed.Onday 4,
media from theHEKCells (VirusDay Two)were collected, filtered through
a 0.45-micron filter, aliquoted, and frozen/stored in the −80 °C.

Transducing HMC3 helper line cells
We generated a CRISPRi helper line by transducing the human microglial
line HMC3 (ATCC #CRL-3304) with a lentiviral vector encoding Zim3
Krab dCas9 and GFP as a selection marker (Addgene plasmid #188778).
This line (HMC3-zim3)was plated in a 6-well format - 200,000 cells perwell
onday0.Onday1, cellswere transducedwithDayTwovirus, andpolybrene
was used to aid in transduction efficiency. Due to the toxic nature of
polybrene, if cells are exposed to it for too long, a complete media change
was performed 18 h later (day 2). On the same day, cells were later moved
from the 6-well format to a 100mm plate in order to expand them for
fluorescence-activated cell sorting (FACS). After cells reached about
80–100% confluency on the 100mm plate, FACS was performed on these
transduced cells as well as naïve HMC3 cells (used as a baseline for fluor-
escence) at the FlowCytometry Core Laboratory at CHOP. Double positive
cells were selected, i.e., the top 50% of cells that had both GFP fluorescence
(indicating that these cells have dCas9) and mCherry fluorescence (indi-
cating that these cells had the sgRNA lentiviral vector) were chosen. After
recovering from flow sorting, cells were cultured and expanded until there
were enough to perform qPCR experiments.

qPCR experiment
qPCR primers for EGFR (spanning exons 7–9), TSPAN14 (spanning
exons 8–9), and GAPDH (spanning exons 2–3) were ordered through
IDT. After cells were expanded post-FACS, cells were plated in a 6-well
format (220,000 cells per well). 24 h after plating, cells were pelleted,
and RNA extraction was immediately performed using the Qiagen
RNeasy Plusmicro kit andQIAShredder kit. UsingApplied Biosystems’
High-Capacity cDNA reverse transcription kit, cDNA synthesis was
also performed on the same day as RNA extraction. Power SYBRgreen
PCR master mix from Applied Biosystems was used to perform stan-
dard comparative qPCR with primers for the two target and one
housekeeping gene (EGFR, TSPAN14, and GAPDH). Three biological
replicates in total were performed for each condition.

Extra information on the sgRNAs
Sequences of sgRNAs targeting rs7450443 w/o PAM sequence:

G1: 5′ TAGGCCTGAATGTCAATCAC 3′
G2: 5′ AGTGTGTTGAGTGTGAACAC 3′
G4: 5′ GTGTCAGCTCTCACTGAAAG 3′
Sequences of non-targeting guides
N2: 5′ CGCTTCCGCGGCCCGTTCAA 3′ was ordered from Milli-

pore Sigma and was delivered in the form of a virus
NTC3: 5′ CCCGAGCAGTGGCTCGCTA 3′ is a non-targeting guide

ordered from Millipore Sigma
Sequence of positive control - sgRNA targeted to the enhancer of

TSPAN14 (Tspan14_enh): 5′ CTTAGGCGCTGCATACCGTA 3′

Data availability
The analyzed ADGWAS summary statistics data is available in the GWAS
catalog ([https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90027001-GCST90028000/GCST90027158/]). The selected FG
datasets used in this study are available from the FILER database and in
Supplementary Data 12.

Code availability
Reported analyses were performed using the adapted INFERNO pipeline
(https://bitbucket.org/wanglab-upenn/bash-INFERNO).
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