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Health equity is a critical concern in clinical research and practice, as biased predictive models can
exacerbate disparities in clinical decision-making and patient outcomes. As healthcare systems
increasingly rely on data-driven models, ensuring fairness in these systems is essential to prevent
perpetuating existing disparities. While large-scale healthcare data exists across multiple institutions,
cross-institutional collaborations often face privacy constraints, highlighting the need for privacy-
preserving solutions that also promote fairness. We present Fair Federated Machine Learning
(FairFML), a model-agnostic solution designed to reduce algorithmic bias in cross-institutional
healthcare collaborations while preserving patient privacy. Validated through a real-world case study
on reducing gender disparities in cardiac arrest outcome prediction, FairFML improved fairness
metrics by up to 90% without compromising predictive performance. FairFML is flexible and
compatible with various FL frameworks and models, from traditional statistical methods to deep
learning, offering a robust and scalable solution for equitable model development in clinical settings.

Machine learning (ML) and artificial intelligence (AI) methods have been
rapidly adopted in healthcare for a broad range of data-driven applications,
such as predictive modeling’, personalized treatment recommendations’,
and resource allocation in health systems’. However, ensuring health equity
remains a critical challenge, particularly when algorithmic findings directly
impact clinical decision-making and patient care within health systems™.
Concerns have grown regarding the underperformance of ML and Al
systems for historically underserved populations, including women and
individuals from lower socioeconomic backgrounds®. For instance, studies
have shown that Black patients are more frequently underdiagnosed with
chronic obstructive pulmonary disease (COPD) compared to Hispanic
White patients, emphasizing the need to address these disparities™. Simi-
larly, in postpartum depression, ML models trained on gender-imbalanced
data favored White women, even when Black women were predicted to be at
higher risk, illustrating racial disparities in healthcare outcomes’. Medical

imaging datasets, such as X-rays, also produce biased classifiers due to
gender-imbalanced data, leading to consistently poorer performance for
underrepresented genders’.

Algorithmic disparity’, often referred to as “biased” or “unfair” deci-
sion-making, arises when predictive models perform unequally across
subgroups'®'! defined by sensitive attributes such as gender, race/ethnicity,
and socioeconomic status'>. These inequities span various healthcare
domains, including COVID-19*>", stroke", emergency medicine'*™, car-
diovascular disease', cancer'®, and organ transplants””. Despite growing
efforts to develop fair models'?, most studies rely on single, centralized
datasets. However, healthcare data are often distributed across multiple
institutions, such as electronic health records (EHRs) from different hos-
pitals or mobile health data from users’ devices’”'. Aggregating these
diverse data sources could accelerate research and improve care quality™,
but privacy regulations pose significant barriers™.
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Federated learning (FL), or federated ML (FML), offers a promising
solution by enabling participants to collaboratively train models without
sharing sensitive data’, making it an increasingly popular approach in
medical research’*”’. However, while FL adoption is increasing, most
studies focus primarily on overall predictive performance, often
overlooking its potential to address algorithmic disparities”. Evidence
suggests that standard FL algorithms struggle to reduce algorithmic
biases™”, leading to models that retain their unfairness when
transitioning from single-site analyses to FL settings. Local biases may
persist or even be amplified due to the lack of centralization, as each
institution contributes heterogeneous data that reflect varying socio-
demographic characteristics and clinical practices, introducing diverse
biases.

Although some studies have investigated these disparities within FL
contexts, they predominantly rely on conventional ML datasets rather
than real-world clinical data” ", raising concerns about the general-
izability of their findings to actual healthcare systems. To address these
gaps, we propose Fair Federated Machine Learning (FairFML), a unified
solution to promote fairness in FL among distributed healthcare sys-
tems. As a proof of concept, we used real-world out-of-hospital cardiac
arrest (OHCA) data from the United States, focusing on gender dis-
parities—a critical concern for equity in OHCA care'"*'. These dis-
parities are often attributed to complex factors, including differences in
layperson bystander cardiopulmonary resuscitation (CPR)". This case
study aims to demonstrate FairFML'’s effectiveness in mitigating such
disparities, while maintaining prediction performance comparable to
both local and centralized analyses.

Heterogeneously Partitioned by Ethnicity
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Results

Model performance and fairness evaluation

Figure 1 illustrates the partitioning of 7425 individual episodes into four or
six sites following the cohort formation process, with a 7:3 split for training
and testing data. Supplementary Table 1 in the Supplementary Materials
summarizes the baseline characteristics of the overall cohort and each site
under different experimental conditions. In cases I and III, where clients
were partitioned by race/ethnicity, significant distribution differences were
observed, with the proportion of White individuals ranging from 88.9% to
48.2%. In cases II and IV, where clients were partitioned by age, the mean
age varied considerably, ranging from approximately 60 to approximately
70 years. Outcome prevalence varied from 7.5% to 12.6%, and other vari-
ables also exhibited heterogeneous distributions, reflecting the real-world
demographic differences across regions.

Details of the experimental setup, including the tuning of X and y and
other general hyperparameters for FL, are provided in Supplementary Fig. 2
and Supplementary Table 2 in the Supplementary Materials. This tuning
process is crucial for managing the inherent trade-off between model fair-
ness and predictive performance, as increasing A prioritizes fairness, typi-
cally leading to a controlled decrease in overall accuracy.

We assessed the performance of the federated model developed using
FairFML by comparing it to the centralized model, local models trained
independently at each site, and general FL models (FedAvg and Per-
FedAvg). Specifically, FairFML integrates with these FL frameworks by
replacing their standard model loss function with a A\-weighted fairness loss
during training, forming FairFML (FedAvg) and FairFML (Per-FedAvg).
This process is visually depicted in Fig. 2 and detailed algorithmically in
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Fig. 1 | Cohort formation flow diagram. A total of 7425 episodes were partitioned heterogeneously across clients by race/ethnicity.
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Fig. 2 | Workflow of FairFML. (1) Client-side
training; (2) Federated parameter exchange; (3)
Fairness loss incorporation.
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Supplementary Fig. 1 in the Supplementary Materials. Figure 3 illustrates
the performance of each model across the testing datasets for all sites in the
Case IV experimental scenario. Results for the other three cases are provided
in Supplementary Figs. 3-5 of the Supplementary Materials, detailing the
performance comparison and fairness metrics for Case I (race/ethnicity, 4
sites), Case II (age, 4 sites), and Case III (race/ethnicity, 6 sites), respectively.
These figures all show that fairness metrics generally improved across all
clients, aligning with the overall trend across sites, with only a minor trade-
off in predictive performance.

Key findings from Fig. 3 and Supplementary Figs. 3-5 include: (1)
FairFML consistently outperformed other baseline models in fairness,
demonstrating substantial improvements across metrics such as decreases
in DPD and EOD (moving closer to 0) and increases in DPR and EOR
(moving closer to 1). It maintained predictive performance nearly identical
to other baseline models, with a maximum AUC decrease of less than 0.02
relative to the centralized model. (2) FairFML sometimes narrowed the
confidence interval compared to baseline models, suggesting more stable
model performance in terms of the corresponding fairness metrics. (3)
Although FedAvg and Per-FedAvg occasionally outperformed central and
local models on specific fairness metrics for certain clients, their improve-
ments were less substantial. In contrast, FairFML-based model consistently
demonstrated significant and superior performance across all fairness
metrics.

Discussion

FairFML offers a unified, model- and framework-agnostic solution’ for
enhancing fairness in FL collaborations. Its adaptability to various FL fra-
meworks and ML models—ranging from traditional statistical regressions
and support vector machines to deep neural networks—makes it highly
versatile for clinical and biomedical prediction tasks™. By reducing algo-
rithmic disparities, as shown in our case study on gender disparities in
cardiac arrest outcomes, FairFML mitigates bias for underserved popula-
tions when integrated with standard FL frameworks. This provides

significant value to health systems by improving fairness in predictive
models, which directly impacts clinical decision-making. At the system
level, FairFML helps reduce care delivery disparities, enhances resource
allocation, and optimizes healthcare services, particularly in distributed
systems where data is private and cannot be shared.

Given that clients in cross-institutional FL collaborations often expect
direct benefits for their research or clinical practice’”, it is essential to
evaluate models against both client-level (local) and central models. Our
results show that FairFML consistently outperforms traditional FL and local
models in terms of fairness between the two genders, as seen in Fig. 3 and
Supplementary Table 3. While the maximum AUC decrease compared to
centralized or standard FL models was <0.02, this modest reduction is a
clinically acceptable trade-off, outweighed by the substantial gains in
equitable care achieved through bias mitigation. Establishing the real-world
impact necessitates future prospective analyses and close collaborations
with clinicians to directly evaluate patient-level outcomes where fairness is
explicitly prioritized in model predictions.

Beyond its strong performance characteristics, FairFML’s design
ensures broad compatibility with a variety of FL algorithms, including
FedAvg, FedProx, and Per-Fed Avg, without requiring modifications to their
underlying mechanics. While Per-FedAvg is known to improve client-level
personalization through meta-learning”, our experiments show that
FairFML (Per-FedAvg) often achieves superior fairness outcomes com-
pared to FairFML (FedAvg), highlighting its alignment with established
personalization benefits. These properties make FairFML highly scalable,
adaptable, and practical for real-world biomedical FL scenarios where
fairness, interpretability, and implementation feasibility are critical.

FairFML’s convex formulation enables efficient optimization using
standard stochastic gradient descent and supports seamless integration into
a wide range of predictive models, including logistic regression, ridge
regression, support vector machines, and neural networks. Importantly,
FairFML does not increase the underlying optimization complexity of the
base model. For convex models, the overall objective remains convex; for
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non-convex models, the fairness penalty introduces no additional non-
convexity, allowing training to proceed as usual. In such cases, practitioners
may adopt more robust FL frameworks—such as FedProx—to better handle
convergence in non-convex settings.

Another benefit of FairFML’s design is its preservation of model
interpretability: while the convex fairness loss modifies model para-
meters to enhance fairness, it does so without fundamentally altering
the model’s core architecture. Consequently, commonly used explain-
able A tools, such as LIME™ and Shapley-Value-based ones™*’, remain
fully applicable, as their methodologies primarily depend on analyzing
the model’s input-output behavior rather than being sensitive to exact
internal parameter values.

Building on its ability to enhance fairness for specific attributes, an
important next step towards comprehensive health equity involves
addressing multi-group fairness. Indeed, although gender disparities in
cardiac arrest are a key focus, they are not the only relevant partition for
group fairness in this context”. Studies show that individuals from Black,
Hispanic, or lower socioeconomic status backgrounds experience pro-
nounced disparities throughout the resuscitation pathway*. Our findings,
presented in Supplementary Table 4 of the Supplementary Materials,
highlight significant variations in gender disparities when further parti-
tioned by race/ethnicity and age (265 vs. <65), demonstrating the relevance
of intersectional multi-group fairness (i.e., multiple intersecting sensitive
variables™) to further mitigate unfairness. Despite more than a decade of
discussion on multi-group fairness**"), it has received limited attention in FL
settings. This is particularly challenging when group partitions are imbal-
anced or entirely absent from some clients; in such scenarios, the fairness
penalty may become unstable or undefined due to the lack of valid group
comparisons.

While these aspects present considerable challenges, FairFML’s model-
agnostic and convex formulation provides a foundational framework that
could be extended to address multi-group fairness in future work, allowing
its penalty term to be integrated and trained using standard stochastic
gradient descent strategies in FL. In addition, incorporating robust strategies
such as oversampling (e.g, ROSE"), conditional data synthesis***, or
generative models like GANs" could help deal with imbalanced data. These
adaptations would enable FairFML to operate more effectively in imbal-
anced or incomplete real-world clinical datasets.

Beyond the algorithmic fairness considerations discussed thus
far, the concept of fairness in FL also encompasses broader aspects.
This often involves client resource allocation and ensuring perfor-
mance uniformity across clients***’, commonly referred to as “system
fairness”*. This is particularly relevant in scenarios involving client
selection to optimize convergence speed and reduce computational
costs®, as seen in cross-device FL?'. However, cross-institutional
FL”—which is more prevalent in healthcare settings and often
involves fewer clients (typically fewer than five)*”® —the focus shifts to
algorithmic fairness. While various strategies have been proposed to
enhance fairness in clinical models, including privacy-preserving
collaborations, McCradden et al.”’ caution that relying solely on
technical solutions may inadvertently harm vulnerable groups. Thus,
FairFML should be viewed as a starting point, followed by further
analysis of downstream patient impacts, rather than assuming that
fairness can be achieved solely through ML/AI metrics™.

Translating FairFML into real-world clinical practice also requires
overcoming significant logistical and operational challenges. These include
securing multi-site IRB approvals and data-sharing agreements, coordi-
nating domain experts to harmonize heterogeneous variable definitions,
and establishing secure infrastructure with sustained engineering support.
Potential solutions include developing modular, GUI-based tools that
minimize coding burdens and standardized governance frameworks—such
as the FAIR-EC” collaboration—to ethically and efficiently streamline
privacy-preserving multi-site analyses.

Our clinical case study uses simulated partitioned clients for FL
experiments as a proof of concept, in preparation for real-world

applications. Although we simulated cross-site data heterogeneity, real-
world collaborations may introduce additional complexities, particularly
regarding model heterogeneity””. Further research is required to validate
FairFML’s robustness and applicability in real-world cross-institutional
collaborations.

While this study focused on group fairness, our proposed method
can be extended to improve individual fairness® by incorporating an
individual fairness penalty within the convex framework™. A hybrid
penalty combining both group and individual fairness metrics could
offer a more comprehensive approach to mitigating unfairness in
clinical research. In addition, the fairness penalty could be extended to
handle multi-group fairness metrics, such as gender, ethnicity, and
socioeconomic status, simultaneously by using the intersection of
subgroups, given the convex property of the proposed fairness penalty,
which could be easily trained using simple stochastic gradient descent
strategies in FL training.

Moreover, to handle temporal distribution shifts in longitudinal or
real-time settings, transfer learning™ techniques can be integrated into
FairFML to update the model as new batches of data arrive, preserving
previously learned fairness constraints while adapting to evolving patient
populations. Future work will aim to explore these extensions and validate
FairFML in real-world settings to ensure its robustness and applicability
across diverse clinical environments.

FairFML effectively mitigates bias and enhances fairness in model co-
training across multiple healthcare data owners while preserving privacy. In
our proof-of-concept case study using real-world emergency medicine data,
FairFML reduced fairness disparities and improved outcomes for under-
served populations without compromising predictive performance. These
findings highlight the clinical value of FairFML in fostering equitable
decision-making within health systems, ensuring that AI models benefit all
patient groups fairly. By embedding fairness into FL frameworks, FairEML
supports healthcare systems in optimizing resource allocation and
improving care delivery, particularly in settings where data is distributed
and privacy concerns are critical.

Methods

Notation and problem setup

In this study, we adopt the notation introduced by Berk et al.”. Let y €
% = [—1,1] represent the binary outcome and x € y = R? denote the
feature vectors. Each instance is categorized into one of two groups based on
a sensitive variable, denoted as x . ;. The joint distribution of Z and % is
represented by 2. We consider a training set S = {(x;, y;) }:l: > consisting of
n independent and identically distributed (i.i.d.) samples drawn from 2.
This training set is divided into two groups, S, and S,, based on the sensitive
variable, with n, and n, representing the respective sizes of these groups,
such that n, +n, = n.

The \-weighted fairness loss for a given model is defined as
ZL(w,S) + M(w, S), where £ represents the standard model loss function,
w represents model parameters, and A is a regularization parameter for the
fairness penalty. Consistent with Berk et al.”’, we focus on a group fairness
penalty, defined as

fw,8) = Z d()’w)’j) (W X T W xj)

(x:,3:) € S, M
(xj,yj) es,

nn,

Here, d(y;, y;)=1[y; = ] serves as the cross-group fairness weight.

4.2 Group fairness metrics

Demographic parity (DP), also known as statistical parity, and equalized
odds (EO) are two widely used algorithmic fairness definitions for binary
classifications:
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« A model satisfies DP over a distribution 2 if its prediction ¥ is sta-
tistically independent of the sensitive feature:

P[?=1|X(/H=a]=P[?=1],Va @

« A model satisfies EO over a distribution 2 if its prediction ¥ is con-
ditionally independent of the sensitive feature given the true outcome
label:

P[Y =1y, =aY=)]=P[Y=1,=Y=y],Va,y (3)

In this study, we focused on a total of four fairness metrics: demo-
graphic parity difference (DPD), demographic parity ratio (DPR),
equalized odds difference (EOD), and equalized odds ratio (EOR),
which are calculated using the definitions of DP and EO as follows:

* DPD = max, E[Yl)({/+1 = a] - minuE[Yl)(//Jrl = a] measures the
maximum difference in predicted outcomes across groups. A DPD
closer to 0 indicates more equal predictions across groups.

min, E[?‘X(/H:“]

e DPR = measures the ratio of the minimum to max-

max, E[?\X(,Jrl: u]
imum predicted outcomes across groups. A DPR closer to 1 indicates
more balanced prediction rates.

* EOD = max ¢y (maXaE[Yl)((/H d+1
a, Y = y]) measures the difference in prediction errors (false positives/

=a,Y=y] —minuE[?lx =
negatives) across groups. An EOD closer to 0 indicates more equal
predictions across groups.

. min,, E| YI =aY= .
EOR = min ming E[Viy, ,, =aY =] measures the ratio of error

yel-L1 maxaE[?‘X,/+1:“<Y:}’]
rates between groups. An EOR closer to 1 indicates more balanced

prediction rates.

FairFML
We integrated the \-weighted fairness loss described in “Natation
problem setup” into the FL model training, and the workflow of our
proposed FairFML is illustrated in Fig. 2. As shown, incorporating
FairFML into any FL framework enhances the fairness of existing FL
solutions by replacing the standard model loss function % with the A
-weighted fairness loss function during FL model training. The
fairness regularizer f is convex™, meaning that it has a single global
minimum and no local minima. This property is crucial for opti-
mization because it guarantees that the combined objective function
ZL(w,S) + M(w,S) can be efficiently minimized without the risk of
converging to suboptimal solutions. Convexity ensures that as we
adjust ), the trade-off between fairness and model accuracy is stable
and predictable, which is essential for effective optimization in
typical FL frameworks, such as FedAvg”. To prevent overfitting, we
incorporate 1, regularization, resulting in the final loss func-
tion: Z(w, S) + Af(w, S) + yl|wl|3.

The trade-off between model accuracy and fairness, regulated by
\, varies significantly across datasets®*® where higher \ values impose
greater fairness penalties. As \ increases from 0 to oo, model accu-
racy tends to decrease. Therefore, users need to select an appropriate
N\ value for each dataset to balance improved fairness with an
acceptable reduction in model accuracy. To address this challenge, we
propose a data-driven approach for efficiently selecting A while
minimizing computational costs. As outlined in the pseudocode
(Supplementary Fig. 1, Supplementary Materials), A, is initially
chosen independently for each client k by plotting prediction metrics
(e.g., accuracy or mean square error (MSE)) against A;. A practical
method involves incrementing A, in fixed steps until the prediction
metrics degrade beyond a set threshold compared to the unregular-
ized model (e.g., when accuracy falls below 0.995*Acc,, where Acc, is

the accuracy of the model without the fairness penalty). The max-
imum A, across all clients is then used to define the range for FL
training, from which a user-defined set of equally spaced A values is
selected.

For each A value, we use a two-step strategy to determine the optimal y.
First, we explore broad, equally spaced y values starting from zero. The user
selects the best y based on changes in predictive performance and fairness
metrics. We then narrow the search range around that value and repeat the
process to finalize y for the given A. Detailed pseudocode for selecting y is
provided in Supplementary Fig. 1.

Dataset and experiments

Our study population comprised OHCA patients treated by emergency
medical services (EMS) providers, as recorded in the Resuscitation Out-
comes Consortium (ROC) Cardiac Epidemiologic Registry (Epistry)
(Version 3, covering the period from April 1, 2011, to June 30, 2015). The
ROC, a North American database established in 2004, aims to advance
clinical research on cardiopulmonary arrest”. Ethical approval was obtained
from the National University of Singapore Institutional Review Board (IRB),
which granted an exemption for this study (IRB Reference Number: NUS-
IRB-2023-451).

For cohort formation and predictor selection, we followed established
methodologies in out-of-hospital cardiac arrest (OHCA) research’*. We
included patients aged 18 and older who were transported by EMS, achieved
return of spontaneous circulation (ROSC) at any point prehospital, and had
complete data on gender, race, etiology, initial rhythm, witness status,
response time, adrenaline use, and neurological status. The primary out-
come was neurological status at discharge, measured by the Modified
Rankin Scale (MRS), where scores of 0, 1, or 2 were classified as a good
outcome. Variables used for outcome prediction included age (in years),
etiology of arrest (cardiac/non-cardiac), witness presence (yes/no), initial
rhythm (shockable/non-shockable), bystander cardiopulmonary resusci-
tation (CPR) (yes/no), response time (in minutes), and adrenaline use
(yes/no).

We conducted four sets of experiments to simulate real-world cross-
site data by partitioning the full study cohort heterogeneously: (I) by race/
ethnicity into four sites, (II) by age into four sites, (III) by race/ethnicity into
six sites, and (IV) by age into six sites. Specifically, the probability of an
observation being assigned to each site depends on the variable used for
partitioning (age or race/ethnicity). As a result, the marginal distributions of
predictors and outcomes become heterogeneous across sites. Continuous
variables were standardized using the mean and standard deviation from the
full cohort, and logistic regression was employed for outcome prediction.
We focused on two representative FL frameworks, FedAvg and Per-
FedAvg”. FedAvg is the foundational FL framework, being the first pro-
posed in the FL domain®*, while Per-FedAvg is a widely adopted solution
for personalized FL. The latter is particularly relevant in healthcare data
analysis, as it allows researchers to determine whether FL can offer localized
benefits that enhance the performance of existing models for individual
institutions™. Its effectiveness for personalized improvements on local
datasets has also been demonstrated with healthcare data™.

For each scenario, we conducted three types of analyses: (1) a central
model trained on the full cohort and local models trained independently
at each site, (2) federated logistic regression using FedAvg and Per-
FedAvg, and (3) fairness-enhanced federated logistic regression using the
proposed FairFML method with the two FL frameworks-FairFML
(FedAvg) and FairFML (Per-FedAvg). We evaluated model performance
using the area under the receiver operating characteristic curve
(AUROC) and four fairness metrics, as described in “Group fairness
metrics,” with gender as the sensitive variable, using the ‘Fairlearn’
package®.

Data availability
This study used data from the publicly available Resuscitation Outcomes
Consortium (ROC) Epistry database (Version 3, April 2011-June 2015).
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The dataset can be requested through the NIH website at: https://biolincc.
nhlbi.nih.gov/studies/roc_cardiac_epistry_3/.

Code availability
The Python code for FairFML is available at https://github.com/nliulab/
FairFML.
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