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Monitoring, modeling, and regulating air
pollution from industrial animal
agriculture in the United States
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Industrial animal agriculture contributes to air pollution, accounting for the majority of ammonia
emissions and a significant portion of hydrogen sulfide and particulate matter pollution in the United
States. Primarily resulting from manure management practices at animal feeding operations (AFOs),
these pollutants harm human health, with minority populations at the greatest risk of exposure. Despite
these environmental, health, and justice concerns, emissions from AFOs are poorly monitored, and
polluting facilities have evaded regulation for decades, partly due to delays in the development of
federally-sanctioned emissions estimation methodologies. Here, we provide a brief history of
regulatory efforts related to air pollution from industrial animal agriculture in the United States, and we
analyze the largest publicly-available dataset of air pollution from AFOs to identify opportunities to
reduce barriers to regulation based on existing data. We then provide an overview of available
methods for modeling emissions, evaluate current draft models developed by the U.S. Environmental
Protection Agency (EPA), and propose strategies for gathering additional data tailored towards

improved regulation.

Animal agriculture is highly concentrated in the United States (U.S.). The
majority of poultry, cattle, and swine are held in a small subset of the largest
Animal Feeding Operations (AFOs). For example, while there were over
74 million swine on farms in the U.S. in 2022, more than three-quarters of
these animals were held in just the largest five percent of operations'. Simi-
larly, over 75% of the 389 million layer chickens held on farms in the U.S. in
2022 were held in less than one percent of all operations with layer chickens”.

Subject to limited environmental regulation and reporting require-
ments, AFOs generate hundreds of millions of tons of manure each year’.
The storage, handling, processing, and land-application of this manure,
along with other practices at these operations, result in large emissions of
ammonia (NH3), hydrogen sulfide (H,S), and volatile organic compounds
(VOCGs). Livestock activities and manure management also result in direct
emissions of primary particulate matter (PM) and contribute to elevated
ambient concentrations of PM through the release of pollutants that act as
precursors to secondary PM formation*.

Globally, over 80% of atmospheric NH; emissions are attributed to
agriculture’. In the U.S,, livestock waste is responsible for 2.7 million tons of
NH; emissions per year, or nearly half of all NH; emissions produced
nationally®. These emissions can impact biodiversity and contribute to
eutrophication and soil acidification’. Once in the atmosphere, NH; can
further contribute to air pollution by reacting with aerosols to generate

PM2.5, in forms such as ammonium nitrate, ammonium sulphate, and
ammonium chloride'’. In some regions of the U.S. with high concentrations
of AFOs, nearly half of total anthropogenic PM2.5 pollution is derived from
reactions between NH; emitted from livestock and fertilizer use and other
atmospheric gases''. Elevated PM concentrations can contribute to haze and
acid rain, impact plant biodiversity, alter soil and water chemistry, and
influence weather and climate'*".

While H,S emissions tend to be lower in magnitude than NH; emis-
sions and have not been characterized as extensively, data from regions with
high concentrations of AFOs in North Carolina suggest that agricultural
H,S emissions can be among the top contributors to total sulfur emissions'*.
Animal manure and feed storage and handling also generate a diversity of
VOCs, which can lead to acid deposition, smog, and atmospheric ozone
formation".

Emissions of NH3, H,S, and VOCs, and elevated ambient concentra-
tions of PM can contribute to both chronic and acute health impacts, and
communities in proximity to AFOs may be exposed to multiple overlapping
sources and forms of air pollution'*”. NH; emissions from AFOs can
contribute to eye, nose, and throat irritation, headache, nausea, diarrhea,
cough, nasal congestion, drowsiness, and alterations in mood for workers
and surrounding communities'®"”. Even at low levels of exposure, H,S
emissions from AFOs can contribute to odor, nasal issues, and respiratory
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problems, including chest tightness and asthma®. PM2.5 is small enough to
penetrate the thoracic region of the respiratory system” and is associated
with chronic obstructive pulmonary disease, acute lower respiratory infec-
tions, cerebrovascular disease, ischemic heart disease, and lung cancer””.
Living in proximity to swine or dairy AFOs increases the risk of asthma
and can even increase the likelihood of mortality”. Indeed, secondary
PM2.5 formed from NH; emissions from livestock waste handling and
storage is estimated to cause 6900 premature deaths per year, and secondary
PM2.5 formed from NHj; emissions from fertilizer application, including
manure, is estimated to cause an additional 4900 premature deaths per
year”.

Air pollution from AFOs has the greatest impact on adjacent com-
munities which, across the U.S., are disproportionately minority
populations™. For example, in North Carolina, the number of swine AFOs
in census blocks with high poverty and high percentages of nonwhite
residents are severalfold greater than those in wealthier or whiter census
blocks™. Similar geographic patterns have been documented in other states,
including Maryland, Mississippi, Wisconsin, and Iowa, as well as for other
types of AFOs including dairy and poultry operations™ . These spatial
distributions result in disparities in exposure to air pollution, with com-
munities of color and low-income communities exposed to greater ambient
concentrations of NH; H,S, and PM2.5°*>*, Individuals with the greatest
exposure to AFO air pollution tend to lack reliable access to medical care,
further compounding physical and mental health impacts of AFOs™"".

Despite the magnitude and impact of air pollution from AFOs, these
emissions persist with minimal regulation in the U.S. Efforts to regulate
agricultural pollution have been hindered in part by a purported lack of
methodologies to estimate facility-scale emissions. Here, we provide a brief
history of federal policies related to air pollution from AFOs in the U.S., and
we evaluate recent progress towards the development of air pollution
models to allow for improved regulation. We then provide an overview of
methods for estimating emissions, and we identify key opportunities for
accelerating regulation based on existing data and future sampling efforts.

24,25

Regulatory history of air pollution from industrial animal
agriculture

U.S. Environmental Protection Agency (EPA) regulations define AFOs as
agricultural operations where animals are kept and raised in confined
situations for 45 days or more®. Multiple facilities under common owner-
ship are considered a single operation if they adjoin each other or use a
shared waste management system. Concentrated Animal Feeding Opera-
tions (CAFOs) are AFOs that meet certain size thresholds, or which have
been designated as such by a regulatory agency based on factors including
size, location, or waste management practices. EPA regulations also provide
categorical size designations for CAFOs, with Large CAFOs referring to
operations that confine at least a certain number of animals—for example,
700 mature dairy cows, 2500 swine weighing 55 pounds or more, or 30,000
laying hens or broilers in AFOs with liquid manure handling systems™.

Air pollutant emissions in the U.S. are subject to regulation under
multiple statutes, including the Clean Air Act (CAA),42 U.S. Code § 7401 et
seq., and the Emergency Planning and Community Right-to-Know Act
(EPCRA), 42 U.S. Code § 11001 et seq. Under the CAA, facilities that emit
air pollutants in sufficient quantities may be required to obtain operating
permits*. Similarly, under EPCRA, facilities that produce, use, or store
certain hazardous substances, including NH; and H,S, must report
unpermitted releases of those substances above certain “reportable quan-
tities” to state, tribal, and local authorities, which, in turn, must make
information from the reports available to the public*’. For both NH; and
H,S, the EPCRA reportable quantity is 100 Ibs/day™.

Existing literature suggests that many AFOs generate air pollutant
emissions well above relevant statutory thresholds*>*****, However, for
over two decades, EPA has functionally excused AFOs from compliance
with air pollution statutes, at least partially as a result of delays in the
development of an officially sanctioned methodology for estimating air
pollution emissions from the sector. Beginning in 2005, EPA entered into an

agreement with nearly 13,900 dairy, poultry, and swine AFOs, allowing
these operations to avoid liability for past and ongoing violations of the CAA
and EPCRA provided that the AFOs pay a penalty and contribute to a
$15 million USD fund to cover the cost of a National Air Emissions
Monitoring Study (NAEMS)***’. The agreement did not include beef cattle
facilities, and these facilities were not monitored in the NAEMS. The
majority of participants in the agreement do not publicly disclose operation
details such as animal inventory; however, participants include at least 1669
AFOs that meet EPA’s designation of Large CAFO and at least 71 facilities
that are ten times as large as this threshold”’.

EPA completed data collection for the NAEMS, which included
measurements of emissions of NH3, H,S, PM, and VOCs from barns and
lagoons at 25 dairy, poultry, and swine AFOs in 10 states between 2007 and
2009 (Supplementary Table 1, Fig. 1). EPA initially estimated that the
consent agreement would come to an end by 2010, at which point, the
agency anticipated that it would have finalized models to allow for esti-
mation of air pollution from AFOs. Following several postponements, EPA
released draft models for public comment in 2024. As of November 2025,
these models have not yet been finalized, and the agreement remains in
place, allowing thousands of facilities to continue to release unregulated air
pollution. In addition, EPA has issued multiple rules exempting AFOs from
EPCRA requirements to report emissions of hazardous substances,
including NH; and H,S, despite recent legal challenges™.

Evaluating the National Air Emissions Monitoring Study
and identifying data gaps

There are decades of studies quantifying emissions of NH;, H,S, PM and
VOCs from barns and lagoons at swine®, poultrygo, and cattle
operations’ ™. These studies have helped characterize relationships
between emissions rates and variation in environmental conditions and
manure and livestock management practices. Building from these findings,
the NAEMS is the largest publicly available dataset of air pollution collected
through consistent methods from AFOs in the U.S. The dataset includes
16,672 daily observations of NH; emissions ranging from —11.7 to
1719.3 kg/day (median = 8.96 kg/day; Fig. 1), 17,799 daily observations of
H,S emissions ranging from —624 to 112,714 g/day (median =225.8 g/day),
1726 daily observations of PM2.5 emissions ranging from —1329.5 to
7247.6 g/day (median = 33.3 g/day), and 12,046 daily observations of PM10
ranging from —6845 to 367,744.5 g/day (median = 238.4 g/day).

The 25 operations monitored through the NAEMS represent less than
1% of AFOs participating in the consent agreement allowing them to avoid
liability for past and ongoing emissions violations. Critically, EPA collected
very few observations of NH; or H,S emissions at or above thresholds for
regulation (Fig. 1). 84% of NH; emission measurements and 99% of H,S
emissions measurements in the NAEMS are below the 100 lbs/day repor-
table quantity specified for hazardous substances in EPCRA. This poor data
coverage of higher emissions is at least partly due to the limited scope of
operations monitored through the NAEMS rather than a lack of higher
emissions occurring. Several studies have observed emissions well above
these values at AFOs in the U.S******* Furthermore, the limited observa-
tions of threshold exceedances at the few moderately sized AFOs monitored
within the NAEMS suggest that there are likely hundreds to thousands of
exceedances of the NH; threshold when these rates are scaled to consider
larger facilities across the country.

Comparing the animal inventory at AFOs monitored in the NAEMS to
data on facility sizes across the U.S. indicates poor coverage of the high end
of the size distribution of AFOs. While the specific magnitude of emissions
depends on multiple factors including environmental conditions and farm
practices, emissions are likely to increase as a function of facility size due to
greater animal inventory and activity and larger amounts of manure pro-
duction and accumulation® ™. These larger facilities will be critical to
monitor as they are likely to show the highest rates of regulatory threshold
exceedances, and they are likely to contribute substantially to total air pol-
lution. The largest swine facility monitored by EPA in the NAEMS held
2550 swine. In contrast, there were 3540 farms with over 5000 hogs and pigs
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Fig. 1 | Daily NH; and H,S emissions in NAEMS versus 1000-heads of animal inventory for dairy, poultry, and swine facilities. Dashed lines show 100 Ibs NH; or H,S

per day.

across the country reported in the 2022 United States Department of
Agriculture (USDA) Census of Agriculture”. In Duplin County, North
Carolina alone, there were 344 facilities permitted to hold more than
2550 swine, including one facility with an allowable count of 48,250 in
2024°°. Similarly, the largest dairy facility monitored by EPA held 3623 cows.
In Tulare County, California, there were 46 facilities with more than 3623
cows, including one facility permitted to hold over 10,000 mature
dairy cows.

The NAEMs dataset is also limited by the omission of particular types
of AFOs and gaps in coverage of the full lifecycle of farming practices
contributing to each type of air pollutant. Beef cattle operations can be major
sources of NH3, PM, and VOCs, due to manure handling practices and beef
cattle activity on feedlots and during grazing”’. Recent studies confirm that
ambient concentrations of PM surrounding beef feedlots tend to be elevated
compared to similar areas without AFOs, and these concentrations com-
monly exceed thresholds for safe human exposure™. Despite these concerns,
beef AFOs were not monitored through the NAEMS. More broadly, while
the NAEMS dataset covers emissions from barns and lagoons at AFOs, it
does not include any observations of emissions resulting from land appli-
cation of animal manure, which accounts for a significant component of
NH;, H,S, and VOC emissions and PM pollution from AFOs™ . Finally,
EPA was unable to utilize a large proportion of VOC data that it gathered
due to instrumentation errors and poor data quality.

Identifying facilities likely to exceed regulatory
thresholds

Despite the limited scope of the NAEMS dataset, these observations can be
used to quantify the likelihood of a given facility exceeding regulatory
thresholds. EPA has considered the potential for setting de minimis

thresholds based on animal inventory to exempt small facilities from having
to estimate and report emissions if they are unlikely to approach regulatory
emissions thresholds®'. To explore this application of data, we fit a Bayesian
non-linear model to NH; emissions values from all dairy facilities in the
NAEMS and estimated the likelihood of a dairy facility exceeding the reg-
ulatory threshold of 100 lbs NHs/day depending on the number of cows
(Fig. 2). According to this model and assuming that the NAEMS dataset is
representative of typical conditions, a dairy facility with over 2067 cows hasa
95% chance of emitting more than 100 Ib NH;/day on any given day, and a
dairy facility with 1173 cows has a 50% chance of exceeding this threshold
on any given day.

Extrapolating from this analysis suggests that several hundreds of dairy
AFOs are likely to be exceeding regulatory reporting thresholds. According
to the U.S. Department of Agriculture Census of Agriculture, there were 834
dairies with 2500 or more cattle in 2022 (Fig. 3c)*. These dairies (and
potentially hundreds of other types of cattle-holding facilities which were
not monitored in the NAEMS) have greater than a 95% likelihood of
exceeding the 100 lbs/day NHj; threshold. These facilities represent a small
proportion of all dairies across the country, but they hold the majority of
total milk cow inventory (Fig. 3b—c).

More detailed methods (reviewed below) will be necessary to arrive at
specific quantitative estimates of emissions rates for a given facility. How-
ever, existing data can be used to quantify the likelihood of a facility gen-
erating emissions in violation of regulatory thresholds, and this type of
likelihood analysis can be readily implemented to accelerate regulatory
action. Regulators should require facilities with high likelihoods of threshold
exceedances to conduct additional direct monitoring and use these data to
advance the development of predictive models. Additionally, operations
with a high likelihood of exceeding regulatory thresholds should be required
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Fig. 2 | Identifying dairy facilities likely to exceed regulatory ammonia thresh-
olds. a Bayesian non-linear regression fit to model relationship between all NH;
observations from dairy facilities in the NAEMS and animal inventory. Shaded green
region shows 50% predictive interval. Dashed vertical green line indicates minimum
inventory (1173) with 50% likelihood of exceeding 100 Ibs NH;/day (dashed gray
horizontal line). Shaded blue region shows 95% predictive interval. Dashed vertical
blue line indicates minimum inventory (2067) with 95% likelihood of exceeding 100
Ibs NHs/day. b Histogram showing the number of cows (thousand heads) in each
facility size class for all dairy facilities in the U.S. ranging from facilities having 1-9
head to facilities with 2500 or more heads. ¢ Histogram showing the number of dairy
facilities in the U.S. in each facility class size. Predictive interval modeling details: We
fit a non-linear model of the form a + b*Inventory + d*Inventory/2 to the
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relationship between NH; emissions and Inventory using Markov Chain Monte
Carlo (MCMC) with normally-distributed priors. To account for heteroskedasticity,
we modeled the precision of the expectation using the relationship 1/(s*Inventory)
A3, where a, b, d, and s are all fitted parameters. The prior for s was log-normally
distributed. We ran the MCMC using the R package (rjags) and the software Jags
with 3 chains, a burn-in period of 1,000 iterations, and 100,000 iterations following
the burn-in period. We used the Gelman and Rubin’s diagnostic to assess con-
vergence of chains and achieved an effective sample size of over 4700 for each
parameter. We fit 50% and 95% predictive intervals for the model by sampling
posterior predictions and identified the Inventory value where the lower bound of
each predictive interval crosses the 100 Ib/day (45.4 kg/day) threshold.

to adopt practices to mitigate emissions. For example, installing control-
technologies like air scrubbers, improving livestock feed to reduce excreted
nutrients, altering manure storage and handling practices, and optimizing
manure and fertilizer land-application practices to increase nutrient use
efficiency all have the potential to reduce air pollution”****”. More broadly,

regulators should also explore strategies to reduce the concentration and
scale of industrial animal production to mitigate total emissions.

These thresholds can also help reduce calculation burdens for AFOs
with very low likelihoods of exceeding regulatory thresholds, which may
potentially be exempted from being required to estimate their emissions for

npj Clean Air| (2025)1:32


www.nature.com/npjcleanair

https://doi.org/10.1038/s44407-025-00033-6

Perspective

120
1

NH3 kg/day
80
1

40

20
!

0.0 0.5 1.0 15

INVENTORY (thousand-heads)

Fig. 3 | Comparing dairy ammonia emissions observations and predictions
between models. Points show emissions observations from dairy facilities in the
NAEMS. Solid line shows draft EEM for NH; from naturally-ventilated barns at
2.3 m/s windspeed (the average windspeed observed across sites). Black dashed line
shows EF derived from the NAEMS dataset through linear regression. Orange
dashed line shows EF from Kavolelis*.

reporting purposes. In 2022, there were 325,303 operations in the U.S. with
fewer than 20 dairy cows, and these facilities had a very low likelihood of ever
exceeding the regulatory threshold of 100 Ibs NH; on any given day*".
While we have focused on NH; from dairy AFOs in this analysis, this
approach should be expanded to other regulated pollutants and facility types

as additional supporting data becomes available.

Strategies for modeling air pollution emissions

Several modeling approaches exist to estimate air pollution rates from
AFOs. These include (1) emissions factors (EFs), (2) more complex statis-
tical models, and (3) process-based models™*’*”. Regulatory agencies in
the U.S. have used a combination of each of these types of methods to
quantify air pollution from agriculture and other sectors.

EFs are among the simplest statistical approaches to derive estimates of
air pollution. These factors are typically calculated by assuming a linear
relationship between emissions and a single variable, which is often the
number of animals in a facility. For example, an EF-based calculation may
assume that each animal generates a set quantity of air pollution per unit
time, such that the total air pollution generated by a facility over a given
period can be quantified by multiplying the EF by the total number of
animals held in the facility. Thousands of EFs for NH; from animal waste
have been compiled in global, publicly-available databases™’®. In an earlier
analysis of the NAEMS, EPA derived maximum EF estimates based on the
highest rate of emissions observed across the NAEMS dataset to calculate
the largest number of facilities potentially impacted by changes in regulation
(assuming all facilities were to generate air pollution at the highest observed
emissions rates)’'. EFs are easy to implement as they typically only require
animal inventory data; however, they fail to track the sensitivity of emissions
to multiple environmental factors and farming practices.

Alternatively, more complex statistical models may be developed to
represent nonlinear dynamics, accommodate non-independent or non-
normal data, and account for the sensitivity of air pollution emissions to
multiple environmental factors and animal management practices. While
these models may fit observed data more closely and account for multiple
factors likely to influence emissions, they are still constrained by the quantity
and quality of the data used to build the model and may not be generalizable
for predicting emissions in contexts outside the bounds of the input data
used for their construction.

Process-based models offer another alternative. These models predict
emissions based in part by representing the biophysical processes generating
emissions’’. Because these mechanisms are likely to hold true across con-
texts, they may offer greater generalizability. However, these types of models
still carry multiple sources of uncertainty, including uncertainty related to

model structure and parameter selection’®, and they can sometimes be more
challenging for users to implement. In 2013, the EPA Science Advisory
Board (SAB) recommended the development of a process-based model to
estimate air pollution from AFOs, and existing literature provides some
examples of successful development™. For example, Leytem et al. (2018)
developed a process-based model to estimate NH; emissions from dairy
lagoons in Idaho®, and Rumsey and Aneja (2014) developed a mass-transfer
model to predict H,S emissions from manure at swine AFOs™. Similarly,
Pinder et al. (2004) developed a process-based model to estimate NHj;
emissions from dairy cows accounting for variation based on farming
practices and meteorology, including temperature, wind speed, and
precipitation®"*. This approach was further expanded by McQuilling and
Adams (2015) to develop a set of semi-empirical process-based models to
predict NH; emissions from beef cattle, swine, and poultry operations based
on nitrogen mass balance and meteorology”’. EPA utilized this model in its
2014 and 2020 National Emissions Inventories to estimate NH; emissions
from livestock waste, including emissions from grazing, housing, storage,
and land application®. EPA has also developed or used process-based models
in other environmental regulation contexts, including the Aquatox model,
which represents the fate of chemicals in aquatic ecosystems and their
impacts on various organisms”, the SERAFM model which predicts mer-
cury concentrations in water, sediments, and fish tissues, and the DAY-
CENT model which predicts greenhouse gas emissions from agricultural
soils™.

Evaluating EPA’s draft emissions estimation
methodologies

EPA adopted a statistical modeling approach to develop draft Emissions
Estimation Methodologies (EEMs) for AFOs based on the NAEMS
dataset™. In 2024, EPA released 82 draft statistical models for NH;, H,S,
PM2.5, PM10, and total suspended particulates (TSP) from various types of
swine, dairy, and poultry facilities. As of November 2025, the models have
not been finalized, and the consent agreement remains in place.

To develop each model, EPA first processed the data collected through
the NAEMS and compared emissions across sites to identify potential
sources of variation. Based on these observations and a review of related
scientific literature, EPA identified environmental and facility-related
variables likely to predict emissions, such as live animal weight, animal
inventory, relative humidity, windspeed, and ambient temperature. EPA
developed multiple potential linear mixed effects models with repeated
variance spatial power covariance structures to estimate average daily
emissions. Separate model regressions were evaluated for all combinations
of selected parameters and natural log-transformed average daily emissions
data. EPA selected significant predictors of emissions, and they evaluated
the fit of each model based on multiple diagnostics, including Negative
Twice the Likelihood (-1LogL), Akaike Information Criterion (AIC),
Adjusted Akaike Information Criterion (AICc), and the Schwarz Bayesian
Information Criterion (BIC). Based on these and other evaluations of model
fit, EPA has proposed one draft EEM for each combination of pollutant and
facility type. In order to implement a draft EEM, a user is required to provide
between one and four input variables reflecting meteorology or facility
details. Because the models were developed for natural log-transformed
emissions data, users must subsequently back-transform emissions based on
parameters provided by EPA to arrive at emissions rates in units com-
mensurate with regulatory thresholds (e.g., Ibs/day).

In contrast to EFs, which are available in published literature”™”, or
which could alternatively be derived from the NAEMS dataset, EPA’s more
complex statistical modeling approach allows each draft EEM to account for
the combination of input variables most strongly correlated with emissions
rates within the NAEMS dataset for each specific pollutant and facility type.
A key difference between the EFs and EPA’s draft EEMs is in the shape of the
relationship between emissions and input variables. Due to EPA’s particular
statistical modeling approach designed to accommodate non-normally
distributed data, the EEMs often predict exponential increases in emissions
rates at high input values. In many comparisons between related EFs and
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EEMs, the two contrasting modeling approaches intersect at two points —
with EEMs predicting higher emissions than EFs before the first point of
intersection, EFs predicting higher emissions than EEMs at intermediate
input ranges, and then EEMs predicting potentially far larger emissions than
EFs following the second point of intersection (Fig. 3).

For example, Kavolelis® proposed an EF of 29 + 9 g NH;/day per cow
for dairy barns*. To allow for comparison, we calculated an EF of 95+ 8 g
NH;/day per cow through linear regression of all observations of NH; from
naturally ventilated dairy barns within the NAEMS dataset. In contrast, the
EEM for NH; from naturally-ventilated dairies shows a steep increase in
emissions estimates for facilities with over 1000 cattle (Fig. 3). It will be
critical to constrain these estimates and resolve divergences among these
modeling approaches by collecting additional data from the largest facilities
or other high emissions scenarios.

Due to EPA’s modeling approach, specific draft EEMs may demon-
strate problematic behaviors outside of intermediate input ranges observed
within the NAEMS. We have identified some threshold values below which
predicted emissions are negative and unlikely to be accurate (Supplemen-
tary Table 2). For example, the draft EEM for dairy lagoons predicts negative
NH; and H,S emissions below 11 degrees Celsius. Some draft EEMs may
also predict unreasonably high values for emissions above a certain
threshold of animal inventory or other input variables. For example, we used
the draft model for predicting NHj in a naturally-ventilated dairy barn to
estimate the NH; emissions from an existing dairy operation with 10,325
cows in Tulare County, California, and the model predicted a daily emis-
sions rate of 1.2 x 10' Ibs NHa/day (equal to six trillion tons per day).
Because the highest inventory value in the NAEMS dataset is 3653 cows,
emissions predictions above this inventory value are increasingly uncertain.
While additional data from these larger facilities will be necessary to con-
strain estimates of emissions rates, it is virtually certain that these large
facilities are emitting at rates well over the regulatory threshold of 100 Ibs
NHas/day (Fig. 1).

To avoid unanticipated model behaviors like the ones described above,
regulators should provide appropriate input ranges for the use of each model
and quantify uncertainty across the range of inputs potentially observed in
the U.S. In future model iterations, regulators should explore potential
alternatives to accommodating non-normally distributed data that avoid
these types of unintended nonlinearities and consider alternative modeling
frameworks, including process-based models™.

Opportunities for increasing air pollution data,
improving emissions estimation methodologies, and
overcoming barriers to regulation

Identifying data gaps and sampling priorities

Existing datasets like those developed through the NAEMS can be used to
optimize future air pollution sampling. Our analysis of the NAEMS dataset
identifies a critical need for more observations from the largest AFOs, which
are likely to account for the highest emissions and largest number of reg-
ulatory threshold exceedances. While existing data is sufficient for identi-
fying facilities likely to exceed regulatory thresholds, increased monitoring
of emissions, environmental conditions, and practices at the largest AFOs
will help constrain uncertainties in specific emissions estimates.

Future monitoring efforts may use model evaluation statistics
from the draft EEMs to identify sampling priorities. Accounting for
model uncertainty and sensitivity to various environmental and
facility inputs can help researchers identify the types of new data with
the greatest potential for supporting future model improvements.
Future studies should prioritize collecting additional data to support
refining those models currently associated with the greatest uncer-
tainties. For example, EPA performed an uncertainty analysis to
quantify the difference between model predictions and observed
emissions for each EEM*. Based on EPA’s uncertainty analysis, NH;
from larger poultry facilities, lagoons at swine facilities, and larger
dairy facilities are among those most in need of additional supporting
data (Supplementary Table 3).

In conjunction with uncertainty analyses, model sensitivity analyses
can be used to identify priorities for specific input variables to monitor.
Sensitivity analyses quantify the degree to which model outputs (e.g.
emissions) vary in relation to model inputs (e.g., facility details or meteor-
ological information). For example, several of the EEMs show the highest
sensitivity to animal inventory, suggesting a need to measure a more con-
tinuous range of facility sizes representative of the distribution of AFOs in
the country. However, other EEMs showed high sensitivity to environ-
mental factors as well - for example, lagoon emissions are sensitive to
windspeed and temperature, indicating potential benefit from monitoring
lagoons across a broader range of meteorological conditions (Supplemen-
tary Table 3).

Additional data will also be necessary to fill critical gaps in the NAEMS.
For example, due to instrumentation errors, EPA was unable to develop
more complex statistical models for VOCs from AFOs and relied instead on
a literature review to propose simple EFs. As noted above, the NAEMs also
did not include any observations of beef cattle operations and emissions
from land application, both of which account for substantial contributions
to air pollution from AFOs. Expanding monitoring efforts to include a
broader suite of pollutants, emissions sources, and AFO categories will be
necessary to develop a more comprehensive understanding of total air
pollution from AFOs.

Expanding data collection methods

Air pollution emissions data were gathered for the NAEMS primarily
through on-farm gas analyzers, which may be costly or challenging to
implement at a larger scale. Remote sensing technologies have the potential
to vastly increase emissions monitoring data and their spatial coverage®**.
In recent years, satellite remote sensing has been used to estimate emissions
and concentrations of several pollutants included in the NAEMS, such as
PM2.5 and NH;% . These measurements have been combined with inverse
modeling, oversampling, and other approaches to estimate emissions from
specific sources™”",

Future improvements in these methods will be required to address
challenges with low spatial and temporal resolution of satellite retrievals,
data gaps caused by clouds or other retrieval noise, and better account for
transport, deposition, and chemical conversion of the estimated
pollutants’”. However, even given these limitations, observations from
satellite remote sensing can be used to identify the location of significant
emission sources, such as AFOs with the highest likelihood of regulatory
threshold exceedances, and these operations may be required to provide
direct measurements. Alternatively or in tandem, commercially-available
low-cost sensors may be used to ground-truth estimates of pollution, as EPA
has done in other contexts to assess PM2.5 concentrations™.

Remote sensing can also be combined with modeling to estimate
emissions of pollutants that are more difficult to measure. While satellite
remote sensing shows promise for estimating NH; and PM emissions, H,S
has been more challenging to assess”’. However, previous research has
demonstrated that NH; and H,S emissions from AFOs are strongly
correlated', which is corroborated by strong correlations between NH; and
H,S emissions from poultry sites in the NAEMS dataset (Supplementary
Fig. 1). Remote sensing of NH; emissions could provide additional data to
model H,S emissions, as demonstrated by Leifer et al.” who used remote
sensing estimates of NH; emissions in combination with an H,S EF to
model H,S emissions”.

Conclusions

Despite limitations in existing data, it is virtually certain that many large
AFOs generate air pollution in excess of regulatory thresholds in the U.S.
Regulators and researchers may already use existing data from the NAEMS
to identify facilities that are likely to be responsible for the largest share of
emissions. These facilities should be required to provide additional data and
adopt mitigating practices to reduce harms to human health and redress
environmental injustices. While existing data is sufficient to inform
improved regulation immediately, these datasets should also be used to
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optimize future data collection efforts and should be supplemented with
emerging sampling technologies to refine modeling approaches.

Data availability

The NAEMS dataset is available at https://www.epa.gov/afos-air/draft-ap-
42-chapter-9-section-4-livestock-and-poultry-feed-operations-and-air-
emissions.
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