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Innovative integration of wind
transformation in AI models for real-time
carcinogenic risk assessment

Check for updates
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Air pollution remains a major public health concern, with fine particulate matter (PM2.5) and its
associated toxic pollutants contributing substantially to cancer risk. This study introduces a novel
machine learning framework to predict Incremental Lifetime Cancer Risk (ILCR) using routine
meteorological and air quality data, offering a cost-effective alternative to direct Polycyclic Aromatic
Hydrocarbons (PAHs) measurements. In the present study, two modelling strategies were evaluated.
The first is the Pollution Source Method (PSM), which incorporates wind parameters transformed
according to local pollution sourcedirections, and the second is theConventionalMethod (CM), which
uses unprocessed meteorological inputs. Artificial Neural Network (ANN) and Extreme Gradient
Boosting (XGBoost) models were applied under both strategies and assessed using R², MAE, MSE,
RMSE, and MAPE. The PSM-ANN model showed the strongest performance (R² = 0.944;
MAE = 0.037), while the CM-XGB model performed the weakest (R² = 0.799; MAE = 0.061). Error
analyses confirmed that PSM-based models produced more stable predictions with reduced
uncertainty. By enabling real-time ILCRprediction from low-cost sensors, this framework can support
early public health interventions and risk communication. Future work will expand this approach to
diverse regions and explore deep learning techniques to further enhance predictive accuracy.

Air pollution is a critical global issue that poses severe threats to public
health, environmental sustainability, and economic stability. Industrializa-
tion, urbanization, and vehicular emissions have led to deteriorating air
quality, resulting in respiratory diseases, cardiovascular complications, and
increased mortality rates. Given the need for effective environmental
management and public health interventions, accurate air pollution pre-
diction has become an essential research area. Traditional air quality
monitoring stations,while precise, are costly to install andmaintain,making
them infeasible for widespread implementation. To address these limita-
tions, computational models have been developed to estimate air pollutant
concentrations across broader spatial regions1.

Recent advancements in machine learning (ML) have significantly
improved the ability to model complex atmospheric interactions while
reducing computational costs. ML models have demonstrated high effi-
ciency in predicting air quality indices (AQI) and various air pollutants,
thereby offering real-time predictions at a reduced financial burden. Instead
of relying on high-end air quality monitoring equipment, ML models can
utilize data from low-cost sensors to predict intricate pollution indicators
such as Incremental Lifetime Cancer Risk (ILCR), as explored in this study.

Artificial Neural Networks (ANN) have been widely used in air
quality forecasting because of their capacity to capture nonlinear rela-
tionships. For example, studies in Liaocheng, Shanghai, and Chongqing
have successfully applied ANN and wavelet-based ANN frameworks for
PM₂.₅ and PM₁₀ prediction2–5. These works demonstrate the suitability of
ANN in short-term pollution forecasting. More recent studies also extend
such models to climate and ozone prediction, employing architectures
such as CNNs, LSTMs, and hybrid wavelet-deep learning frameworks6–9.
Such approaches highlight the growing potential of advanced neural
networks to model complex atmospheric processes more effectively than
traditional methods. Several prior studies have successfully applied ML
models to predict air pollutant concentrations10–13 and AQI14,15. For
instance, a study comparing fourMLmodels for AQI prediction using air
pollutants and weather parameters achieved RMSE values of 24.14, 15.97,
and 18.72 for ANN, XGBoost, and decision tree models, respectively,
outperforming traditional multilinear regression (MLR) models14.
Another study evaluating seven regression and seven classificationmodels
found that random forest performed the best, achieving anR² value of 0.91
and an MSE of 0.006715. These findings highlight the necessity of ML
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models in air quality prediction, as traditional regression models struggle
to capture complex relationships.

Optimizing ML models by selecting the most relevant input variables
enhances their predictive performance. Several studies have explored dif-
ferent methods to minimize the number of input variables while main-
taining model accuracy. A study on NO₂ prediction using an ANNmodel
reduced weather parameters to two derived stochastic variables13, while
others have employed techniques such as sensitivity analysis, genetic algo-
rithms, principal component analysis (PCA), and correlation coefficient
methods to refine input selection10,11,16,17. The primary goal of these studies
was to ensure that input variables were highly relevant to the target variable,
ultimately improving model efficiency. In contrast, this study aims to
maintain input relevance acrossmultiple locations, leading to an increase in
the number of input variables.

Machine learningmodels alsohold great potential for reducing the cost
of air pollution monitoring. For example, a study in China utilized ML
models to predict PM2.5 concentrations in metropolitan areas, such as
Xinzhuang, Sanchong, and Cailiao, based on data from pollution mea-
surement stations. This approach demonstrated the feasibility of reducing
the number of expensive monitoring stations18. Similarly, other research
efforts have sought to minimize reliance on costly air pollution monitoring
devices by developing ML models capable of real-time or hourly pollutant
predictions. One study trained an ANN model using meteorological data
(temperature, relative humidity, wind speed, and wind direction) to predict
hourly pollutant levels, achieving R² values of 0.87, 0.87, 0.85, 0.77, and 0.92
for PM10, NOx, NO₂, O₃, and CO, respectively12.

Efforts to replace traditional air pollution monitoring stations with
virtual ones have gained traction. A study investigating the concentration of
PM2.5, PM10, and NO₂ used five ML models, which include support vector
regressor, ridge regressor, random forest, XGBoost, and extra tree regressor,
to predict pollution levels with the objective of reducing reliance on physical
monitoring stations19. Another study leveraged the Adaptive Neuro-Fuzzy
Inference System (ANFIS) to predict same-day and one-day-ahead air
quality, reducing computational costs and improving prediction accuracy16.
To achievehigh-resolution temporal and spatial predictions ofNO₂,O₃, and
HCHO, researchers have employed physically informed neural networks
(PINNs), which integrate domain knowledge with ML algorithms20.

Beyond conventional pollutants like PMs andVOCs,MLmodels have
also been utilized for predicting more complex environmental compounds
such as polycyclic aromatic hydrocarbons (PAHs). A study using support
vector regression (SVR) achieved an R² of 0.9468 and an RMSE of 7.3116
when predicting total PAHs based on total petroleum hydrocarbons (TPH)
in soil21. Another study applied a backpropagation ANN model to predict
PAH concentrations in soil, achieving an R² of 0.999422. Furthermore, PAH
concentrations in the air have been predicted using recurrent neural net-
works trained on data related to forest fires, air emissions, sea ice cover, and
meteorological parameters, with RMSE values ranging from 0.51 to 46.3623.

This study aims to predict ILCR due to the 16 most hazardous PAHs
identified by USEPA (United States Environmental Protection Agency) in
the air using PM2.5 concentrations and weather parameters. The key
motivation is to develop amodel capable of utilizing low-cost sensor data for
real-time ILCR prediction, which would otherwise require substantial
financial and computational resources. Additionally, the study introduces a
novel approach to converting wind data into “source factors” (SF), which
enhances model transferability across different locations. Since wind
direction data from different locations cannot be directly combined or used
interchangeably, the proposedmethodfirst identifies local pollution sources
and then integrates this information with wind direction and speed to
generate source factors. These factors serve as input variables for the ML
model, improving both predictive accuracy and cross-location applicability.
The study systematically compares this novel approach to conventional
methods, where raw meteorological data is directly fed into the models. To
achieve this, threeMLmodels, Artificial Neural Networks (ANN), eXtreme
Gradient Boosting (XGB), and Random Forest (RF) were systematically
optimized and trained using data from two locations in India.

Results
PAHs profile and source factor-specific ILCR distribution
Figure 1: PAHprofile and source-specific ILCR distribution across different
pollution source factors. presents the profile of Polycyclic Aromatic
Hydrocarbons (PAHs) and the corresponding Incremental LifetimeCancer
Risk (ILCR) distribution associated with different local pollution sources
influenced by wind direction. The analysis reveals that vehicular emissions
contribute to the highest PAH concentrations, leading to the highest ILCR

Fig. 1 | PAH profile and source-specific ILCR distribution across different pollution source factors.
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values. This aligns with existing literature, where road traffic emissions have
been identified as a dominant source of PAHs due to incomplete com-
bustion of fossil fuels and vehicular exhaust24. Conversely, the lowest PAH
levels and ILCR values are observed when wind is flowing from the railway
tracks. This can likely be attributed to the increasing electrificationof railway
networks, reducing dependence on diesel-powered locomotives, which are
traditionally known to be significant PAH sources25. To provide context on
the baseline pollution levels of the study region, the sum of targeted PAHs
concentrations was observed to be 16.31 ng/m³ at Jorhat and 21.54 ng/m³ at
Shyamnagar. Correspondingly, BaPeq concentrations of all 16 PAHs esti-
mated using the TEF values were 4.10 ng/m³ at Jorhat and 4.40 ng/m³ at
Shyamnagar. These values indicate moderate PAH burdens in the ambient
air, which serve as the baseline exposure levels for evaluating the Incre-
mental Lifetime Cancer Risk (ILCR) in this study.

The sharp contrast between vehicular and railway emissions highlights
the effectiveness of transitioning towards cleaner energy sources in reducing
carcinogenic air pollutants.

Industrial areas and densely populated urban regions also show con-
siderable PAH concentrations and moderate ILCR values, suggesting that
industrial combustion processes and domestic activities contribute sig-
nificantly to PAH emissions.

Correlation and sensitivity analysis
The correlation analysis Fig. 2 and sensitivity analysis Fig. 3 provide critical
insights into the relationship between input parameters and Incremental
LifetimeCancerRisk (ILCR).The correlationheatmaps (Fig. 2) indicate that
PM₂.₅ exhibits the strongest correlation with ILCR (0.85), reinforcing its
significance in predicting health risks associatedwith air pollution exposure.
This strong association is further validatedby the sensitivity analysis (Fig. 3),
where PM₂.₅ demonstrates the highest sensitivity, highlighting its dominant
influence on ILCR predictions.

Apart fromPM₂.₅, temperature and relative humidity (RH) also showa
reasonable correlationwith ILCR(−0.6 and−0.43, respectively) and exhibit
moderate sensitivity values in Fig. 3. These findings suggest that meteor-
ological parameters, despite being indirect contributors, play a crucial role in
influencing pollutant dispersion and human exposure levels. Interestingly,
wind direction in the conventional method (CM) presents a very weak
correlation (−0.094) with ILCR, which suggests that its direct impact on
cancer risk assessment is minimal when used in its traditional form.

When examining pollution source-specific parameters (PSM) in
Fig. 2b, it becomes evident that many of these parameters exhibit weak

correlationswith ILCR.However, despite their poor correlation coefficients,
their sensitivity values (Fig. 3) are comparable to those of conventional
meteorological inputs. This highlights a crucial aspect of machine learning
(ML) modelling, a strong correlation is not a prerequisite for a feature to
contribute significantly to predictive models26. ML models can capture
complex, non-linear interactions among variables,making them superior in
handling features that may not exhibit high linear correlations but still
influence the outcome through intricate dependencies.

Artificial Neural Network (ANN)
The performance of ANN models trained using the Pollution Source
Method (PSM) and Conventional Method (CM) varies significantly
depending on the activation function. Figure 4a highlights that while the
‘Purelin’ activation function ensures consistency, ‘Tansig’performs better in
terms of accuracy for bothmethods. Due to this, Fig. 4b focuses on ‘Tansig’
to explore the influence of neuron count and layer depth. A cyclic pattern in
Fig. 4b suggests that model performance increases with the number of
neurons per layer. The influence of the number of layers appears marginal,
showing a peak at around 5–6 layers before slightly declining. A direct
comparison in Fig. 5a along with Fig. 4 demonstrates that PSM-ANN
consistently outperforms CM-ANN across various parameter configura-
tions. The selected best model configurations are summarized in Table 1.

Both modelling methods closely follow the general trend of the
observed ILCR values, as illustrated in Fig. 5a. However, upon detailed
inspection of Fig. 5a and the residual plot presented in Fig. 5b, it becomes
evident that the Pollution Source Method (PSM) demonstrates superior
performance. Specifically, the PSM approach yields lower residuals, parti-
cularly at higher ILCR values, where deviations between the predicted and
observed data are more pronounced. This indicates that the PSM provides
more accurate predictions during periods of elevated cancer risk compared
to the Conventional Method (CM), effectively capturing critical variations
that traditional meteorological inputs alone may miss. When analysing the
scatter plot of model predictions against actual normalized ILCR values in
Fig. S3, it is evident that both models struggle with higher ILCR values.
However, the scatter plot of residuals against actual ILCR inFig. S4, having a
closer spread around the zero line for PSM, shows that PSM-ANN exhibits
lower residuals thanCM-ANN, indicating better overall accuracy. Figure S3
further supports this observation, as PSM-ANN predictions align more
closely with the ideal 45-degree reference line. The residual spread in Fig. S4
reveals greater dispersion for CM-ANN, reinforcing that PSM-based
modelling yields lower prediction errors and improved stability.

Fig. 2 | Correlation heatmaps of input parameters with ILCR. a Conventional meteorological (CM) inputs, b Pollution source method (PSM) inputs.
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XGBoost
The XGBoost model’s performance for different hyperparameter combi-
nations, as illustrated in Fig. 6, follows a cyclic pattern where a higher
min_child_weight leads to lower accuracy, while a lowermin_child_weight
enhances model efficiency. The influence of learning rate and max_depth
reduces this disparity, allowing for improved stability in model training.
Notably, PSM-XGB consistently outperforms CM-XGB across all para-
meter combinations, showing superior training and testing R² values.

Table 1 presents the final model parameters, while Fig. 7 compare
predictions and residuals. Figure 7 reveals that residuals are higher for
elevated ILCRvalues, yetPSM-XGBconsistently produces lower errors than
CM-XGB. A scatter plot of predicted vs actual values for XGBoost models
(Fig. S5) further confirms this, as CM-XGB predictions deviate more from
the ideal model line, even for lower ILCR values, highlighting PSM’s
superiority in capturing the underlying ILCR distribution more effectively.
A residual against actual values of the ILCR plot is present in Fig. S6,
showing the less spread of PSM residuals around the zero error line.

Furthermore, XGBoost models are often preferred for structured data
applications due to their ability to handle complex feature interactions,
making themhighly effective for environmental predictions27. XGBoost has

shown promise in environmental applications, such as improving the
accuracy of PM2.5 predictions in air quality models28. The PSM approach
provides additional advantages by incorporating refined wind pollution
mapping, which enhances the model’s ability to capture localized pollution
source impacts more effectively than CMmodels.

Random Forest (RF)
Random Forest models perform well with complex datasets due to their
ensemble nature. They are capable of handling high-dimensional data
effectively, as at each split, only a random subset of features is considered,
reducing computational complexity and preventing overfitting to irrelevant
features.

Figure 8 illustrates that model performance improves as min-
LeafSize decreases, with other parameters showing minimal effect.
Notably, PSM-RF exhibits greater stability and higher test R² values when
minLeafSize is set to 1. Table 1 summarizes the final model parameters.

Prediction accuracy is assessed in Fig. 9, Figs. S7 and S8, with residual
distributions in Figs. 9b and S8. Figure 9a shows that both models capture
the trend well, though Fig. 9b, suggest that PSM-RF achieves slightly better
performance compared to CM-RF. A scatter plot of predicted vs actual
values for RF models is presented in Fig. S7 and a residuals against actual
values of ILCRplot is shown inFig. S8. Bothof theplots show that the output
of PSM is near the ideal line with residuals near zero in comparison to CM.
The overall findings reaffirm that PSM-based models yield superior accu-
racy and generalization capabilities compared to CM-based models.

Model overfitting evaluation
To evaluate the risk of overfitting in the trainedmodels, the study compared
the R2 values obtained during training and testing across a wide range of
parameter combinations. As shown in Figs. 4. 6, and 8 for ANN, XGB, and
RF, respectively, the general trend of training and testing R2 remains con-
sistent for all three models, suggesting good generalization capability. Only
the ANNmodel shows occasional deviations where test R2 drops compared
to train R2, specifically for parameter combinations related to hidden layers
4, 7, and 10. These cases suggest possible overfitting, but they are exceptions
rather than the norm.

To further investigate this, we calculated the relative R2 gap defined as
(R2

train – R2
test)/R

2
train, and plotted it for all parameter sets under both the

PSM and CM methods. The results are provided in supplementary infor-
mation as Fig. S9 (ANN), S10 (XGB), and S11 (RF). The XGB and RF
models show consistently low relative gaps across all parameter IDs, indi-
cating little to no overfitting. In the case of ANN (Fig. S9), a few parameter

Fig. 4 | ANN model performance for different training parameters. a Training and testing R2 for different activation functions. b Training and testing R2 for various
parameter IDs (see Table S1 for parameter combination for parameter ID).

Fig. 3 | Sensitivity analysis of input parameters in ILCR prediction.
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settings shownoticeably higher gaps, confirming some level of overfitting in
those cases.However, themajority of parameter combinations stillmaintain
low gaps, reinforcing that themodel was generally not overtrained. Overall,
these assessments confirm thatwhile someoverfitting is observed in isolated
cases for ANN, the trained models demonstrate stable and generalizable
performance.

Model comparison
The statistical distribution patterns of actual normalized ILCR values and
those predicted by different models are presented in Fig. 10. Among all
models, PSM-ANN aligns most closely with actual data, confirming its
effectiveness. Although in the lower range (<0.3), many models are per-
forming well, they fail to match the performance for higher values of ILCR.
This may be attributed to ANN’s superior ability to capture relationships
effectively, even with a limited amount of data.

Theevaluationmetricsof selectedmodels for the test set are summarized
in Table 2. Among both methods used in this study, PSM consistently
achieves higher R² valueswhile exhibiting lowerMAE,MSE, andRMSE than
CMmodels. The Table 2 includes metrics for both normalized and original
ILCR values to provide a comprehensive assessment. The highMAPE values
observedcanbe attributed to the smallmagnitude (near zero)of ILCRdata, as
values closer to zero tend to inflate MAPE disproportionately. This issue
arises because the MAPE calculation involves dividing by the actual value;
thus, as the actual value approaches zero, the percentage error approaches
infinity29. The result of theMLRmodel for bothmethods (Table 2) shows that
it can capture the part of the variance in ILCR under limited data conditions,
but prediction accuracy and error matrix remain less favourable than those
obtained using advanced ML models. The results, presented in Table 2,
indicate that the PSM-ANN model achieved the highest R2 value (0.944),
demonstrating superior predictive capabilities compared to other models.
Followed by PSM-XGB, PSM-RF, CM-ANN, CM-XGB and CM-RF.
Therefore, ANN is found to be a better ML technique to develop predictive
models related towork similar to this study thanXGBoost and randomforest.

The Regression Error Characteristic (REC) curve is a graphical eva-
luation metric used to assess the performance of regression models. It plots
the cumulative percentage of predictions that fall within a given error tol-
erance against the error threshold. Unlike traditionalmetrics such as RMSE
orMAE, the REC curve provides a visual representation of model accuracy
across different error levels30. The REC curve in Fig. 11 further supports the
interpretation of the distribution curve (Fig. 10). As the ideal model’s REC
curve should be a vertical line at an error threshold of zero, a model with
better predictive accuracy will have its REC curve positioned closer to the
upper left corner of the plot. The larger the area under the REC curve, the
better the model’s overall performance. The plot shows that overall PSM-
ANN performance is best among other models, followed by PSM-XGB,
further reinforcing the advantages of PSM-based models.

Discussion
From an ML perspective, merely supplying wind data from multiple loca-
tions and expecting accurate predictions related to air pollution (in this

Table 1 | Finalised parameters for each model.

Model Parameter PSM CM

ANN No. of layers 3 6

Neurons per layer 10 15

Activation function tansig tansig

Training algorithm train lm train lm

Regularization 0.01 1.01

XGB Learing rate 0.1 0.3

max_depth 5 7

min_child_weight 1 5

n_estimators 100 100

subsample 0.8 1

RF numTrees 50 50

maxFeatures 5 3

minLeafSize 5 5

Fig. 5 | Evaluation ofANNmodel outputs. aActual
ILCR compared withmodel predictions. bResiduals
of both ANN models.
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study, ILCR) might confuse the machine due to the presence of different
local sources in different directions at various locations. Converting wind
parameters into pollution source factors using PSM provides a more
structured and informative input for ML models, resulting in superior
predictions.

The distribution of errors across differentmodels provides insight into
the reliability of each approach. Residual plots and histograms reveal that
PSM-based models demonstrate a tighter clustering of errors around zero,
indicating less bias andmore precise predictions. CM-basedmodels, on the

other hand, exhibit a broader error distribution, highlighting increased
uncertainty.

All three ML models evaluated in this study, ANN, XGBoost, and
Random Forest, demonstrate a clear advantage when trained using PSM
over CM. Despite having a lower correlation coefficient and similar sensi-
tivity of PSM features to those of CM, PSM consistently delivers improved
model performance, reducing residual errors and achieving higher pre-
dictive accuracy. Moreover, the application of PSM not only enhances
individual model performance but also ensures broader applicability across

Fig. 7 | Evaluation of XGBoost model outputs.
a Actual ILCR compared with XGBoost model
predictions. b Residuals of both XGBoost models.

Fig. 6 | Training and testing R2 of both XGBoost
models for different parameter combinations (for
parameter combinations of each parameter ID, see
table S2).
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multiple locations, making it a more generalizable and robust approach for
air pollution modelling. Our results are consistent with earlier findings that
ANN and hybrid models can effectively capture nonlinear interactions
between meteorology and air pollutants2–5,9,31,32. However, unlike prior
studies thatmainly predicted pollutant concentrations, ourwork shows that
using transformed wind parameters for the pollution source method sig-
nificantly enhances the reliability of ILCR predictions. This aligns with
recent studies in applying advanced models such as LSTM and CNN for
climate and air quality forecasting6–8,33, while addressing a novel application
in health risk assessment.

This study presents strong preliminary evidence supporting the use of
transformed wind parameters to enhance ILCR prediction accuracy
throughmachine learning models. Among the evaluatedmodels, the PSM-
ANNmodel demonstrated the best predictive performance, achieving anR2

value of 0.944 with a low Mean Absolute Error (MAE) of 0.037. Addi-
tionally, the multiple linear regression (MLR) model exhibited significantly
lower predictive performance, indicating its limitation in capturing the
complex, nonlinear relationships inherent in the data and reinforcing the
need formore advancedmachine learning approaches. In contrast, theCM-
XGBmodel showed theweakest performance among advancedMLmodels,
with an R2 of 0.799 and the highest MAE of 0.061, suggesting that con-
ventional meteorological inputs are insufficient to fully represent pollution
dispersion dynamics. Across all error metrics, PSM-based models con-
sistently outperformed CM-based models, with notably lower RMSE and
MAPE values. The stability of the PSM-ANN model in high ILCR con-
centration scenarios highlights the effectiveness of using transformed wind
features to improve the reliability of health risk predictions.

The implementation of this model in real-time applications presents
considerable potential for public health and environmental decision-
making. By integrating real-time PM2.5 and meteorological data from
affordable sensors, cities can estimate ILCR continuously and dynamically,
enabling individuals to make better-informed decisions about outdoor
exposure. This approach is not only practical but also cost-effective, as
traditional ILCR estimationmethods based on PAHmeasurements involve
time-consuming sampling and expensive laboratory analysis. Machine
learning-based prediction models like PSM-ANN offer a scalable solution
for real-time pollution risk assessment at a fraction of the cost.

While the proposed methodology significantly improves prediction
accuracy, certain limitations must be acknowledged. In this context, it is
worth noting that physics-based dispersionmodels such as AERMODhave
also been successfully integrated with machine learning frameworks, as
demonstrated in a recent study34. Integrating such models could further
enhance the spatial and physical representativeness of ILCR predictions.
However, due to the unavailability of detailed emission inventory data in the

Fig. 8 | Training and testing R2 of both RF models for different parameter combi-
nations (for parameter combinations of each parameter ID, see Table S3).

Fig. 9 | Evaluation of RF model outputs. a Actual
ILCR compared with RF model predictions.
b Residuals of both RF models.
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present study region, this integrationwas not feasible. Future research could
combine AERMOD-based dispersion outputs with machine learning
approaches to improve model interpretability and predictive performance.
The dataset primarily focuses on two Indian cities, and further studies are
required to validate the approach in different geographical regions. Addi-
tionally, integrating real-time air quality monitoring data could enhance
model responsiveness and adaptability. While the present analysis focuses
on external exposure through ambient PAH concentrations, future studies
integrating both internal and external exposure pathways, as demonstrated
in recent literature35–37, would provide amore comprehensive assessment of
cumulative health risks. Although the dataset used in this study was rela-
tively limited in size, it was adequate to train and validate the models and
demonstrate their feasibility for ILCR prediction. However, we recognize
that a larger and more diverse dataset would allow the models to capture
broader variability in emission patterns and meteorological conditions,
thereby further enhancing their generalizability. The framework developed
in this study can be easily expanded, and future studies can use techniques
such as transfer learning and domain adaptation to strengthen robustness
across different geographic and environmental contexts. Future work may
also explore deep learning techniques to further optimize predictive
performance.

Methods
Study sites
For the development of an ANN model, aerosol sampling and data acqui-
sition for weather parameters were done for two sites, Jorhat and Shyam-
nagar. Jorhat is a city inAssam located in north-east India at 26⁰45’N94⁰13’

E and an average elevation of 116m. Jorhat has a population of approxi-
mately 1.26 lakhs as of the 2011 census38. The sampling was done at the
Council of Scientific and Industrial Research - North East Institute of Sci-
ence and Technology (CSIR-NEIST) in the west direction of Jorhat.
Another sampling site, Shyamnagar, is a semi-urban town in West Bengal,
India, which is located at 22°49’N88° 23’Ewith an average elevation of 2m.
The location of both sites is shown in Fig. 12.

Sampling and PAHs analysis
Air samples were obtained using the Speciation Air Sampler System (SASS)
fromMetOne Instruments, operating at an average flow rate of 6.72 L/min.
This system features multiple channels designed for sample collection on
various substrates, including Quartz, Teflon, and Nylon. Following collec-
tion, the samples were preserved at −19°C until further chemical analysis.
Meteorological parameters such as temperature, rainfall, and humiditywere
recordedusing theAIO2weather station (MetOne Inc., OR,USA) installed
at the sampling site. The study sites adhered to a 24-hour time-integrated
ambient aerosol sampling schedule, conducted every alternate day from
January 1 to December 31, 2019.

PM2.5 samples were collected on quartz filter paper (47mm diameter)
over a 24-hour period on alternate days of the sampling period for the
analysis of polycyclic aromatic hydrocarbons (PAHs). Additionally, 47mm
Teflon filters were used to measure gravimetric mass using a microbalance.
PAHs in samples were extracted in a 1:1 mixture by volume of DCM and
acetone solvents. This solvent combination was selected as it provided
maximum extraction efficiency when compared to other common solvents
such as toluene and hexane (Rajeev et al. 2021). A recorded number of
punches (each of dia. 3.14 cm2) were taken in Q cups based on PM2.5

concentration of the samples and loaded in the energized dispersive
extractor (EDGE,CEMCorporation,USA). ExtractionwasdonewithDCM
andacetone (1:1 v/v) at 120 °Cand60–70 psi pressurewithaholding timeof
4min for each sample. The samples were extracted in 30ml solvent by the
method of adding 10ml top volume, 10ml bottom volume, and 10ml rinse
volume of solvent. After the extraction of the sample in DCM and acetone,
the sampleswere concentrated to1–2drops by theCentriVapConcentrator.
The concentrator was programmed to vaporize the solvent at 30 °C for the
first 30min and at 50 °C for the next 80min. Vaporization temperatures
were selected based on the normal boiling points of DCM (boiling point
39.6 °C) and acetone (boiling point 56 °C), Toluene was added to the
concentrated samples tomake up the final volume to 2ml and the resulting
solutionswere sonicated for 20–25min for proper dissolution of PAHs. The
amount of each PAH in the extracted sample was determined using Gas
Chromatography Mass Spectrometer (GC–MS., Agilent technologies; GC:
7890B;MSD: 5977B).A column (DB-5 capillary column)of fused silicawith
polyamide coating was employed for this analysis. External standards for
5-point calibration were prepared by serial dilution of a 16-PAHs mix
solution (EPA 610 PAH Kit 16 analyte in methanol, Sigma-Aldrich) in
concentrations of 5 ppb, 10 ppb, 25 ppb, 50 ppb, 100 ppb for quantification
of PAH compounds. Helium flow rate was kept at 1ml/min. In order to

Fig. 10 | Statistical distributions,means, and standard deviations of actual values and
predicted by various models developed.

Table 2 | Evaluation parameters for all the trained models.

Model R2 MAE MSE RMSE MAPE

ILCR normalised ILCR ILCR normalised ILCR ILCR normalised ILCR ILCR normalised ILCR

PSM-ANN 0.9440 0.0374 3.74E−08 0.0025 2.51E−15 0.0501 5.01E−08 105.6106 105.6108

CM-ANN 0.8539 0.0536 5.36E−08 0.0066 6.55E−15 0.0810 8.10E−08 171.1157 171.1157

PSM-XGB 0.8950 0.0483 4.83E−08 0.0047 4.71E−15 0.0686 6.86E−08 115.9011 115.9010

CM-XGB 0.7993 0.0614 6.14E−08 0.0090 9.00E−15 0.0949 9.49E−08 100.0139 100.0138

PSM-RF 0.8739 0.0483 4.83E−08 0.0057 5.66E−15 0.0752 7.52E−08 148.9406 148.9407

CM-RF 0.8306 0.0550 5.50E−08 0.0076 7.60E−15 0.0872 8.72E−08 165.4630 165.4630

PSM-MLR 0.7114 0.0705 7.05E−08 0.0129 1.29E−14 0.1138 1.14E−07 130.4747 130.4748

CM-MLR 0.6994 0.0725 7.25E−08 0.0135 1.35E−14 0.1161 1.16E−07 107.7413 107.7413
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separate compounds based on their boiling points and to reduce total run
time, oven temperature ramping was provided. Oven temperature ranged
from 90 °C–200 °C, 200 °C–260 °C, and 260 °C–310 °C with temperature
ramping of 15 °C/min, 4 °C/min, and 9 °C/min, respectively (Rajeev et al.
2021). Identification of peaks was carried out with the help of the retention
time of each PAHs. Replicate samples of field blank were run on the
instrument, and the results obtained were used for the field sample cor-
rection. This methodology has been published by our group in a previous
study24. Out of 175 data points, a random 25 data points were kept separate
for testing and not used in the training and validation.

Quality assurance and quality control (QA/QC)
Extraction efficiency was evaluated by repeated extraction and analysis of
selected aerosol samples (n = 10), which confirmed recovery of ~95%. Also,

internal standards (phenanthrene d-10 and perylene d-12) response was
found to be within ± 5% as a quality control measure.

Clean quartz microfiber filters were extracted and analysed with every
15 samples as field blanks, while solvent blanks were also included and
analysed every 6 samples on theGC–MS.ThePAHsdetected in blankswere
subtracted from sample concentrations.

ILCR calculation
PAHs can impact human health in several ways, including toxic, cancer-
causing, birth defect-inducing, and gene-altering effects. People may be
exposed to these compounds through multiple pathways, such as inhaling
polluted air, consuming contaminated food or water, or contact with soil.
According toUSEPA(United States Environmental ProtectionAgency) list,
16 PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenan-
threne, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene,
benzo(b,j)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, diben-
zo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene.)
have been identified as compounds of grave concern out of which seven
PAHshavebeenmarked asmost probable humancarcinogens like benzo(a)
anthracene, benzo(a)pyrene, benzo(b,j)fluoranthene, benzo(k)fluor-
anthene, chrysene, dibenzo(a,h)anthracene, and indeno (1,2,3-cd) pyrene24.
Benzo(a)pyrene is one of the most potent carcinogens among all 16 PAHs
and is used as a marker for all PAHs in determining the carcinogenic
potency. In the current study, the applied formulas follow USEPA risk
assessment guidelines39,40. Benzo(a)pyrene equivalent is the parameter
which is calculated for risk assessment as follows41:

B a½ �Peq ¼ Ci X TEFi ð1Þ

Ci is the concentration of the ith species, and TFE is the Toxic
Equivalent Factor (TEF) of the ith species. TEF values for each of the 16
PAHs were taken from the previous study41.

Incremental lifetime cancer risk (ILCR) represents the additional risk
of cancer-related mortality beyond the natural background risk due to
prolonged exposure to carcinogenic substances such as polycyclic aromatic
hydrocarbons (PAHs). It is determined by calculating the lifetime average
daily dose (LADD), which quantifies the daily intake of a chemical per

Fig. 11 | Regression Error Characteristic (REC) curve of all the models developed.

Fig. 12 | Showing sampling sites Jorhat (https://github.com/sssmartsearch/India_Boundary_Updated) and Shyamnagar (https://maps.google.com/). The red star represents
the sampling location inside the city/town.
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kilogram of body weight. This measure helps evaluate potential health
hazards associated with specific compounds. The formulas for LADD and
ILCR, are as follows42:

LADD mgkg�1day�1� � ¼ CP×AIR ×UCF×EF × LEDð Þ
BW×ATð Þ ð2Þ

ILCR ¼ LADD×Cancer slope factor CSFð Þ ð3Þ

CP represents the BaPeq concentration of individual PAHs in ng/m³.
To estimate the Incremental Lifetime Cancer Risk (ILCR), the concentra-
tion of each PAH was first converted into its benzo(a)pyrene-equivalent
(BaPeq) concentration by applying the respective Toxic Equivalency Factor
(TEF), with benzo(a)pyrene (BaP) taken as the reference compound (Eq. 1).
This study reports LADD and ILCR for adults. AIR refers to the air inha-
lation rate, set at 20m³/day.UCF is the unit conversion factor fromng tomg
(10⁻⁶). EFdenotes the emission frequency, standardized at 350days per year.
LED represents lifetime exposure duration, calculated as 24 years. BW
corresponds to body weight, with values of 70 kg. AT signifies the average
lifespan, estimated at 25,550 days (70 × 365) (Rajeev et al., 2021; Singh &
Gupta, 2016b).CSF, or cancer slope factor, is the key parameter for assessing
carcinogenic hazards, with risk determined by the equation:

CSF ¼ risk per unit dose ¼ risk per mgkg�1day�1 ð4Þ

Previous researchhas reported theCSFvalue for benzo(a)pyrene as 3.1,
with a geometric standard deviation of 1.8 for risk assessment42–44.

Model development
In this study, two approaches were employed to develop machine learning
(ML) models using PM2.5 and weather data as input. The first approach,
referred to as the Conventional Method (CM), utilized the meteorological
parameters in their original form. Atmospheric temperature, relative
humidity (RH), wind direction, and wind speed were commonly used in
traditional ML model development. In the second approach, termed the
Pollution Source Method (PSM), wind direction and wind speed data were
transformed into novel variables called ‘source factor,’ while the other
meteorological parameters, such as atmospheric temperature and RH, were
retained in their original form. Figure 13 shows themethodology flow chart
for both the CM and PSMmethods. To understand the need for advanced
machine learning models, multiple linear regression (MLR) models were
also developed for bothmethods and compared to the othermodels’ results.

Source Factor (SF) calculations
For this study, eight common air pollution sources were identified for both
cities: urban/densely populated areas, industries, villages, forests, rivers/
water bodies, roads (vehicular emissions), railway tracks, and airports. The
maps of the sampling locations were divided into 16 equal sectors, and the
locations of these sources were determined using a combination of Google
Maps data and local surveys.

For each sector, when wind originated from a specific direction cor-
responding to that sector, all pollution sources within the sector were
assigned a value of 1 multiplied by the wind speed (to account for its
weightage), while all other source factors were assigned a value of 0.
Equation (4) calculates the source factor (SFi) for each pollution source by
summing the product of the wind direction factor (WDFi) and wind speed
(WSt) over a 24-hour period. Equation (5) defines the wind direction factor
(WDFi). Which are given below:

SFi ¼
X1440
t¼0

WDFi × WSt
� � ð5Þ

WDFi ¼
1;Whenwind is blowing from sector of source i

0;Whenwind is not blowing from sector of source i

�
ð6Þ

Where SFi is the source factor for pollution source i, WDFi is the wind
direction factor, WSt is the wind speed at time t, and t represents time in
minutes (0–1440minutes in a day).

The sector divisions and the spatial distribution of pollution sources
are illustrated in Fig. 14 for Jorhat, and that of Shyamnagar is presented
in Figs. S1 and S2 for Shyamnagar. For example, if a wind with a speed of
1.2 m/s was blowing from the east toward the sampling location in Jor-
hat, the source factors for the urban/densely populated area, industries,
and airport within the corresponding sector were assigned a value of 1.2,
while the other source factors were assigned a value of 0. These calcu-
lations were performed every minute based on real-time data from the
weather station. To determine daily source factor values, the minute-wise
values for each factor were summed up. Before training the models, the
data were normalized along with the other input variables.

Artificial Neural Network (ANN) model development
Artificial Neural Networks (ANNs) are computational models inspired by
the structure and functioning of the human brain, widely used for solving
complex nonlinear problems in various fields, including environmental

Fig. 13 | Flow chart of Model development using CM and PSM methods.
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science and air pollution studies. ANNs consist of interconnected layers of
nodes, also known as neurons, that process input data through weighted
connections, non-linear activation functions, and bias terms to produce
output predictions. In this study, a feedforward neural network architecture
was employed, trained using the backpropagation algorithm45 to predict the
incremental lifetime cancer risk (ILCR) associatedwithPM2.5 exposure. The
ANN model was trained using a systematic approach to optimize its
architecture. The number of hidden layerswas varied from1 to 10, while the
number of neurons per layer was tested from 5 to 20 in increments of 5.
Three activation functions, such as ‘logsig,’ ‘tansig,’ and ‘purelin,’ were
evaluated to determine their impact on model performance. Each unique
combination of these parameters was trained and validated 10 times to
ensure consistency and reliability. The best-performing configuration for
each combination was recorded and compared to identify the optimal
architecture for the study. Input variables included conventional meteor-
ological data (e.g., temperature, relative humidity) and transformed pollu-
tion source factors derived from wind parameters, as described earlier. The
ANN model developed using the Conventional Method (CM) was desig-
nated as ‘CM-ANN’, while the model developed using the Pollution Source
Method (PSM) was designated as ‘PSM-ANN’.

XGBoost (eXtreme Gradient Boosting) model development
Extreme Gradient Boosting (XGBoost) is an advanced machine learning
algorithm based on decision-tree ensembles, widely recognized for its speed
and accuracy in predictive modelling tasks. XGBoost incorporates a gra-
dient boosting framework that optimizes model predictions by iteratively
minimizing the loss function and updating weights for misclassified
samples46. Both methods i.e., CM and PSM, were used to develop two
models designated as CM-XGB and PSM-XGB respectively.

The XGBoost models were trained using grid search approach to
optimize hyperparameters, including maximum tree depth (max_depth)

varied between 3 and7, learning rate (learning_rate) tested at 0.1, 0.3, and0.5,
minimum child weight (min_child_weight) evaluated at 1, 5, and 10, and
subsample ratio (subsample) set at 0.8 and 1.0 to control the fraction of data
used in eachboosting iteration.Eachunique combinationof theseparameters
was trained and validated 10 times to ensure consistency and robustness. The
best-performing configuration for each parameter combination was recor-
ded, and the corresponding results were analysed to identify the optimal
model configuration.

Random Forest (RF) model development
Random Forest (RF) model, a widely used ensemble learning method
known for its robustness and predictive accuracy in regression and classi-
fication tasks. RF constructs multiple decision trees during the training
phase, each using a randomly selected subset of features and data samples.
By averaging the outputs of these trees, RF minimizes overfitting and
enhances generalization, making it particularly effective for datasets with
complex, non-linear relationships and high-dimensional feature spaces47.
The inherent randomness in RF also provides a built-in mechanism for
estimating the importance of individual features, adding interpretability to
the model’s predictions. MATLAB’s ‘TreeBagger’ function was employed
for regression modelling, offering flexibility in customizing critical hyper-
parameters to achieve optimal performance.

A grid search optimization approach was applied to tune three key
hyperparameters: the number of trees in the ensemble (optimized over the
range [50, 100, 200]), the number of features considered at each split
(optimized over the range [3, 5, 7]), and the minimum leaf size for terminal
nodes (optimized over the range [1, 5, 10]). Each hyperparameter config-
urationwas evaluated 10 times to account for the stochastic nature of theRF
algorithm, with the best model selected based on the highest coefficient of
determination (R2) value achieved on the test data. Two RF models trained
using CM and PSM were designated as CM-RF and PSM-RF, respectively.

Fig. 14 | Sector division based on direction and pollution source locations of Jorhat city (https://maps.google.com/).
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Overall, model optimization was performed through backpropagation-
based architecture tuning for ANN and grid search-based hyperparameter
tuning for XGBoost and Random Forest.

Model evaluation
This study evaluates the accuracy, robustness, and generalizability of the
models using five widely accepted performance metrics. The coefficient of
determination (R2) indicates theproportionof variance in the target variable
explained by the model, providing a measure of goodness-of-fit. Mean
Absolute Error (MAE) quantifies the average magnitude of errors without
considering their direction, offering an intuitive measure of prediction
accuracy. Mean Squared Error (MSE) penalizes larger errors more than
smaller ones by squaring the differences,making it sensitive tooutliers. Root
Mean Squared Error (RMSE), the square root ofMSE, expresses the error in
the same unit as the target variable, facilitating better interpretability. Mean
Absolute Percentage Error (MAPE) measures the percentage error relative
to the actual values, making it useful for assessing relative prediction
accuracy across different scales. The mathematical formulas of these para-
meters are given by Eqs. 6−1048 as below:

R2 ¼ 1�
Pn

i¼1 yi � ŷi
� �2

Pn
i¼1 yi � �y

� �2 ð7Þ

MAE ¼ 1
n

Xn
i¼1

yi � ŷi
�� �� ð8Þ

MSE ¼ 1
n

Xn
i¼1

yi � ŷi
� �2 ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffi
MSE

p ð10Þ

MAPE ¼ 100
n

Xn
i¼1

yi � ŷi
yi

����
���� ð11Þ

where yi represents the actual observed values, ŷi denotes the predicted
values, �y is the mean of the observed values, and n is the total number of
observations. Table 3 provides the range and ideal value of these statistical
parameters.

Sensitivity calculation
To assess the sensitivity of input variables in predicting ILCR, the study
employed the cosine amplitude method for sensitivity analysis using the
correlation strength equation. The relationship between an input variable
(xi) and the target variable (xj) is quantifiedby the sensitivity coefficient (Rij),
calculated using the equation:

Rij ¼
Pm

k¼1xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1x

2
ik

Pm
k¼1x

2
jk

q ð12Þ

where Rij represents the strength of the relationship between the input and
output variables across m observations. A higher Rij value indicates a
stronger influence of the respective input variable on ILCRpredictions. This
analysis was conducted separately for both the conventional method (CM)

and the proposed pollution source method (PSM) to evaluate how the
transformation of meteorological inputs affects model sensitivity.

Data availability
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