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months of New York City cordon pricing
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In January 2025, New York City became the first U.S. metropolis to implement cordon-based
congestion pricing, establishing a toll zone in Manhattan’s core. The zone, which covers all local
streets and avenues at or below 60th Street, is designated the Congestion Relief Zone (CRZ). While
cordon pricing is theorized to reduce traffic and improve health, rigorous causal evidence in the U.S.,
particularly with environmental justice considerations, has been limited. To address this gap, we
evaluate short-term impacts using daily PM2.5 data from 42 air quality monitors across the New York
City metropolitan area, spanning 518 days and 17,758 observations. For the analysis, we divide the
study area into three spatial units: the broadermetropolitan area (Core-Based Statistical Area, CBSA),
the five boroughs of New York City, and the CRZ itself. Using predictive models that incorporate
meteorology, baseline pollution, and neighborhood demographics, we estimate counterfactual air
quality for eachstation-dayandcompute treatment effects.We find that averagedailymaximumPM2.5

concentrations declined by 3.05 μg/m3 (SE = 0.022) within the CRZ during the first six months. This
represents a 22% reduction from a projected average of 13.8 μg/m3 without the policy. Effects extend
beyond Manhattan: average declines across New York City’s five boroughs were 1.07 μg/m3

(SE = 0.006), and the broader CBSA saw reductions of 0.70 μg/m3 (SE = 0.004). Moreover, treatment
effects in the CRZ grew over time, rising from 0.8 μg/m3 inWeek 1 to 4.9 μg/m3 byWeek 20, indicating
accumulating behavioral adaptation. These results provide the first zone-specific, quasi-experimental
evidence of air-quality improvements following congestion pricing in the United States. As other
American cities consider similar policies, our findings demonstrate that cordon pricing can deliver
rapid, geographically broad environmental benefits.

As communities worldwide increasingly experience the severe con-
sequences of climate change, the transportation sector remains a significant
and growing contributor to global greenhouse gas (GHG) emissions1. The
transportation sector is also a major contributor to toxic air pollution,
particularly in densely populated urban areas2.

Congestion pricing has been used for years in global cities like London,
Stockholm, Milan, and Singapore as a policy tool to reduce traffic demand
and alleviate congestion3,4. In addition to reducing congestion, it is widely
understood that congestion pricing should likely generate environmental
and health co-benefits by reducing GHG emissions and ambient air pol-
lution fromon-road transportation sources like passenger cars and trucks5–8.

While previous studies have estimated substantial environmental gains
from international congestion pricing schemes,most U.S. evidence remains
theoretical or limited in scope9. Moreover, existing cordon zones have
typically been implemented at a smaller scale4. Compared to prior inter-
national cases, New York City (henceforth NYC) stands out with >600,000
daily trips entering its relief zone, ambitious revenue goals to support public
transportation, and a policy design that anticipates health co-benefits.

In this study, we evaluate the policy’s short-term impacts using daily
PM2.5 data from 42 monitoring stations across the New York metropolitan
area, spanning 546days (January 1, 2024–June 30, 2025), including 178days
under thenewpricingpolicy.Ourdataset includes17,758 validmonitor-day
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observations,measuringmaxdaily PM2.5 concentrations inmicrogramsper
cubic meter (henceforth μg/m3). We estimate treatment effects by com-
paring actual air-quality readings to counterfactual predictions generated by
a series of predictive models incorporating baseline pollution levels,
meteorology, and neighborhood demographics.

Here we show that New York City’s congestion pricing policy sig-
nificantly reduced ambient air pollution across the broader New York
metropolitan area, with especially pronounced effects inside the new Con-
gestion Relief Zone (CRZ). As a preview of our results, we estimate that
average daily maximum PM2.5 concentrations declined by 3.05 μg/m3

(SE = 0.022) within the CRZ during the first six months of implementation.
This marks an estimated 22% reduction from a projected counterfactual
average of 13.8 μg/m3 had the policy not been adopted.

Effects extend beyond Manhattan: average reductions across the
five boroughs of New York City were 1.07 μg/m3 (SE = 0.006), while sites
across the broader New York Metropolitan area (specifically, the NYC
core-based statistical area, henceforth CBSA) saw more modest reduc-
tions of 0.70 μg/m3 (SE = 0.004). Notably, these effects grew over time,
from a 0.8 μg/m3 decline in Week 1 to 4.9 μg/m3 in Week 20, suggesting
that air-quality improvements may continue to compound with longer-
term implementation.

This study provides the first zone-specific, quasi-experimental evi-
dence of air-quality benefits following congestion pricing in the United
States. As other American cities consider similar policies, our findings
indicate that cordon pricing can yield rapid, spatially broad environmental
improvements.

Results and discussion
We evaluated changes in ambient air quality in the NewYorkmetropolitan
area by analyzing PM2.5 concentrations across a three-tiered monitor
sample: 13 monitors in the broader New York City Core-Based Statistical
Area (CBSA), which includes suburban counties in upstate New York and
New Jersey; 23 monitors within the five boroughs of New York City; and 6
monitors within the CRZ.

Overall effect
In Figs. 1 and 2, we show the average treatment effect on the treated
monitors as well as policy effects on air quality per monitors during the
congestion policy, repeated for each model, to show how estimates change
from lightweight to the most robust model specifications. We find that the
congestion pricing policy substantially reduced ambient air pollution, par-
ticularlywithin the toll zone. Average dailymaximumPM2.5 concentrations
within the CRZ decreased by 3.05 μg/m3 (SE = 0.022). For context, back-
ground levels in the New York City metropolitan area during the study
period averaged ~8–9 μg/m3, meaning the observed reduction represents
~22% decline from the counterfactual mean of 13.8 μg/m3 that would have
occurred in the absence of the policy. Figure 1displays the estimated average
treatment effects from these models, showing statistically significant and
sizable reductions in PM2.5 levels following the introduction of congestion
pricing. Effects were also observed outside Manhattan. Across the five
boroughs of New York City, average concentrations declined by 1.07 μg/m3

(SE = 0.006), while the broader CBSA region saw a more modest but sta-
tistically significant decrease of 0.70 μg/m3 (SE = 0.004). These reductions

Fig. 1 | Policy effects on NYC air quality. Statistical
significance: ***p < 0.001, **p < 0.01, *p < 0.05,
p < 0.10. Bars and text show average treatment
effects on the treated (ATT) with 95% confidence
intervals, estimated by models each with succes-
sively more controls. Statistical model tables for
Models M1-M9 are shown in Table 1.
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suggest that the policy’s effects radiated beyond the tolled area, likely due to
spillover changes in traffic volume and behavior.

Robustness across zones
The magnitude of pollution reductions varied by geographic zone but
remained directionally consistent, indicating overall decreases across
regions, though not uniformly across all locations or road types. Within all
three regions—the CRZ, the five boroughs, and the CBSA—models showed
statistically significant decreases inPM2.5 levels across all specifications,with
results robust to additional environmental and socio-demographic controls
(for details, seeModels 1–9 inTable 1). This consistent pattern across spatial
zonesandmodel types strengthens confidence in thepolicy’s effectiveness in
improving air quality, particularly in dense urban centers.

Descriptive evidence
Figure 3 illustrates the annual distributions of thewind direction, speed, and
net PM2.5 concentration in NYC, before and after the implementation of
congestion pricing. Figure 3A presents wind rose plots for the entire year of
2024 and the first half of 2025. In both years, the prevailing winds came
predominantly from the west and northwest directions, consistent with
typical meteorological patterns in the region. The mean windspeed
increased from7.6m/s in 2024 to 9.3 m/s in early 2025,while theproportion
of calm wind conditions decreased from 16.4% to 12.3%. These changes
suggest a better atmospheric dispersion capacity in 2025, which may
influence the transport and dilution of urban air pollutants.

To isolate local emissions from regional background pollution, we
selected four upwind background monitoring sites. These stations were
chosen based on two criteria: (1) their persistent positioning upwind of the
CRZ under dominant west and northwest wind conditions, as shown in
seasonal wind rose patterns (Fig. 3A); and (2) their minimal influence from
proximate traffic or industrial emission sources. consistent representationof
transported backgroundPM2.5 levels, whichwere subtracted fromcity-wide
measurements to calculate net PM2.5, thus isolating the local-scale impact of
congestion pricing on ambient air quality.

Figure 3B showsmonthly net PM2.5 concentrations within and outside
the CRZ from January 2024 to June 2025. In 2024, concentrations exhibited
clear seasonal variation, peaking in spring and early summer. Comparing
median values for January through June, PM2.5 declined within the CRZ
from 1.143 μg/m3 in 2024 to 0.865 μg/m3 in 2025, but increased outside the
CRZ from0.542 μg/m3 to 0.727 μg/m3.A similar patternwas observedwhen
comparing the full year of 2024 with the first half of 2025: within the CRZ,
medians fell from 1.053 μg/m3 to 0.542 μg/m3, whereas outside the CRZ,
they rose from 0.523 μg/m3 to 0.727 μg/m3. These temporal contrasts sug-
gest a possible association between reduced traffic activity and improved air
quality within the central urban area.

Figure 4 characterizes the temporal evolution and spatial hetero-
geneity of net PM2.5 concentrations in NYC before and after the
implementation of the congestion pricing policy. Figure 4A, B sum-
marizes monthly trends in policy-hour (05:00–21:00) net PM2.5 levels,
comparing monitoring stations located within and outside the CRZ.
Following policy initiation in January 2025, median net PM2.5 con-
centrations consistently declined within the CRZ across most months.
In contrast, outside the CRZ, net PM2.5 concentrations exhibited a
mixed pattern: initial declines were followed by increases in later
months, suggesting possible redistribution or displacement of emis-
sions linked to traffic rerouting. These temporal contrasts are further
illustrated by the monthly percent changes, which show pronounced
reductionswithin the CRZduring the earlymonths of 2025, reaching up
to a 66% decrease in May, while outside the CRZ, changes were more
variable, including increases exceeding 90% in April.

Figure 4C–G further examines the spatial and temporal distribution of
net PM2.5 concentrations during policy hours across selected monitoring
stations, highlighting regional contrasts inside andoutside theCRZ. Stations
located within the CRZ—D (Broadway) and F (Manhattan Bridge)—
exhibited clear and consistent declines in PM2.5 following policy imple-
mentation, with minor fluctuations during the early transition period
(February–March) and pronounced reductions by June 2025. In contrast, E
(Cross Bronx Station), situated outside the CRZ in the Bronx, showed a

Fig. 2 | Policy Effects on NYC PM2.5 by Monitor.
A shows air-quality monitor locations (points) in
the NYC Metropolitan Core-Based Statistical Area
(CBSA). Points are shaded fromwhite to blue by the
size of the estimated decrease in PM2.5 during the
Congestion Pricing policy from 6 January 2025 to 1
June 2025. Monitors outside the CBSA are shaded
gray. B narrows into the extent of the Congestion
Relief Zone (CRZ) in Manhattan. Estimates reflect
monitor average treatment effects for fully specified
models for theCBSA inA (Model 3) and for theCRZ
in B (Model 9). Roads are shown in white. Block
groups are shaded by population density in yellow,
where gray indicates unavailable data. Mapped in R
with the ggplot2 and sf packages30,31.
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different temporal profile: PM2.5 levels didnotdecline immediately andeven
rose slightly inMarch, possibly reflecting increased traffic rerouting around
the CRZ. A gradual decline emerged from April onward, suggesting a
delayed response as traffic patterns adjusted. G (VanWyck Station), located
further from both the CRZ boundary and primary traffic detour corridors,
displayed relatively stablePM2.5 levels,with little year-to-year variation.This
suggests that the policy’s influence diminished with increasing distance
from the CRZ and that Van Wyck Station was less affected by traffic
redistribution.

Together, these observations underscore the heterogeneous impacts of
congestion pricing: core CRZ areas experienced immediate and substantial
air-quality improvements, while peripheral neighborhoods showed either
delayed responses or negligible changes, depending on proximity to the
CRZ and exposure to traffic spillover.

Change in effects over time
Excitingly, these effects were not static over time, but grew within the CRZ
over time. Figure 5A shows average weekly treatment effects for each

Fig. 3 | Annual wind direction and speed patterns and net PM2.5 concentration
trends in NYC pre- and post-congestion pricing (2024–2025). A Wind rose
depicts direction and speed distributions for 2024 and Jan–Jun 2025. B Boxplots

show monthly net PM2.5 inside vs. outside the CRZ, with median lines for Jan–Jun
and Jan–Dec periods.
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geographic zone, where bands show the range of effectsmost likely perweek
(95% confidence intervals). These dynamic weekly effects are shown for the
CRZ (Model 9), NYC 5 Boroughs (Model 6), and the broader NYC
MetropolitanCBSA (Model 3). During thefirst week of implementation, we
estimate an average PM2.5 reduction of 0.8 μg/m3 in the CRZ. These effects
steadily increased, reaching an average weekly reduction of 4.9 μg/m3 by
Week 20. This cumulative trend suggests persistent and compounding air-
quality benefits within the tolled zone.

In contrast, we find that air-quality improvements in outer zones
(the NYC boroughs and CBSA) were more modest and showed
decreases over time. Average treatment effects in these areas were sig-
nificant in the first weeks of implementation, but the rate of improve-
ment slowed as time progressed. These diminishing returns likely reflect
adaptive transportation behavior, describing the thousands of NYC
metro area residents and firms who are adjusting their behavior to avoid
driving through the tolling zone by rerouting trucks, mode switching, or
rescheduling trips. These concurrent changes in vehicle behavior are
likely responsible for the change in marginal environmental benefits
outside the CRZ. However, it is worth noting that even these further-out
areas still produce statistically significantly less air pollution than before
congestion pricing’s implementation.

To better understand the link between vehicle activity and air-quality
changes, Fig. 5B shows weekly traffic entry trends within the CRZ, with a
notable early drop in multi-unit truck entries. Between January and June
2025, vehicle entries into the CRZ decreased substantially: heavy-duty truck
entries fell by approximately 18%, car entries by about 9%, and overall
vehicle entries by around 11%. These reductions in traffic activity are of a
scale that could plausibly account for the observed decreases in peak PM2.5

levels, especially given the disproportionate contribution of heavy-duty
vehicles to urban air pollution. The differing responses between trucks and
passenger vehicles likely reflect their distinct decision-making dynamics,
where individual drivers adjust gradually through small, trip-level changes,
whereas trucking companies plan ahead to minimize operating costs,
leading to larger, more coordinated adjustments such as rerouting or
reducing cross-cordon entries. Figure 5C plots correlations between PM2.5

changes andhourly vehicle entry volumes, disaggregatedbyvehicle type and
time period. These results reinforce that reductions in heavy-duty vehicle
traffic are closely associated with air-quality improvements, especially
during peak daytime hours.

Taken together, these results suggest that congestion pricing produces
increasingly strong environmental returns within the tolled zone while
producing time-limited co-benefits in adjacent areas. Future analyses could

Fig. 4 | Temporal and spatial reductions in net PM2.5 during congestion pricing
hours across NYC. A, B Boxplots and histograms of monthly net PM2.5 inside vs.
outside the CRZ for 2024 and 2025, showing percent changes relative to the baseline.
C Locations of hourly PM2.5 monitoring stations in NYC. D–G Spatiotemporal

distributions at keymonitoring stations, highlighting variability across locations and
months. Specifically, D Bowery (within CRZ), E Cross Bronx (outside CRZ), F
Manhattan Bridge (within CRZ), and GVan Wyck (outside CRZ).
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evaluate whether longer-term shifts in commuting patterns sustain or
reshape these trends.

NYC congestion pricing cut PM2.5 by 22%. Our analysis provides the
first quasi-experimental evidence that New York City’s cordon-based
congestion pricing policy produced rapid and substantial air-quality
improvements. Within just six months of implementation, daily max-
imum PM2.5 in the CRZ declined by 22%, controlling for background
concentrations, meteorology, and neighborhood demographics. This
magnitude exceeds prior evidence from Stockholm, where congestion
pricing reduced air pollution by 5–15% between 2006 and 20105, and
London’s Ultra Low Emission Zone, which achieved about a 7% decline
in PM2.5 citywide between 2019 and 202210. The comparatively larger
effects in New York likely reflect both the intensity of travel demand and

the greater modal flexibility of its commuters, supported by an extensive
transit system and multi-modal system.

Importantly, the results show that air-quality improvements were
not confined to the tolled zone. We find no evidence of emissions dis-
placement to neighboring areas; instead, the analysis reveals net
reductions across the broader metropolitan region. While improve-
ments in the five boroughs and the broader CBSA were smaller (1.07
and 0.70 μg/m3, respectively), these reductions remain statistically
significant across specifications. This spatial gradient reflects how pri-
cing reshapes travel behavior beyond the tolled zone through rerouting,
mode switching, and trip rescheduling, while producing both direct and
indirect environmental benefits. These findings suggest that congestion
pricing acts as a system-wide behavioral intervention rather than a
geographically bounded one.

Fig. 5 | Air-quality benefits increase in the congestion relief zone over time.
A Bands show weekly average treatment effects within the CRZ (Model 9), NYC 5
Boroughs (Model 6), and NYC Metropolitan Area CBSA (Model 3), with 95%
confidence intervals. B Lines depict weekly vehicle activity inside the CRZ,

highlighting the drop inMulti-Unit Truck entries.CTrend lines relate changes in air
pollution to hourly vehicle entry rates per week, by vehicle class and time period
(Peak = 5 AM–10 PM; Overnight = 11 PM–4 AM).
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Behavioral adaptation drives compounding environmental gains.
Temporal dynamics reinforce this interpretation. As shown in Fig. 5A,
weekly treatment effects within the CRZ intensified nearly fivefold by
Week 20 (rising from ~0.8 μg/m3 in Week 1 to ~4.9 μg/m3 by Week 20),
while the corresponding curves for the five boroughs and the CBSA are
flatter and begin to plateau earlier, indicating more modest but still
negative effects outside the cordon. Read together with the spatial pattern
in Fig. 2A, where monitors across the CBSA are shaded light blue, these
trends indicate net reductions rather than displacement: early gains are
concentrated in the core, and smaller improvements diffuse outward as
travelers adapt. This pattern implies that early post-implementation
evaluations may understate long-term air-quality gains, as behavioral
adjustments (e.g., trip consolidation, increased transit use, and peak-hour
avoidance) accumulate gradually rather than instantaneously. Con-
versely, smaller or slower improvements in outer zones may reflect the
limits of mode substitution once key travel patterns stabilize.

Long-term success demands reinvestment, freight integration, and
adaptive management. Three key takeaways emerge. First, reinvest-
ment is critical. Allocating a portion of toll revenues to support outer-
borough transit, subsidized fares, and active-mobility infrastructure
would extend benefits beyond the CRZ and ensure citywide
accessibility11,12. Second, freight management deserves explicit integra-
tion. Our results confirm that heavy-duty truck activity remains a
dominant driver of localized air-quality variation. Differentiated tolls,
incentives for zero-emission freight vehicles, and coordinated delivery
scheduling could amplify environmental benefits while reducing con-
centrated burdens in communities already overexposed to truck
emissions13,14. Third, adaptive management is essential. As weekly
treatment effects grew over time, continuous air-quality monitoring,
dynamic rate adjustments, and iterative policy design will be vital to
sustaining gains and preventing rebound effects15,16. These lessons align
with international evidence that successful congestion pricing programs
rely on transparency, reinvestment, and continuous adaptation.

New York’s experience reinforces global evidence on congestion
pricing. Fromabroader perspective, this study contributes new empirical
evidence to the global literature on pricing-based environmental policy.
The results demonstrate that congestion pricing, when implemented in a
high-density, transit-oriented U.S. city, can achieve emission reductions
comparable to or exceeding those of long-established European cases,
such as Milan’s Area C program (17% decline in PM10) and London’s
congestion charge (5–10% reduction in PM10)

17,18. They also underscore
that environmental and mobility benefits can coexist, positioning con-
gestion pricing as a rare intervention that advances multiple urban sus-
tainability goals simultaneously: reducing pollution, improving traffic
efficiency, and generating revenue for infrastructure modernization19.

Finally, while these findings are encouraging, several caveats merit
discussion. The analysis covers only the first sixmonths of implementation,
limiting inferences about longer-term outcomes or potential rebound
effects. Moreover, the absence of unaffected counterfactual monitors
required reliance on predictive modeling rather than traditional difference-
in-differences (DiD) methods20. Future research should assess whether the
observed PM2.5 reductions persist over time, how benefits vary across
demographic and spatial contexts, and how complementary measures—
such as fleet electrification, transit expansion, and active-mobility invest-
ment—can amplify these gains. Extending this framework to other pollu-
tants, including NOx and O3, will also help clarify the full atmospheric and
health implications of congestion pricing21–24.

Methods
Our objective is to estimate the causal effect of congestion pricing on air
quality.We apply amodifiedDiD framework,widely used in environmental
epidemiology, to evaluate policy impacts under observational
conditions13,25,26. This design compares air-quality trends in the treated

group (CRZ) with those in control groups (the five NYC boroughs and the
CBSA), under the assumption that, absent the policy, concentrations would
have followed business-as-usual trajectories. Controls for meteorology,
baseline concentrations, and neighborhood demographics are explicitly
included.

In a dense metropolitan area like New York City, identifying a truly
unaffected control group is infeasible because regional background pollu-
tion and traffic redistribution influence monitors across the region. Unlike
pharmaceutical trials, where distinct treated and untreated groups can be
maintained, air-quality studies typically adopt modified DiD designs that
rely on internal benchmarks rather than perfectly unaffected controls.
Accordingly, we incorporate upwind monitors as benchmarks for regional
variation, consistent with established practice27,28. These stations, located
outside the CRZ and in areas less likely to be influenced by traffic rerouting,
provide reference levels formeteorology and regional background.Roadside
studies further show that incremental PM2.5 declines by 75% between 5m
and30m from traffic29, underscoring the importance of siting controls away
from direct roadway influence.

While robustness could be enhanced through unaffectedmetropolitan
comparison groups or synthetic controls, these require extensive data har-
monization across cities.Weare exploring synthetic controlmethods as part
of ongoing work, but the current design reflects established practice in
environmental epidemiology and provides a rigorous basis for causal
inference in this early evaluation of New York City’s congestion pricing.

Data
We modeled air pollution outcomes for N = 42 monitors throughout New
York City’s census-defined CBSA, spanning 518 days from January 1 2024
to June 1 2025, covering 148 days treated and 371 untreated for comparison.
This integrates 24 monitors available through the AIRNOW API, plus
18 sensors from New York City’s own monitor network.

For each day, we calculated each monitor’s max hourly concentration
of PM2.5. To produce daily maxes, we trimmed the hourly readings to the
99% range of most common readings, from 0.1 to 25.5 micrograms per
cubicmeter, to exclude a handful of particularly high (or low) readings. This
produces afinal unbalanced panel of 17,758 validmonitor-day observations
(out of a full grid of 42monitors × 518 days = 21,798). Somemonitors were
offline for portions of the study period; data were available for 6216 treated
days (97%) and 15582 untreated monitor-days (85%). Our final sample
includes 6 monitors (n = 3114 monitor-days) within the CRZ, 23 more
within the NYC 5-boroughs area (n = 11,937), and 13 more in the metro-
politan CBSA (n = 6747). Monitor locations are mapped in Fig. 2 with R
version 4.1.1, using the ggplot2 package 30 for data visualization and the sf
package 31 for geospatial operations.

Because the NYC CRZ affects traffic beyond Manhattan and
throughout the metropolitan area, we cannot perform a true quasi-
experiment (since there are no true counterfactual monitors unaffected by
theCRZwithinNewYorkCity).However,we canconstruct anapproximate
model that estimates the average change in air pollution concentration for
each day passed since the enactment of the CRZ.

Model estimation
To estimate the change in air pollution, we constructed a series of iterative
models of the entire region, starting with (1) basic controls, then (2) adding
environmental controls, followed by (3) neighborhood demographic
characteristics of the monitors’ neighborhoods.

Estimation strategy. We model the enactment of the congestion relief
policy as a binary treatment affecting all air-quality monitors in the
metro region, regardless of location, ever after January 6, 2025. We
control for temporal variation in air pollution using fixed effects for
each week (week 1–52) and each day of the week (Monday, Tuesday,
etc.). (We avoid daily fixed effects because they are collinear with the
time-based treatment variable). Finally, following the logic of DiD
models, we model the average treatment effect using an interaction
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between the treatment effect and a daily counter variable, describing
how many days have passed since the adoption of the congestion relief
policy (0, 1, 2, etc.).

Basic controls. Then, we adjusted for several necessary, basic controls.
Evenwithout on-road transportation, all cities have a certain background
concentration level of PM2.5. We estimate the background concentration
level of our pollutant by calculating the mean daily maximum con-
centration of the pollutant averaged from 4 monitors spread across
Hunterdon, Middlesex, Morris, and Passaic counties, located outside the
road-dense 5-boroughs and as far away from the major thoroughfares as
possible. We control for background concentration levels, square-rooted
to account for slight right skew, which is a common practice in air quality
and epidemiological research when dealing with right-skewed pollution
data32. Then, we control for the logged minimum distance of each
monitor from the nearest highway (classified as primary (interstate) or
secondary (state) highways). This represents our basic, minimalmodel of
air pollution, with all necessary fundamental spatial controls.

Environmental controls. Next, we constructed a second model,
appending environmental controls. Using hourly estimates from the
weather station nearest eachmonitor, sourced fromVisualCrossing API,
we controlled for the log-temperature, percentage of relative humidity,
windspeed in miles per second, precipitation levels, and cloud cover
levels33. (We logged temperature to avoid heat-bubble-related collinearity
with population density).

Neighborhood demographic controls. Finally, we constructed a third
model, appending neighborhood demographic controls. Using census
block group estimates from the American Community Survey 5-year
Estimates (2019–2023)34, we took the average traits of census block
groups located nearby, within a 1 km buffer of each air-quality
monitor. These average traits characterize the transportation demand
profile of eachmonitor’s neighborhood. Specifically, we added controls
for the population density in persons per square kilometer (logged),
median income in USD (logged), the share of non-white residents, and
the share of Hispanic or Latino residents. (We use the share of non-
white residents, rather than a larger set of demographic groups,
because more detailed breakdowns are highly collinear with median
income within New York City. We drop race and ethnicity controls in
our analysis of monitors within Manhattan’s CRZ because of colli-
nearity with median income spikes (median income captures their
shared trend in that area).

Estimating treatment effects. We applied our trained models to esti-
mate predicted treatment effects for the entire grid of all possible
monitor-days. (Because predictor data were available for the entire grid,
even during gaps in monitor readings, we were able to estimate average
treatment effects for the balanced dataset.) For each monitor, we simu-
lated the average treatment effect on the treated monitors, calculating
how much air quality was predicted to change given the policy vs. if the
policywere not present, predicted for each day between January 6th, 2025
and June 1st, 2025, We approximated prediction uncertainty by simu-
lating 1000 effects per monitor using Monte Carlo simulations from
distributions sized by model prediction error. Then, we calculated the
range of effects experienced in this time period and these
geographic zones.

Data availability
The data and code are available here: https://github.com/timothyfraser/
nyc_congestion_rep.

Code availability
The data and code are available at https://github.com/timothyfraser/nyc_
congestion_rep.
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