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Ubiquitous intelligence via wireless
network-driven LLMs evolution
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We introduce ubiquitous intelligence as a paradigm where Large Language Models (LLMs) evolve
within wireless network-driven ecosystems. Unlike static model deployments, this approach enables
scalable and continuous intelligence ascension through coordination between networks and LLMs.
Wireless networks support system-orchestrated lifelong learning, while LLMs drive the next-
generation network development that is more adaptive and responsive. This co-evolution highlights a
shift toward self-improving systems, sustaining capability growth across diverse and resource-
constrained environments.

Large Language Models (LLMs) have quickly expanded from their original
applications inmachine translation and summarization to a wide spectrum
of complex generation tasks, including code, graphics, and video1. Advances
such as ultra-long context processing, multimodal integration, and frame-
works like Retrieval-Augmented Generation (RAG)2 have further pushed
LLMs into domains such as law and medicine, traditionally relying on
human expertise. Over time, LLMs have evolved from passive decision-
making assistants to active participants in end-to-end processes, while the
emerging Artificial Intelligence (AI) agent3 paradigm further extends its
capabilities to autonomous reasoning, planning, and execution.

Despite these advances, most LLMs still operate as cloud-centric
models, relying on large clusters for inference and periodic offline
retraining4. This architecture delivers scale but struggles tomeet the growing
demands for low latency, strong privacy, and adaptive personalization.
Wireless networks, which connect billions of heterogeneous edge devices,
offer a promising alternative. By enabling distributed inference and con-
tinual learning closer to data sources, they provide the foundation for more
responsive, private, andpersonalizedLLMsdeployment. Such a transition is
technically feasible and increasingly necessary to sustain the next generation
of large-scale intelligence.

Large Language Models
LLMs have emerged as a primary expression of machine intelligence,
demonstrating the ability to generalize across diverse tasks. Their effec-
tiveness relies on large-scale training and inference pipelines, which are
predominantly deployed in centralized data centers4,5. These infrastructures
integrate high-performance accelerators, low-latency interconnects, and
deep memory hierarchies to support large-batch optimization and high-
throughput inference6. Leading commercial platforms, including OpenAI’s
GPTmodels onMicrosoftAzureGPUclusters7,Google’sGemini andPaLM
on TPU-based infrastructures8, and DeepSeek’s multi-GPU distributed
framework9, leverage this architecture for scalable, consistent training and
inference. Services, such as NVIDIA’s DGX Cloud, further extend these

capabilities via cloud-hosted multi-node inference, supporting enterprise-
scale workloads10. This cloud-centric structure offers key advantages: on-
demand scalability, centralized management, and streamlined main-
tenance, making it the standard for contemporary foundation models.

However, as LLMs become increasingly integrated into daily life, the
limitations of the cloud-centric paradigm are growing more apparent.
Development priorities now emphasize low latency, strong privacy, and
adaptive personalization, yet transmitting data to and from remote data
centers conflicts with the demands of time-sensitive applications11,12.
Effective personalization further requires continuous, context-aware
learning from the user environment, but centralized processing of such
data raises significant privacy risks13. These challenges highlight a widening
gapbetween centralized infrastructures anduser expectations, underscoring
the need to shift LLM inference closer to data sources through wireless
networks.

Wireless network
Wireless networks form a crucial interface between cloud-centric AI and
context-aware inference at the edge11,14,15. Modern infrastructures, char-
acterized by dense connectivity, high throughput, and low latency, offer a
flexible foundation for collaborative training and synchronized model
updates across heterogeneous devices16–18. As LLMs are deployed in
increasingly diverse scenarios, conventional reliance on centralized data
centers imposes significant limitations. Transmission delays hinder
responsiveness in time-sensitive applications19, while personalized services
require handling user-specific data previously ignored20. These demands
exceed the capabilities of traditional network pipelines.

To meet these emerging challenges, wireless components such as Base
Stations (BSs), access points, and user devices must evolve from passive
relays into active participants in distributed reasoning21–23. ThroughDevice-
to-Device (D2D) links, adaptive edge caching, and opportunistic spectrum
access, network nodes can exchange intermediate computations, propagate
refined models, and adapt decision policies in real time. This architectural
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transformation is central to the vision of Sixth-Generation (6G) networks24,
which integrate communication, computation, and learning into a unified,
human-centric system. By embedding intelligence directly within the net-
work fabric, future systems aim to support personalized, secure, and ultra-
reliable services under highly dynamic conditions.

Motivation
LLMs andwireless networks have drivenmajor advances in intelligence and
connectivity, but both now face fundamental limits. Addressing these
constraints is key to sustaining large-scale evolution.

Developments and challenges of large language models
The progression of LLMs has been driven by successive scaling paradigms
(Fig. 1). Introduced in 2020, pre-training scaling law25, established a power-
law relationship between performance and three factors: model size,
training data, and compute power, guided the development of GPT-326

and latermodels. Post-training scaling focuses on improving alignment and
task specialization through supervised fine-tuning and Reinforcement
Learning from Human Feedback (RLHF)27,28, allowing capability gains
without changing the core architecture. More recently, test-time scaling
emphasizes allocating additional compute during inference, enabling step-
by-step reasoning, exploring multiple solution paths, and reducing hallu-
cinations, thereby improving overall reliability and reasoning quality29,30.
Focusing on the concept of experience, LLMs collect and distill indigenous
knowledge while, under experience scaling, they autonomously explore and
absorb vast amounts of information from their environment, potentially
uncovering knowledge untouched by humans.

However, current scaling laws exhibit diminishing returns: GPT-4’s
greatly increased scale over GPT-3 yielded diminishing per-token gains,
while training data demand now surpasses human generation, detrimental
for post-training methods like RLHF28. As shown in Fig. 1.B, LLMs per-
formance is nearing its ceiling under this paradigm, necessitating a new
scaling dimension for further advancement.

Evolution and limitations of wireless networks
Wireless networks have evolved from voice-only systems to intelligent
infrastructures that support data-driven andmission-critical applications31.
From 3G’s mobile internet to 5G’s broadband and massive connectivity,

each generation has improved capacity and latency. Ongoing 6G research
seeks to integrate sensing, communication, and intelligence into a unified
architecture17,32,33. Key advances such as Ultra-Reliable Low-Latency
Communication (URLLC)34, D2D communication35, and context-aware
content delivery36 enhance responsiveness and localization, while adaptive
spectrum and resource management37 improve efficiency under dynamic
conditions.

However, challenges persist as LLM-based services require low latency,
privacy, and personalization, which cloud-based designs often ignores38.
Transmitting data to remote servers introduces delay and privacy risks39–42,
limiting real-time applications. Meanwhile, networks themselves face
growing complexity. Device heterogeneity, mobility, and spectrum varia-
tion reduce the effectiveness of centralized control, causing resource con-
tention and unstable performance37,43. Scaling distributed AI workloads
further amplifies these limitations. Importantly, these issues are not only
bottlenecks for deploying LLMs but also opportunities for co-optimization.
LLMs can contribute to the network’s optimization, enabling context-aware
scheduling, semantic compression, and adaptive coordination. Fully
unlocking this potential, however, requires architectural alignment and real-
time integration between learning models and communication protocols.

Motivation for coevolutionbetween LLMsandwireless networks
The advances and limitations of LLMs and wireless networks highlight the
opportunity for mutual reinforcement. The co-evolution of LLMs with
wireless networks involves leveraging edge computing and decentralized
learning14,44,45, where models are deployed closer to users through local
processing on edge devices or base stations, allowing LLMs to continuously
learning without relying on centralized cloud servers.

This perspectivemotivates the vision ofubiquitous intelligence viaAI-
enabled networks and network-enabled AI, where intelligence is embed-
ded throughout the wireless network infrastructure and adaptively dis-
tributed across heterogeneous devices to support real-time, context-aware,
and personalized services at scale, as illustrated in Fig. 2.

Synergistic evolution of LLMs and wireless networks
Achieving ubiquitous intelligence requires tight integration between LLMs
and network infrastructure. This section explores their co-evolution and
mutual reinforcement in enabling pervasive cognition.

Fig. 1 | Scaling laws. Scaling in terms of parameter
size, training data, and compute time can be con-
ceptualized as scaling the amount of compute
resources. LLMs have progressed through three
stages of scaling laws, culminating in their current
advanced stage (Part A). We propose a new scaling
paradigm, experience scaling (Part B), within the
concept of ubiquitous intelligence, aiming to push
scaling to a new dimension and further enhance
LLMs' capabilities.
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Network-empowered LLMs evolution
Although scaling laws have driven significant advances in LLMs, progress is
limited as human-generated data can no longer keep pace with LLMs
consumption46, signaling the need for a new paradigm. Current advances
remain primarily focused on imitating humans, consuming human-created
data. While LLMs are increasingly capable of performing existing tasks on
behalf of humans, they still lack the capacity to deliver breakthroughs in
scientific and technological domainswherenohuman-generateddata exists.

Anewscaling paradigm is required to bypass the bottleneck of human-
generated data by enabling LLMs to collect and create data directly from
their environment. Advancements in AIs and wireless networks (Fig. 3)

enable autonomous knowledge acquisition through environmental inter-
action, extending model understanding beyond human-derived domains.
This continuous, multimodal experience accumulation supports lifelong
learning. When shared across wirelessly interconnected nodes, these het-
erogeneous data streams foster collective intelligence at scale, unlocking
access to massive decentralized environmental data and paving the way for
intelligence that transcends the limits of human experience.

LLM-enhanced cognitive networking
The advancement of LLMs now hinges not only on computational
scaling but also on their integration with communication infrastructures.
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tous intelligence approach. In the traditional approach, all data and computation
are routed through centralized cloud infrastructure, leading to latency, privacy risks,
and limited personalization. The ubiquitous intelligence framework leverages BSs,

access points, and edge devices as active intelligence nodes, enabling local inference,
cooperative learning, and D2D knowledge sharing. The distributed structure sup-
ports low-latency adoption and enhances resilience and personalization in dynamic
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Wireless networks, once passive conduits for data, are increasingly
envisioned as distributed platforms where models and network elements
co-evolve in a tightly integrated ecosystem. This transformation enables
ubiquitous intelligence, where computation and communication are
jointly executed across heterogeneous, spatially distributed devices. The
fusion of dense radio access, Multi-access Edge Computing (MEC),
diverse terminals, and latency-aware scheduling provides a dynamic
substrate for in-network learning47. Network nodes become intelligent
agents, capable of contextual reasoning and localized model refinement.
Devices actively participate in knowledge exchange and environmental
adaptation, forming a collaborative learning systemembeddedwithin the
communication fabric. Modern wireless architectures account for user
behavior and localized demands17,36,38, guiding the selective delivery of
models or data to where they are most needed. This localized respon-
siveness is central to the realization of ubiquitous intelligence.

Figure 4 illustrates the framework of ubiquitous intelligence with the
deployment of cloud LLMs, edge sites, and local LLMs. Each layer partici-
pates in distributed inference, model refinement, and real-time collabora-
tion. The close integration between radio access points and edge
computation platforms48 creates a tightly coupled infrastructure where
models operate near the data source. This structure supports high avail-
ability, rapid adaptation, and robust performance under dynamic wireless
conditions.As LLMs increasingly dependon the environments they inhabit,
thewireless network becomes a partner in learning and reasoning. This shift
marks a departure from isolated model scaling toward a co-evolutionary
paradigm,where intelligencearises through continuous interactionbetween
the models and the underlying wireless infrastructure.

Ubiquitous intelligence
The trajectories of AIs and networks are increasingly converging49, as
demonstrated in Fig. 3. Their integration marks a transition from incre-
mental advances in each domain to a co-evolutionary paradigm in which
intelligence and connectivity are inseparable. This convergence provides the
conceptual and technical foundation for ubiquitous intelligence, where

adaptive learning and resilient communication formaunified, continuously
evolving ecosystem. The shift towards ubiquitous intelligence is grounded in
four core principles:
• Continuous Intelligence Ascension. Continuous intelligence ascen-

sion denotes the sustained enhancement of LLMs capabilities through
interaction with dynamic environments. Unlike static deployments,
LLMs refine reasoning, adaptability, and autonomy from live experi-
ences, while wireless networks interconnect heterogeneous sensing
devices and edge nodes to provide the bandwidth and low latency
needed for real-time experience exchange. This integration transforms
learning into a distributed, lifelong process, enabling intelligence to
scale continuously alongside wireless network development.

• System-Orchestrated Intelligence Adaption. Driven by wireless
network breakthroughs in D2D and context-aware content distribu-
tion, System-Orchestrated Intelligence Adaptation supports hetero-
geneity in the frameworks, refines LLMs selectively by applying only
the relevant subsets of experience according to each LLMs’ size and
function, thereby avoiding redundant updates and enhancing overall
system efficiency. During inference, tasks are allocated to the most
suitable LLMs based on task characteristics and resource availability,
optimizing both performance and utilization. Simple tasks with high
time sensitivity are assigned to smaller models, while more complex
tasks are allocated to largermodels. Diverse data sources and compute
resources can be further integrated through the Model Context
Protocol (MCP)50, which bridges communication gaps by providing a
unified API access for heterogeneous LLMs. This principle embodies
effective coordination and adaptive deployment of intelligence within
distributed environments.

• Permeable Semantic Networking. AI empowers networks with
semantic awareness, allowing systems to exchange not only raw data
but also the underlying meaning contained in messages and services.
LLMs extend this semantic capability through their pre-trained
alignment with human intent, enabling interpretation, generation,
and abstraction of meaning across modalities. When integrated into

Fig. 4 | Collaboration of intelligence under ubi-
quitous intelligence. LLMs evolve into adaptive,
networked ecosystems integrated with wireless edge
environments, enabling scalable, resilient, and con-
tinuously improving intelligent services.
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communication and computation, LLMs enable semantic-level
information exchange, transforming the network from a passive
transport medium into an adaptive and context-aware infrastructure.

• Ubiquitous Coherence Communications. LLM’s reasoning and
generation convert disordered information flows into structured and
refined knowledge.Networks under this paradigm evolve from chaotic
to organized, from redundant to essential, and from diffuse to con-
vergent, thereby sustaining coherence in distributed communication
environments. The integration of these capabilities ensures that ubi-
quitous connectivity is matched with ubiquitous intelligence, estab-
lishing networks as adaptive ecosystems for resilient, large-scale
intelligent services.

New opportunities
As LLMs evolve from static inference engines to dynamic cognitive systems,
new opportunities emerge for continual refinement beyond initial training.
This section examines how interaction, feedback, and decentralized adap-
tationwithinwireless networks support this ongoing evolution in real-world
environments.

Wireless network empowered LLMs opportunities
Experience Scaling. While human-generated data remains central to
current LLM paradigms, its scalability is limited. In contrast, vast
amounts of data from multi-agent systems engaging with diverse
environments remain largely untapped. System-wide gathering, pro-
cessing, and leveraging such interactive experiences represent a critical
direction supporting continuous intelligence ascension for the next evo-
lutionary era of LLMs scaling.

Edge-cloud network-aided collaborative reasoning. Inference
begins at the user terminal, where local computations often take place
under constrained resources. Guided by the principle of system-
orchestrated intelligence adaptation, clusters use low-latency inter-
connects to map heterogeneous inference tasks to suitable devices,
enabling collaborative execution under varying workloads and hard-
ware constraints. This first layer of intelligence leverages local context
and device status to make fine-grained task decisions. Such localized
reasoning forms the entry point of the system’s adaptive intelligence
pipeline, balancing response immediacy with offloading potential
through wireless networks.

Distributed cached knowledgemanagement and propagation. D2D
communication enables peer-to-peer information exchange, distributing
reasoning tasks and intermediate knowledge while reducing reliance on
centralized infrastructure51. This localized cooperation enhances decen-
tralization and adaptability, supporting the principle of system-
orchestrated intelligence adaptation across heterogeneous environ-
ments. When a task enters the framework, the D2D-powered system
orchestration allocates the task to the most appropriate compute unit.
The computational cache related to the task is then sent directly to the
compute unit. The distributed knowledge management thus refines
global models and reduces redundancy through intelligent allocation40,52.
Efficiency is further improved through edge caching, predictive pre-
fetching, and opportunistic D2D clustering, enabling robust, low-latency
cross-user knowledge management53.

Spectrum-aware adaptation for distributed learning. Maintaining
performance for resource scheduling in a shared and volatile spectral
environment. Spectrum-aware strategies enhance learning stability by
embedding real-time channel sensing into the update and synchroniza-
tion protocols54. Devices can regulate their transmission power and
update cadence based on interference levels and spectrum availability.
These mechanisms play a pivotal role in achieving system-orchestrated
intelligence adaptation via managing contention and preserving
throughput, especially in dense deployments where spectral conditions

fluctuate rapidly. Such spectral intelligence contributes directly to the
robustness and efficiency of model dissemination.

LLMs enhanced wireless network opportunities
Adaptive task offloading across edge devices. Once local decisions
are made, the LLMs edge devices dynamically determine whether to
retain tasks locally or offload them with experience to more capable edge
nodes55. Nearby servers or peer devices can assume responsibility for
intensive post-inference workloads such as model refinement or skill
module execution. LLMs assisted task offloading policies account for
communication quality, processing load, and power availability56, while
experience redistribution strategies primarily focus on bandwidth. This
adaptive balance between local and distributed computation not only
reduces end-to-end latency but also mitigates energy consumption on
user devices, ensuring continuity of reasoning under mobility and
hardware heterogeneity. Additionally, dynamic allocation of bandwidth
and spectrum resources37 allows distributed learning and inference to
remain reliable under fluctuating interference and load conditions.
Through continuous adaptation to changing environments, wireless
network infrastructures sustain the robustness and responsiveness that
realize permeable semantic networking at scale.

Context-aware scheduling of network resources. To support seam-
less task distribution, wireless networksmust ensure reliable and efficient
delivery of collective LLMs updates. LLMs empowered resource sche-
duling mechanisms allocate bandwidth, compute cycles, and transmis-
sion windows in real time, guided by user behavior, link conditions, and
service-level requirements57. The LLMs scheduler system continuously
refines allocations based on updated channel state information and
application context, thereby reducing delivery latency and improving
system responsiveness58. This layer of context-awareness ensures con-
sistent adaptation and facilitates knowledge sharing across users, even in
dynamic and congested wireless environments, supporting permeable
semantic networking.

Hierarchical orchestration across network tiers. At the core of the
wireless intelligence system lies a coordinated architecture that spans
multiple layers of the infrastructure. LLMs across small cells, macro base
stations, and cloud servers collaborate to manage the global distribution
of updates and computational resources59 to achieve the goal of permeable
semantic networking. The LLMs orchestration framework determines
which components should be processed locally, cached regionally, or
distributed globally, based on topology, load conditions, and service
priorities. This hierarchical model alleviates backhaul congestion, bal-
ances workloads, and ensures scalable deployment of context-specific
intelligence. Ultimately, it transforms thewireless network from a passive
conduit into an active cognitive substrate.

Harnessing ubiquitous intelligence for a greener future
Data centers, the backbone of cloud-based LLMs deployment, are rapidly
becoming major energy consumers, with U.S. facilities using 4.4% of
national electricity consumption in 2023 andprojected to consume6.7–12%
by 2028 due to escalating AI workloads60, a trend accelerated by newmega-
facilities like OpenAI’s Stargate61. Ubiquitous intelligence mitigates this
trajectory through redistributing computation to network edges, exploiting
underutilized electricity in microgrids with surplus generation and limited
storage62. Unlike conventional data centers that over-provision backup
resources (e.g., batteries and generators) to buffer demand fluctuations but
leave them idle during low traffic63, our framework dynamically routes
LLMs’workloads across intelligent edgenodesbasedondemandandenergy
availability, thereby harnessing wasted capacity and reducing carbon
impact.

Primarily focusing on inference, Ubiquitous Intelligence can lead to
potential net energy savings through the reuse of intermediate computa-
tional products, such as KV cache in transformer models, reducing
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redundant calculations and lowering energy consumption. Another
potential for energy savings within the paradigm lies in the improvement of
inference quality. The quality of model outputs improves through accu-
mulated knowledge sharing, users obtain satisfactory answers more effi-
ciently. This reduces unnecessary queries and delays the need for retraining
or replacing the model, possibly saving additional energy over time.

Challenges and open questions
Achieving truly ubiquitous intelligence over wireless networks requires
overcoming several fundamental challenges arising from the interplay
between communication, computation, and distributed learning. Key
considerations include:
• Scalable experience exchange. The widespread dissemination of

model updates and learned representations generates a substantial
communication load. Efficient encoding, transmission prioritization,
and adaptive scheduling are needed to ensure a timely and scalable
experience sharing across wireless networks, aided by edge nodes.

• Global model consistency. Maintaining coherence alongside decen-
tralized LLMs remains difficult in dynamic wireless network settings,
particularly under intermittent connectivity and asynchronous
updates64. Mechanisms for synchronization, alignment and reconci-
liation are essential to preserve learning stability and convergence.

• Communication efficiency and latency management. Exchanging
intermediate features or knowledge modules drastically increases
pressure on limited bandwidth, while the close integration of inference
and communication introduces strict latency constraints. Real-time
edge decision-making requires context-aware compression, progres-
sive transmission, and synchronized delay control across computation
and communication.

• Security and robustness. Distributed learning in open wireless
environments exposes models to malicious updates, biased feedback,
and privacy breaches. Safeguards such as secure aggregation, differ-
ential privacy, and anomaly detection are vital for preserving trust and
integrity.

• Efficient knowledge representation. The diversity of experiential data
across edge environments naturally gives rise to multi-modal
information. Efficient representation of heterogeneous inputs poses
significant challenges for unified knowledge integration, efficient
retrieval, and downstream usability. Effective solutions must integrate
this heterogeneous data in an LLMs-native manner.

Conclusion
Ubiquitous intelligence emphasizes the co-evolution of LLMs and wireless
networks,where intelligence resideswithin thewireless infrastructure, and it
dynamically coordinates across varied devices to ensure scalable, context-
driven, and personalized service delivery. Distributed, context-aware, and
adaptive learning across cloud, edge, and device tiers enables models to
evolve continuously while meeting pressing demands for low latency, per-
sonalization, privacy, and energy efficiency. The intertwined development
of wireless networks and LLMs establishes resilient, scalable, and envir-
onmentally responsible intelligence that expands through real-world
experience. The shift from passive, static LLMs deployments to active,
cognitive intelligent systems through wireless networks provides the foun-
dation for continuous-learning capable, dynamic adaptive next-
generation AI.
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