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Cortisolis akey regulator of stress and circadian physiology, yet current

monitoring relies on invasive blood sampling or saliva assays that are prone
to contamination and provide limited temporal resolution. Wearable sweat
cortisol sensors are promising, but require electronic sensing systems and

have limited capability for long-term, time-sequenced monitoring. Here
we present a wearable paper-based microfluidic platform that integrates
plasmonic-gold-nanoflower-based colorimetric assays to enable non-
invasive tracking of cortisol in eccrine sweat. Sweat is induced by carbachol
iontophoresis and directed through collection channels using either
electronically timed sequential activation or paper-based delay valves with
self-powered electrochromic indicators. In human studies, the system
resolved circadian variations, acute stress responses to cold pressor
challenges, and jet-lag-associated disruptions, with the results closely
matching those from saliva and serum assays. This wearable lateral flow
technology establishes sweat as a viable medium for real-time hormone
monitoring and may enable personalized management of stress, sleep and
circadian misalignment.

Managing stress is a critically important aspect of maintaining good
physical and mental health'. Cortisol, a key biomarker for stress, is a
steroid hormone produced by the adrenal glands?. Activation of the
stress-responsive hypothalamic-pituitary-adrenal axis induces the
release of cortisol into the bloodstream. The resulting complex meta-
bolic processes lead to elevated blood pressure and glucose levels, as
mechanisms to respond to stressful scenarios’. Chronic exposure to
elevated concentrations of cortisol can have detrimental effects on the

cardiovascular,immune, renal and endocrine systems'. Misalignment
of circadian rhythms, also controlled by cortisol, can likewise lead to
adverse health effects*’. Knowledge of cortisol levels can, therefore,
potentially assist in the management of sleep patterns and stress-
related disorders, including those related to post-traumatic stress
disorder and chronic fatigue syndrome®.

Despite the importance of cortisol, monitoring its concentra-
tion in biofluids remains challenging. The collection and analysis of
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blood samples involves complex procedures, trained personnel and
dedicated facilities®. Salivais an attractive alternative to blood, but one
that is prone to contamination by substances in the mouth’. Eccrine
sweat is therefore of increasing interest>**™"', Wearable devices for
electrochemical sensing of cortisol in sweat™> ™ offer important capa-
bilities but require electronics for sensing and offer limited capacity
for the time-dynamic detection of cortisol over hours. Conventional
colorimetric sensors have some potential, but face challenges due to
the extremely low concentrations of cortisol present in sweat’.

Lateral flow immunoassays that use colorimetric readout have
proven utility in sensing biomarkers in blood serum, urine, nasal swabs
and saliva. For measuring cortisol, such assays operate based on com-
petitive binding between cortisol and a conjugate of bovine serum
albumin (BSA) and cortisol (BSA-CTS), both of which bind anti-cortisol
antibodies on plasmonic nanoparticles. The sensitivity depends on
various physical, chemical and biological factors, including label type,
bioreceptor affinity and flow rate”. Among these, the optical label is
critically important. Relative to commonly used gold nanoparticles
(AuNPs), gold nanoflowers (AuNFs) are particularly attractive for this
purpose, due totheir high surface areas and enhanced extinction coeffi-
cients associated with localized surface plasmon resonances'* ™, Their
complex surface structure also improves antibody immobilization
efficiency'®. Previous studies have demonstrated these enhancements
inlateral flow assays (LFAs), but their applicationin detecting cortisol
remains unexplored.

This Article reports askin-interfaced device that combines paper-
based microfluidic structures and LFAs that use AuNFs for the sampling
and analysis of sweat in atime-sequential fashion following iontopho-
retic delivery of carbachol through the surface of the skin. The results
include versions of the device with two different sampling modes:
(1) a pre-programmed electronic timer circuit for sequenced ionto-
phoresis events; and (2) a passive valve structure and self-powered
electrochromic timer withwhich to capture distinct sampling events.
Demonstrations of this technology involve studies on the diurnal
cycle, cold pressor tests (CPTs) and responses to jet lag. Levels of cor-
tisol in sweat measured in this fashion align well with separate assays
based on saliva and serum. The results suggest the potential for rou-
tine biochemical assessments of stress and mental health, to guide
therapeuticintervention.

Results

Wearable LFAs for long-term, time-dynamic monitoring of
cortisol in stimulated sweat

The platform comprises four major components: an encapsulation
layer that caps the entire system; anintegrated iontophoresis module
with an electronic timer for time-triggered sweat stimulation; a set of
agarose hydrogels containing carbachol (blue; carbagel) or KCl (yellow);
and a skin-interfaced LFA module with four separate assays (Fig. 1a).
A three-dimensional (3D) schematic illustration shows the assembly
of these components in the device (Fig. 1b). The carbagel elements
interface with the skin at a position next to the paper-based microflu-
idic cellulose collection channels. lontophoretic delivery triggers the
release of sweat, which then passes to the LFA (Fig. 1c). These multiple
LFA assays support time-resolved measurements across multiple col-
lection channels. Each channel has a separate sample pad to transfer
sweat towards a conjugation pad, which contains AuNFs that are con-
jugated withananti-cortisol antibody (AuNF-Ab conjugates) (Fig. 1d).
Then, the sweat moves through the nitrocellulose membrane, which
is spotted with BSA-CTS for the test line and anti-immunoglobulin G
(anti-IgG) antibody for the control line. An absorbent pad at the end of
the nitrocellulose membrane absorbs any excess sweat. An exploded
view of the LFA (Fig. 1e) highlights each component, from the bottom
skinadhesive to the top viewing window. The assay includes a polyeth-
ylene terephthalate (PET) substrate with an adhesive layer, microfluidic
spacers, nitrocellulose membranes, conjugation pads, sample pads,

absorbent pads and viewing windows made of superhydrophilic and
superhydrophobic materials. Optical images show the device on the
skinwith hydrogel (Fig. 1f) and electronics (Fig. 1g). Figure 1h presents
an image of an LFA on the body, displaying the test and control lines.
Figure liillustrates the principles and operation for time-sequenced
iontophoretic stimulation at 20-min intervals, with sweat flow visual-
ized by green food dyes spotted on the conjugation pad.

Synthesis, mechanism and characterization of the LFA

Figure 2a summarizes the principles of the competitive LFA for detect-
ing the concentration of cortisol in sweat. The sample pad contains a
phosphate buffer (1 M; 2 pl) that adjusts the pH of entering sweat to 6.5.
Upon wetting the conjugation pad, cortisol in the sweat binds to the
antibody on the AuNFs and moves along the nitrocellulose membrane,
where the test line contains BSA-CTS and the control line contains anti-
IgG antibody. At physiologically relevant sweat rates (0.5-1.0 pl min™),
the transit time of ~-6-12 min provides sufficient incubation for cortisol
to fully bind to the antibody®. As described elsewhere, the nanoflower
geometry enhances the sensitivity of the assay due to the enhanced
light extinction coefficient, large surface area and reduced velocity
associated with flow through the nitrocellulose membrane compared
with spherical geometries'®". This scheme offers limits of detection
thatspaninto picomolar concentrations, consistent with physiological
concentrations of cortisol in sweat.

Extended Data Fig. 1a highlights the synthesis of AuNFs via the
reaction of para-aminobenzenethiol with Au** ions. Upon reduction
of gold ions by thiolate complex formation, the clear solution turns
reddishbrown, indicating the formation of AuNFs. Figure 2b shows the
ultraviolet absorbance spectrum of AuNFs, with a maximum peak at
558 nm, resulting from their larger size compared with typical AuNPs.
Figure 2c presents a transmission electron microscopy image of a typi-
cal AuNF, with an average size of 164 nm, as determined from dynamic
light scattering (Fig. 2d). A concentration-dependent increase in the
zeta potential (theelectrical potential at the particle’s surface) follows
fromanincreasein the anti-cortisol antibody concentration, demon-
strating successful binding of the antibody to the surface of AuNFs
(Extended DataFig. 1b).

In this competitive LFA assay, AUNF-Ab conjugates bind to the
immobilized BSA-CTS antigen at the testlinein the absence of cortisol
in sweat, forming a distinct and intense band (Extended Data Fig. 1c).
The residual AuNF-Ab conjugates, both with and without cortisol,
subsequently interact via their fragment crystallizable regions with
the anti-mouse IgG antibody at the control line. Increasing the cortisol
concentration (0-100 ng ml™) results in a progressive fading of the
test line colour due to the partial or full occupation of anti-cortisol
antibody with sweat cortisol and competition with BSA-CTS at the test
line, which disappears entirely at approximately 1,000 ng ml™ (Fig. 2e
and Extended Data Fig. 1c-g). Similarly, the control line becomes more
pronounced with increasing cortisol concentration (Fig. 2f). Thus,
the LFA demonstrates high-contrast bright bands at both the test and
control lines, particularly at low and high cortisol concentrations.
As such, the control-to-test-line ratios provide sensitive quantifica-
tion of cortisol concentrations. The optimization of adjusted sweat
pH levels (Extended Data Fig. 1h,i), working buffers (Extended Data
Fig. 1j,k), BSA-CTS (Extended Data Fig. 1I,m) and anti-cortisol anti-
body (Extended Data Figs. Im and 2a) yields a highly sensitive assay,
as demonstrated by the standard calibration curve for artificial sweat
solution spiked with cortisol concentrations ranging from100 pg ml™
to100 ng ml™ at a flow rate of 0.5 pul min™ (Fig. 2g). Application of the
signal-to-noise method*° determined the limit of detection for cortisol
to be 75 pg ml™, supporting the sensitivity of the assay into the low-
picomolar range. The calibration curve covers the physiologically rel-
evant concentrations of cortisol in sweat, which extends to100 ng ml™.

Aseries of experiments validates the operation of the system. The
results indicate negligible sensitivity to sweat flow rate and injection
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Fig.1| Wearable LFA for long-term, time-dynamic monitoring of cortisol
insweat induced with anintegrated iontophoretic stimulation module.

a, Exploded schematic of the device, comprising an encapsulation cover, an
iontophoretic stimulation module, hydrogels containing carbachol (blue) and
KCl (yellow), and the skin-interfaced LFA. b, 3D representation of the device
withaniontophoretic stimulation module and encapsulation layer. ¢, Magnified
schematic of simultaneous sweat stimulation, collection onto cellulose paper
and transport to an LFA strip viaasample pad. d, Detailed schematic of the LFA
onaPET substrate. e, Exploded schematic of the LFA with a superhydrophilic

40 min

pad

/

NC membrane

LFA on PET substrate

60 min 80 min

and superhydrophobic viewing window, asample pad, a conjugation pad,
absorbent pads, nitrocellulose membranes and a PET substrate with skin
adhesive. f, Photograph of an LFA with patterned hydrogels placed on the skin
foriontophoretic stimulation. g, Photograph of the wearable LFA with the
iontophoretic stimulation module and an encapsulation layer. h, Photograph of
the device in operation for sensing cortisol concentrations in sweat. i, A series
of opticalimages demonstrating a time-sequenced series of iontophoretic
stimulation events. NC, nitrocellulose.

volume, over relevant ranges, after optimization (Fig. 2h and Extended
Data Fig. 2b,c). The standard calibration curves obtained for three
different real sweat samples with baseline cortisol concentrations
of 1.0, 0.9 and 0.3 ng ml™, as well as artificial sweat samples, all of
which are spiked with cortisol, are consistent (Pearson’s correlation
coefficient, r = 0.99; Fig. 2i). Furthermore, cortisol concentrations
obtained from the LFA assay correlate with those measured using an
enzyme-linked immunoassay (ELISA) kit (r = 0.94; Fig. 2j). Quantita-
tive readouts of test line intensity under varying illumination condi-
tions (4,500-5,500 K) and using various imaging devices (digital and
smartphone cameras) show negligible signal variation, supporting
the robustness of the assay (Extended Data Fig. 2d-f). Protocols for
analysing the LFA signals appear in Extended Data Fig. 3a-g and the
Supplementary Information section ‘Analysis of wearable LFA”. The LFA

signals remain consistent for up to 6 hafter assay completion, whichis
critical for time-sequenced iontophoretic sweat sampling and detec-
tion over several hours (Fig. 2k).

Mechanisms and characterization results for time-sequenced
iontophoretic stimulation of sweat production

Opticalimages of the time-sequenced iontophoresis module appearin
Extended DataFig. 4a-c. Figure 3a and Extended Data Fig. 4d-fshowa
block diagramand connection scheme. First, activating the long-term
timer (TPL5110) with a switch generates a pulse signal that triggers the
short-term timer (TLC551). The short-term timer, pre-configured in
one-shot mode, then activates one of the step-up converters (R1218)
from the four channels (initially set to 00) through a 2-to-4 decoder
(SN74LVC1G139) connected to a 2-bit counter (74HC73). During this
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Fig. 2| Synthesis, mechanisms and characterization results for an LFA
platform that uses AuNFs for sensing cortisol in sweat. a, Schematic of the
LFA for sensing sweat cortisol based on the use of AuNFs and competitive
mechanisms. b, Absorbance spectrum of AuNFs. ¢, A transmission electron
microscope image of a typical AuNF. d, Size distributions of AuNFs measured
by dynamic light scattering. e-g, Standard calibration curves of the LFA

with artificial sweat using the test line (e), control line (f) and control/test
ratio (g).n = 3. h, Effect of flow rate on the control/test line ratios for cortisol

concentrations of 0 and 100 ng ml™. n=3.i, Performance of LFA calibration
curves for estimating the cortisol concentration in real sweat of various baseline
cortisol concentrations versus artificial sweat. Sweat samples were drop-cast
onto the LFA assays. n = 3.j, LFA versus ELISA for estimating the concentration
of cortisol in real sweat. n = 3.k, Stability of the LFA signal with time at cortisol
concentrations of 0 and 100 ng ml™. n =3 before optimization of the AuNF
volume. The data represent mean values + s.d. (n = 3 technical replicates).

activation, directelectrical current flows from positive (+) to negative
(-) bottomelectrodes, thereby delivering carbachol locally through
the skin to trigger sweat production. Here, the limiting converter
resistor determines the magnitude of the electrical current, as shown
in Extended Data Fig. 4e. After a set duration (for example, 5 min),
the short-term timer turns off and shifts the counter by one position.
The counter sequence follows the order: 00 > 01>10~>11~> 00.A
timing diagramin Fig. 3b also confirms the time-sequenced series of
iontophoretic sweat stimulation. This stimulation sequence repeats
according to the preset timing parameters. In the photographs (on
theright-handside of the graph), the centre LED and red LED on each
channel represent activation of the short-term timer and current
counter sequence, respectively. Extended Data Fig. 4g,h presents
the results for stimulation time interval (£;,.rva) VErsus long timer
resistance (R,) and stimulation time (¢,,,) versus short timer resistance
(R,), respectively. Extended Data Fig. 4i demonstrates a low level of
timing variability.

Figure 3c,d shows aschematic of the flexible printed circuit board
with electronic components on the top and bottom of the iontopho-
retic stimulation module. The main timer modules reside at the centre
of the device, with each channel next to the main timer modules in a

counter-clockwise order. The remaining components, including a
switch, abattery and wireless charging circuits, are located on separate
flexible printed circuit board islands, which fold onto the main timer
modules during packaging.

Experiments and finite element analysis (FEA) simulations that
include the properties of the hydrogel (Extended Data Fig. 5a,b), the
current densities (Extended Data Fig. 5c-k) and the distances between
the stimulation site and collection channel (Fig. 3e,f) serve as guides
to maximize the sweat rate that follows from iontophoretic delivery.
Carbagel produces about 20 pl sweat, compared with 5 plfor the alter-
native pilogel (pilocarpinein hydrogel), at 0.5% wt/vol, 4.3 yA mm2and
al.5-mmdistance between the stimulation site and collection channel
(Extended Data Fig. 5b). Carbagel is better suited for the application
presented here than pilogel, as the miniaturized LFA requires more than
10 plsweat for operation. The total amount of sweat can be controlled
with the limiting converter resistor. For values from 500-200 Q, the
current through the skin ranges from 100-500 pA (Extended Data
Fig. 5¢), with a corresponding increase in sweat volume (Extended
Data Fig. 5d-h). Extended Data Fig. Si-k illustrates FEA results for
the effect of current density on electric field distribution through
the skin. The LFA canbe filled within 30 min of stimulation for the case
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Fig. 3| Mechanism and characterizationresults for the time-sequenced
operation ofiontophoretic electronics for sweat stimulation. a, Electrical
circuit block diagram and connection mechanisms for the time-sequenced
iontophoretic stimulation module. b, Timing diagram showing output voltages
for eachiontophoretic channel in response to the voltage-triggering signals for
long- and short-term timers. ¢,d, 3D schematics of the electronic components
onthe top (c) and bottom (d) of the module. e, Effect of the separation distance
between the stimulation area and collection channel on the volume of sweat
for participants1and 2 and FEA simulation. n = 3.f, Effect of the separation
distance between the stimulation area and collection channel on sweat rate

for participants1and 2. n = 3. Dashed line corresponds to FEA simulation.

g, Electrical field simulation for operation of the module (first stimulation bay)
atacurrent of 130 pA, demonstrating the effectiveness of the separation.

h, Demonstration of the time-sequenced series of iontophoresis (IP) events for

4 collection channels with 6-mm spacing (firstiontophoresis event). 1, Electric
field simulation for the iontophoretic module (second iontophoresis event).

The colorimetric bar has alogarithmic scale. j, Demonstration of the second
iontophoresis event.k, Electric field simulation for the third iontophoresis event.
1, Demonstration of the third iontophoresis event. The datareveal no evidence

of cross-contamination at different time points. The data represent mean

values * s.d. (n =3 technical replicates). Ch, channel.

of a paper-based microfluidic collection channel with dimensions of
2 mm x 10 mm (Extended Data Fig. 5I,m).

The distance between the stimulation site and collection chan-
nelisacritical parameter for maximizing the collected sweat volume
and minimizing cross-contamination between each collection

channel (Fig. 3e,f). At distances greater than 5.5 mm from the stimu-
lationsite, little sweat emerges from the collection channel, thereby
defining a minimum distance to avoid cross-contamination. At a
distance of 1.5 mm, sweat volumes of over 20 pl can be produced
while forming a tight seal with the skin. A series of FEA simulations
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Fig. 4 | Prevention of vapour condensation on the viewing window using
superhydrophobic and superhydrophilic materials. a, Cross-sectional view of
the LFA showing the mechanism of sweat vapour condensation on the surface
of asuperhydrophobic or hydrophobic viewing window. b, Cross-sectional view
of the LFA showing a failure mechanism due to sweat flow through a viewing
window entirely comprising a superhydrophilic window. ¢, Cross-sectional

view of the LFA assembly with a combination of superhydrophobic and
superhydrophilic materials comprising the viewing window. The result prevents
vapour condensation above the test line and below the control line and blocks
sweat flow through the window. d, Optical image of a skin-interfaced device that

usesiontophoretic stimulation of sweat to illustrate the effect of various material
types on vapour condensation. e,f, Photograph of an LFA device that uses a
superhydrophobic and superhydrophilic viewing window at 15 min (e) and 4 h (f).
g, Transmittance change as a function of time for normal PET, superhydrophilic
PET and asuperhydrophobic viewing window (PET + PSA) at 30 °Cin the presence
of water. The data represent mean values + s.d. (n = 3 technical replicates).

h, Transmittance spectra of glass, normal PET, superhydrophilic PET and
superhydrophobic PET + PSA at the initial state. n =1.i, Transmittance spectra of
glass, normal PET, superhydrophilic PET and superhydrophobic PET + PSA after

6 hofheatingat 30 °Cin the presence of water.n =1. CA, contact angle.

and on-body stimulation experiments confirm capabilities in time-
sequenced iontophoretic stimulation with zero cross-contamination
(Fig.3g-1).

Efficient optical access through the use of superhydrophobic
and superhydrophilic materials

Water vapour that emerges from the nitrocellulose membrane tends
tocondense on the surface of the viewing window, thereby frustrating
the ability to visualize the LFA (Fig. 4a and Extended Data Fig. 6a,b).
Superhydrophilic surfaces prevent droplet condensation by causing
water to spread evenly as a thin film*-*2. However, the exclusive use
of superhydrophilic materials leads to wicking of sweat away from
the nitrocellulose membrane (Fig. 4b). The placement of superhydro-
phobic material on top of the sample and conjugation pad resolves
this issue by blocking sweat flow through the top window (Fig. 4c and
Extended DataFig. 6¢-j). Figure 4d demonstrates the effectiveness of
asuperhydrophilicwindow (contact angle: 9.4°) in preventing droplet
formation compared with superhydrophobic (contact angle: 151°) or
untreated PET (contact angle: 82°) windows. The configuration with
both superhydrophobic and superhydrophilic materials enables reli-
able operation and clear visualization after 15 min (Fig. 4e) and 4 h
(Fig. 4f) of continuous heating on a hotplate at 30°. Characterization
of the contact angle (Extended Data Fig. 7a,b), atomic force micros-
copy (Extended Data Fig. 7c,d), optical properties (Fig. 4g-i) and
reactive-ion etching process parameters (Extended Data Fig. 7e) of
these materials provided additional insights, as discussed in the Sup-
plementary Information section ‘Characterization of superhydrophilic
and superhydrophobic surfaces’.

BSA-gated paper-based microfluidic delay valves and
electrochromic timer for chronosampling

A simple, passive alternative to the electronic module described
previously comprises a series of LFAs coupled with BSA-gated paper-
based microfluidic delay valves and electrochromic timers. The result
provides an effective solution for chronosampling and defining the
timing of sweat collection without the need for electronics (Fig. 5a).
Narrow paper-based microfluidic cellulose channels with drop-cast
layers of BSA (4%; 1.5 pl) serve as delay valves that direct sweat ina
time-sequenced manner into separate LFAs. These valves temporarily
restrict the flow until the BSA dissolves, allowing sequential delivery
of sweatinto each LFA and electrochromic timer pair. Electrochromic
timersaligned with the valves and LFAs operate through a colour change
associated with the reduction of a layer of polyaniline. Specifically,
the timers comprise atwo-electrode galvanic cell wherein polyaniline
serves as the cathode, nickel metal serves as the anode and human
sweatactsastheelectrolyte (Fig. 5b). Digitalimage capture and analysis
quantifies the changein colour, thereby allowing determination—with
an appropriate calibration factor—of the time for sweat collection
into each LFA.

Benchtop validation and on-body demonstrations of this system
show expected sequential filling of each LFA and colorimetric readout
of'the timing (Fig. 5c and Extended Data Fig. 8a). The delay time of the
valvesincreases with higher BSA loading (Fig. 5d), caused by the higher
contactangles at higher BSA concentrations (Fig. 5e). The volume and
concentration of the drop-cast BSA solution determine the extent
of BSA loading. Increasing valve widths lead to shorter delay times
(Fig. 5f). The computational framework for simulating these valves
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data as a function of BSA concentration. e, Contact angles o

fthe BSA-loaded

paper-based microfluidic surface as a function of the BSA concentration.
f, Delay time of the valves at a concentration of 3% for experimental (squares) and
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progression of water saturation (blue) and BSA dissolution (
charge/discharge traces (at a constant current of 5 pA) fora

red). h, Galvanostatic
polyaniline cathode

(black trace, bottom plot) and a nickel anode (green trace, bottom plot) with

at different temperatures.k, Effect of the exogenous reductive interferent
ascorbicacid on the colour (b) of the polyaniline cathodes. I, Comparison of

the timer discharge using real and artificial sweat as the electrolyte. m, Timer
discharge traces obtained on the body both with (blue symbols) and without

(red symbols) pre-treatment chemistry to remove reducing species from

the sweat volume (benchtop data are provided for reference; black trace).

n, Practical demonstration of the fully integrated device for two participants with
iontophoretically stimulated sweat followed by exercise. n = 1. The data represent
mean values + s.d. (n = 3 technical replicates for d-g and i-m).
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integrates multiphase flow dynamics in porous media with a tempo-
ral evolution model of dissolution. The valve operates via negative
capillary pressure, halting fluid propagation until the dissolution of
the BSA induces a dynamic reduction in the contact angle (). As the
BSA concentration asymptotically approaches O, the contact angle 8
approaches superhydrophilic conditions (8 > 0°)**?**, thereby enabling
controlled fluid permeation through the valve architecture (Fig. 5g and
Extended Data Fig. 9a-c).

Figure Sh displaysinformation on the timer, specifically the galva-
nostatic charge/discharge traces obtained from both the polyaniline
cathode (black trace) and nickel anode (purple trace) under an applied
current of 5 pA. The datainclude colorimetric b values (blue diamonds)
and representative digital photographs of the polyaniline electrode.
Duringreduction, polyaniline displays a sloping voltage plateauat 0.3 V
associated with its conversion from the fully oxidized pernigraniline
phase to the partially oxidized emeraldine phase. During this transi-
tion, the colour of the electrode changes substantially, transitioning
fromdarkblue to pale green (appearingredin photographs duetothe
roughened Au electrode). Further reduction results in complete con-
version of the emeraldine phase to the leucoemeraldine phase, but this
conversion does not provide asubstantial colour change. Importantly,
the voltage that develops at the aniline electrode remains above that of
the Nianode, such that spontaneous discharge of the electrochemical
cellis maintained irrespective of the charge state. Similarly, this colori-
metric and redox transition is completely reversible uponapplication
of an oxidizing current, as evidenced by the charging trace provided
inthe bottom half of Fig. 5h.

Anopticalimage of an optimized device on the wrist appearsin
Extended Data Fig. 9d, showing the paper-based microfluidic sweat
collectioninlet, BSA valves, electrochromic timers and LFA channels.
In the assembled device, spontaneous reduction initiates with the
introduction of sweat into the timing well, resulting in polyaniline
reduction and a concomittant colour change analogous to that dis-
playedinFig.5h. The total timing durationin this assembly depends
onaloadresistor placed between the anode and cathode that limits
therate of battery discharge. Appropriate selection of the resistance
canaddress the requirements of a specific application (Fig. 5i). Tim-
ing durations from several minutes to over one hour are achievable
in this way. As timing in this structure relies on the standard reduc-
tion potentials of the anode and cathode, it is comparatively less
sensitive to temperature effects than analogous diffusion-based
colorimetric timing systems®, as displayed in Fig. 5j. Reducing spe-
cies, such as ascorbic acid, can act as interferents by reacting with
the oxidized polyaniline membrane on the timer and discolouring
the timer prematurely. A trace of polyaniline on the cellulose paper-
based microfluidic channel before the timer reacts with any reducing
species before sweat reaches the timer, thereby protecting the timer
from discolouration by sweat. Subjecting polyaniline cathodes to
progressively increasing concentrations of ascorbic acid reveals
the effect of exogenous reducing species on electrochromic timing
elements (Fig. 5k). Increasing concentrations of reductants induce
spontaneous reduction of the electrode (and a concomitant light-
ening of the apparent coloration) with full reduction obtained at
100 mM. Following solution pre-reduction, the effect of reductive
interferents can be effectively eliminated. Detailed schematics, char-
acterizations and simulations of the timer appear in Extended Data
Fig.10a-k and Supplementary Information sections ‘Principles and
dynamics of electrochromic timer’ and ‘Concentration polarization
inelectrochromic timing elements’.

The resulting structure exhibits excellent performance for real
sweat in benchtop (Fig. 51) and on-body (Fig. 5m) studies. Figure 5n
shows a practical demonstration of the device with two participants.
lontophoresisinitially induced sweat, which filled the first set of LFAs
and electrochromic timers. After 15 min, participants began exer-
cising while collecting sweat for the next sets of LFAs and timers.

Both participants showed aslightincrease in sweat cortisol concentra-
tion following exercise (Fig. 5n).

Cortisol physiology and clinical studies

Trials with human participants demonstrate the ability of the device
to monitor daily cycles, the effects of CPTs and the results of disrup-
tions to the sleep cycle caused by jet lag (Fig. 6a,b). The data in Fig.
6c show variations in cortisol concentrations aligned with circadian
rhythms for three participants over three days. Cortisol concentrations
measured in saliva using an ELISA kit provide data for comparison. Col-
lection of sweat and saliva samples occurred at 17:00 on the first day;
9:30,12:00, 14:30 and 17:00 on the second day; and 9:30 on the third
day. Onthe first day, the integrated device was used with a2 h 30 min
stimulation interval set by the electronic timer. For both saliva and
sweat, cortisol concentrations started low for all participants on the
firstday (17:00), peaked on the second day morning (09:30), gradually
decreased throughout the second day (17:00) and then increased again
onthethird day morning (09:30). Data from circadian rhythm studies
reveal a strong correlation between sweat cortisol and saliva cortisol
(r=0.73) for six participants (Fig. 6d).

Investigations of the effect of CPTs on sweat and serum cortisol
concentrations further highlight the versatility of the integrated
systeminstudying psychoneurological responses to acute stress (Fig.
6e).Sweat iontophoretic stimulation and serum collection occurred
on aninterval set to 20 min. Both serum and sweat cortisol concen-
trations increase upon exposure to ice water, reaching peak values at
20 min after exposure, followed by recovery at 40 min after exposure
(Fig. 6f-h).

Monitoring disruptions to circadian rhythms is particularly rel-
evant for night shift workers, intercontinental airline travellers and
patients with insomnia or excessive sleepiness’. Jet lag, in particular,
affects travellers crossing multiple time zomes, sometimes leading to
daytime fatigue, insomnia, nausea and early waking®. Measurements
of sweat and serum cortisol concentrations offer valuable insights into
the impact of jet lag on circadian rhythms before travel, immediately
after travel and during recovery (Fig. 6i-k). In one case, a participant
travelled from Chicago to Seoul and returned 26 days later, withanine-
hour time difference (Fig. 6i). Cortisol concentrations in sweat and
serum were measured 3 days before departure, 1 day after returning
to Chicago and 12 days after recovery. Before travel, the participant
displayed a typical circadian rhythm, with higher cortisol concentra-
tionsinthe morning (09:30) and lower concentrations in the afternoon
(16:00). After returning to Chicago, the rhythm reversed, with lower
cortisol concentrations in the morning (09:30) and higher concentra-
tionsinthe afternoon (16:00). After 12 days of recovery, the circadian
rhythmnormalized, with higher cortisol concentrationsinthe morning
(09:30) and lower concentrations in the afternoon (16:00).

In another case, a participant travelled from Chicago to Taiwan
and returned 20 days later, with a 13-h time difference (Fig. 6j). Corti-
sol concentrations for sweat and serum were measured 1 day before
departure, 1 day after returning to Chicago and 12 days after recovery.
Similar to the first participant, this participant exhibited a typical cir-
cadian rhythm before travel, a reversed circadian rhythm after travel
andanormalized rhythm after recovery. Additionally, we investigated
sweat cortisol concentrations for a participant who travelled from
Chicago to Seoul and returned after 17 days, with a 9-h time differ-
ence (Fig. 6k). Sweat cortisol concentrations were measured 5 days
before departure, 1 day after returning to Chicago and 12 days after
recovery. Similar circadian rhythm profiles to those of the other two
participants were observed for this participant. A positive correlation
between sweat and serum cortisol concentrations was observed, with
aPearson’s correlation coefficient of r= 0.73 for 10 participants (Fig.
6l), demonstrating the relevance of sweat cortisol in monitoring the
effects of acute stressors, as well as disruptions to circadian rhythms
by jetlag, effectively.
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(male; 34 years) visiting Seoul from Chicago for 17 days. 1, Correlation between
sweat and serum cortisol collected from the forearms of n =10 participants

(8 males and 2 females; 33 datapoints). The data represent mean values + s.d.

Conclusion

The wearable platform introduced here provides arapid, convenient
method for time-sequential sampling of eccrine sweat and measure-
ments of cortisol concentrations, with accuracy and selectivity across a
range of physiologically relevant values. The simplicity of the electron-
ics design and the use of quantitative colorimetric readout schemes
enabled by AuNF-based LFAs represent two essential features of the
technology that are advantagesrelative to other approaches. The tim-
ing circuitand chronosampling valves both enable time-resolved sam-
pling and quantification of sweat cortisol. The circuit autonomously
controls sweat stimulation and sampling over extended periods, while
the valves supportshort-termelectronics-free operation and compat-
ibility with natural modes of sweating. These two strategies provide
complementary options for dynamic sweat monitoring across different

use-case scenarios. Comprehensive benchtop studies with artificial
sweat provide a basis for understanding all aspects of the operation
and for optimizing essential design choices. Human participant stud-
ies, including quantitative correlations with concentrations of cortisol
measured insalivaand serum using conventional techniques, confirm
the practical value of the technology. Additional physiological studies
demonstrate the ability to track circadian rhythms, monitor responses
to acute stresses (such as those induced by CPTs) and determine the
effects of jet lag on circadian misalignment. Potential applications
span these scenarios and others, where elevated cortisol levels—par-
ticularly those that are persistent—can guide therapeuticintervention.
Combination of this platform with biophysical monitoring systems?*?’
will extend the capabilities to develop a more comprehensive under-
standing of stress. Extensions of this type of wearable LFA technology

Nature Sensors | Volume 1| January 2026 | 85-98

93


http://www.nature.com/NatSens

Article

https://doi.org/10.1038/s44460-025-00005-z

may allow for evaluation of the concentrations of other biochemical
species of interest in sweat.

Methods

Study design

Human trials were approved by the Institutional Review Board
(STU00220834) at Northwestern University and all participants gave
complete, informed, signed consent before participating in the on-
body experiments. All 13 human participants (nine males and four
females) fromthelaboratory participated randomly in the experiments
based on no specific selection criteria and no compensation. A priori
power analysis for a two-tailed bivariate normal model correlation
indicated that the minimum sample size to yield a statistical power of
atleast 0.8 withanalpha of 0.05and a Pearson’s correlation coefficient
of r=0.7was 13 for Fig. 6d (26 datapoints) and Fig. 61 (33 datapoints).

Materials and reagents

Unless otherwise noted, all materials were used without further puri-
fication. The materials for the absorbent pad (Advanced Microdevices
Pvt Type GFB-R4), sample pad (Whatman GF/F glass microfibre filters)
and conjugation pad (ClaremontBio glass fibre) were purchased from
AdvancedMicrodevices. Theimmunopore RP nitrocellulose membrane
was purchased from Cytiva. Anti-cortisol antibody (10R-145a) and
BSA-CTS (80-IC10) were purchased from Fitzgerald. Gold(llI) chloride
trihydrate (299.9%), gold wire (diameter: 0.5 mm; 99.99%), ammonium
chloride (EMSURE), sulfuricacid (95.0-98.0%), aniline (>99.5%), nickel
wire (diameter: 0.5 mm; 99.99%), pilocarpine nitrate, BSA, Agarose Low
EEO, sodium phosphate monobasic, sodium phosphate dibasic, amin-
obenzenethiol, gold chloride hydrate, polyvinylpyrrolidone, cortisol
standard (C-106), Tween 20 and mouse anti-IgG antibody (M8642-1IMG)
were purchased from Sigma-Aldrich. Bright nickel plating solution
was obtained from Gold Plating Services. Polyimide films (75 pum thick-
ness; 15.24 cm width) were purchased from Argon. Gold (99.999%)
and chromium (99.95%) pellets for electron beam evaporation were
obtained from Kurt J. Lesker Company. Double-sided copper-clad
laminate (M916137; Pyralux) was purchased from DuPont. Capillary
blood collection tubes (15 pl), Protein LoBind Eppendorf tubes (1.5
and 2.0 ml), Whatman cellulose (602H; 1575), alcohol prep pads and
Pierce 20x borate buffer were purchased from Thermo Fisher Scientific.
Carbacholwas purchased from AA Blocks. Artificial sweat (1700-0020)
was purchased from Pickering Laboratories. The battery holders,
switches, low-dropout regulators (1.8 and 3.3 V), rectifiers, voltage
regulators, 10 nF capacitors (0201), 1 uF capacitors (0201 and 0402),
DC/DCconverters, 0.22 pF capacitors (0402),10 pHinductors (50 mA;
0603), red LEDs (0603), resistors (0201), programmable IC SOT-23-
THIN timers, 551-type timer/oscillators (single), hex inverters, JK flip-
flop 2 elements and 2-to-4 decoder/demultiplexer were purchased
from DigiKey. LiPO batteries were purchased from LiPol Battery. 23 G
safety lancets and superhydrophilic PET sheets (BO827YLFV9; Frienda)
were purchased from Amazon. Sheets of PET (LX000464) were pur-
chased from Flexconn. Skin adhesives (PC2723U) were purchased from
Scapa Healthcare. Pressure-sensitive adhesives (90106NB) were pur-
chased from Adhesives Research. Clear moisture-resistant polyester
films (50 pm (8567K22) and 200 um (8567K62)) were purchased from
McMaster-Carr. Saliva collectors (Salivette Cortisol, with synthetic
swab, cap) were purchased from Sarstedt Salivette. Human Cortisol
ELISA kits (LS-F10024) for sweat and serum were purchased from
LifeSpan Biosciences. Cortisol ELISA kits (ab154996; saliva samples)
were purchased from Abcam.

AuNF synthesis

A25-mMsolution of 4-aminobenzene-1-thiol (ABT) in 95% ethanol was
added to 10 mM HAuCl, solution containing 0.001% polyvinylpyrro-
lidone (PVP) in ultrapure water with a reaction ratio of 1to 9 (vol/vol).
Theresulting mixture turned purple-brownwithin 10 s. Afterward, the

mixtures were triple-washed with centrifugations at 6,000 r.p.m. for
30 min to remove excess reagents.

Conjugation of AuNF with anti-cortisol antibody

The preparation of AuNF-Ab conjugates began by sonicating a solu-
tion of AuNFs for 10 s to disperse the material evenly within the tube.
Conjugation of antibody to the AuNFs involved mixing 200 pl AuNF
stock solution with 800 pl borate buffer (5 mM) and adding 0.5 pl
anti-cortisol antibody (1.16 mg ml™). The borate buffer (5 mM) was
obtained by diluting 20 mM borate buffer in deionized water (2% vol
borate buffer in deionized water). After ensuring complete mixing,
the mixture was incubated for 2 h in a rotating mixer at 10 r.p.m. and
thenleft undisturbed for an additional 5 minat room temperature. At
this stage, AuNFs were bound with antibodies. Adding 100 pl 1% BSA
solution to the mixture, followed by subsequentincubationforlhina
rotating mixer at 10 r.p.m., blocked the unbound surfaces of the AuNFs.
After 5 min, the mixture was centrifuged at 2,500g for 35 min at 4 °C
and washed with 1 ml borate buffer (5 mM) three times for complete
removal of the supernatant. After final centrifugation, the precipitate
wasreconstitutedin100 pl 0.5% BSA in phosphate-buffered saline and
stored at 4 °C until later use.

Preparation of sample and conjugate pads

The sample pad (2.0 mm x 1.5 mm) was treated with 2 pl buffer (pH 6.5)
and dried under vacuum at room temperature for 10 min. The sam-
ple pad was designed with a staircase structure to facilitate efficient
sweat absorption and transport towards the assay components. To
reduce non-specific biofouling of AuUNF-Ab conjugates, the conjugate
pad was initially impregnated with 5 pl of a working buffer contain-
ing 30% (wt/vol) BSA and Tween 20 and dried under vacuum at room
temperature for 20 min. Subsequently, AUNF-Ab conjugates were
deposited onto the conjugate pad at a volume of 2 pl and dried under
the same conditions.

Preparation of nitrocellulose membranes with test and

control lines

Nitrocellulose membranes were miniaturized for wearable implemen-
tation and cut into 2-mm-wide pieces using an infrared laser (LPKF)
before assembly into standard LFA cassettes. The test line reagent
comprised BSA-CTS atal/8 dilution factor with a final concentration
0f 0.125 mg ml™, whereas the control line contained an anti-mouse IgG
antibody at1 mg ml™. Both reagents were dispensed onto the nitrocel-
lulose membrane using predefined parameters, including adispensing
volume 0f 0.325 pl mm™and aspeed of 100 mm s, followed by drying
in a vacuum chamber at room temperature for 20 min. The test and
control lines were spaced 5 mm apart for optimal visualization and
signal differentiation.

Fabrication of superhydrophobic surfaces

The preparation of superhydrophobic surfaces involved fluorine
plasma treatment using a deep reactive-ion etching system (SPTS).
The PET substrate with athinlayer of adhesive (FLX000464; Flexcon)
was placed in the chamber with the adhesive side facing up, followed
by evacuation to a pressure of 1.6 Pa. CF, gas was then introduced ata
flow rate of 50 sccm, with a glow discharge at 200 W for 2 min.

Fabrication of paper-based microfluidic BSA valves
Dropcasting 1.5 pl BSA (4% wt/vol; Sigma-Aldrich) solution onto the
designated valve locationin the cellulose paper completed the prepara-
tion of BSA-gated paper-based microfluidic delay valves, followed by
drying under vacuum for 20 min.

Assembly of the wearable LFA system
A 3D printer (Formlabs) created the guide jig for the alignment and
assembly of different layers. The sequential assembly of the chamber
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wall, PET substrate, skin adhesive and cellulose collection paper was
conducted by aligning the edges of each layer using the 3D-printed
guidejig. LFA components and covers were assembled by flipping the
device and assembling from the opposite side. Assembly of system was
complete after all four LFA modules were placed in the chamber and
covered by the superhydrophilic viewing window.

Fabrication of the electrochromic timer

Electrochromic timers were assembled as a two-terminal electro-
chemical cell wherein polyaniline served as the cathode, nickel metal
served as the anode and human sweat acted as an electrolyte. Timing
elements were fabricated from thin-film Au electrodes supported
on flexible polyimide, as follows. Substrate materials were initially
prepared by electron beam deposition of metal films (100 nm Au, with
a20-nm Cr adhesion layer; AJA International) onto a large polyimide
substrate (75 pm thickness; surface area: ~700 cm?) whose surface was
cleaned (sequential rinsing with water and isopropanol) and treated
with ultraviolet ozone (UVOCS; 5 min). Deposition was performed at
a constant rate of 1 A s™. Following deposition, electrode traces were
patterned using an ultraviolet laser micromachining system (Proto-
Laser U4; LPKF Laser and Electronics SE) at an output power of 0.5 W
inasingle pass. This laser power was sufficient to affect the complete
ablation of the Au/Cr layer along the cutting path, with little damage
tothe underlying polyimide substrate. Arrays of eight timers were pat-
terned in this fashionin preparation for subsequent chemical treatment
by electrodeposition.

Cathode preparation

Thehighreflectivity of gold electrodes before roughening places tight
constraints on both the lighting and the view angle as ambient reflec-
tions strongly impact the apparent electrode colour. Roughening the
surfaces of these electrodes reduces the reflectivity and facilitates
the angle-independent extraction of colour information, thereby
improving the timing reliability. Cathode preparation began with the
application of a roughened Au layer to reduce the reflectivity of the
bare Au substrate. Rough gold was deposited by cyclic voltammetry
between -1.8 and 0.2V (scan rate: 0.5V s™) from a 10-mM solution of
HAuCl, in 2.5 M NH,Cl supporting electrolyte using an Au slug as the
counter and reference electrode®. A total of 25 cycles were applied,
pausingevery five cycles to mix the electrolyte solution with a pipette
toreducetheaccumulation of bubbles on the electrode surface. Follow-
ing roughening, polyaniline was deposited from a monomer solution
of 0.5Manilinein1 M H,SO, by the application of a constant reducing
current of 50 pA for 400 s using an Au slug as the counter electrode
and a double-junction Ag/AgCl electrode (BASI) as the reference. To
ensure even and dark coloration of polyaniline cathodes, electrodes
were subsequently oxidized by polarizationto 0.4 Vin pH 4.5 solution
before cutout and assembly (again using Ag/AgCl as the reference and
Au as the counter electrode).

Anode preparation and timer cutout

Nickel anodes were applied by electrodeposition from a commer-
cially available bright nickel plating bath (Gold Plating Services) by
the application of a reducing potential of —1.5 V versus Ni metal for
120 s using an Ni wire as the counter and reference electrode. Follow-
ing electrodeposition, individual timers were cut from the substrate
(ProtoLaser U4; 0.5 W; 30 repetitions) for integration with the paper-
based microfluidic assembly.

Electric field simulation for iontophoresis

Numerical simulations were conducted using COMSOL Multiphysics,
employing tetrahedral mesh elements for all of the computational
analyses. A refined mesh with feature sizes smaller than one-fifth of
the electrode width was adopted to ensure accuracy. The numeri-
cal solver dynamically controlled time step sizes through backward

differentiation formulas, with the initial step sizes kept small to pre-
vent singularity. The total current was applied to the anode during
stimulation, whereas zero external electric potential was applied to the
cathode. The material properties and key parameters used in the simu-
lationincluded: a skin conductivity 0 0f 0.026 S m™ (ref. 29); a diffusion
coefficient D of14.8 x 10" cm? s ' (ref. 30); areaction rate constant k of
0.05 min™; aninitial carbachol concentration ¢, in the carbagel of 1%; a
sweat rate coefficient {/c, of 40 pl min™; a critical concentration c,/c,
of 0.004; and a saturation concentration c,,,,/c, of 0.025.

FEA simulation for the BSA-gated paper-based microfluidic
delay valve

Numerical simulations were conducted using COMSOL Multiphys-
ics®*, Darcy’s law interface® was utilized to describe the fluid flow
through thefilter paper (porous medium). The mass source was utilized
to describe the inlet flow rate g,, of 1 pl minin the centre circle. A no-
flow conditionwas applied across the vertical boundaries, whereas the
upper and lower boundaries were set to a zero-pressure outlet condi-
tion. The phase transport in the porous medium interface was
employed to define the water saturation phenomenon within the filter
paper. The Brooks and Corey model** was utilized to model the capillary
pressure in two-phase flow, denoting the entry capillary pressure as
Do = 225634 \where y is the surface tension, . is the pore radius and 8
is the contact angle measured from the experiments, dependent on
the BSA concentration @. To define the BSA dissolution mechanism,
the Nernst-Brunner equation® was utilized, combined with the water
fractionsinthefilter paper: AA—t =—x@s,where @isthe BSA concentration
andxis the dissolution rate constant. The domain ordinary differential
equation and differential algebraic equation interface was employed
todescribe the BSA dissolution. The material properties and key param-
etersused inthe simulationincluded: a paper porosity € of 0.8; a pore
radius r,of 1 um; asurface tensiony of72.3 mN m™; a pore size distribu-
tionindexA,of2; a permeability K of 1 x 10™ m™ and adissolution rate
constant y of 1.8% min.

Preparation of the encapsulation layer

A 3D printer (Formlabs) created the sandwich mould for baking the
encapsulation layer. Smooth-On Dragon Skin 10 (with a mixing ratio
of 1:1) was poured into the mould, degassed in a vacuum chamber for
30 minand bakedina75°Coven for3 h.

Diurnal cycle for sweat cortisol
Five healthy volunteers (four male and one female) with regular sleep-
wake rhythms participated inadiurnal cortisol cycle test. Participants
did not have any food intake for at least 60 min before each testing. The
on-bodytesting comprised sweat stimulation sessions throughout three
consecutive days, including: (1) day one at 17:00; (2) day two at 09:30,
12:00, 14:30 and 17:00; and (3) day three at 09:00. After sanitizing the
forearm, sweat was stimulated and collected simultaneously by the
iontophoresis-integrated LFA device, where 130-pA current was applied
for 5 min. Saliva samples were collected immediately after the sweat
stimulation and stored under —18 °C until further use. Theimage of the
LFA assay was taken with an RGB Calibrate ColorChecker 24 (Classic
Nano; 24 mm x 40 mm) 1 h after the complete wetting of the LFA strip.
For saliva collection, volunteers thoroughly rinsed their mouth
with water 15 min before collection. A saliva salivate (Sarstedt) was
used to collect saliva samples by keeping a cotton swab inside the
mouth for 5 min. The participants avoided chewing the swab during
collection. After 5 min, the cotton swab was returned to the salivate and
centrifuged for2 minat2,000g. The supernatant of saliva sample was
then collected using a pipette and stored in a-18 °C freezer until use.

CPTs
Five healthy volunteers (four males and one female) participated in the
standard CPT in the afternoon (between15:00 and 17:00) to avoid the
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effect of diurnal cortisol cycle variation. The CPT began with aninitial
sweat collection session through iontophoresis on the forearm of the
dominant hand for 5 min. At the same time, capillary blood samples
were collected from the non-dominant hand for the purpose of baseline
blood cortisol concentration determination. After baseline sample
collection, the iontophoresis device with a timer was turned on for
sequential sweat stimulation. Immediately after the initial iontopho-
resis, volunteersimmersed the dominant hand wearing the integrated
LFA device into the icy cold water (2 °C) and removed the hand after
3 min. Fresh capillary blood was collected from the non-dominant hand
atdifferent stages synchronized with iontophoresis time (immediately
after the CPT, at 20 min and at 40 min).

For capillary blood collection, analcohol pad was used to sanitize
the volunteer’s fingers before collection. A 21-G lancet punctured the
sanitized finger to draw blood droplets. A15-pl capillary blood collec-
tiontube (PTS Diagnostics) was used to collect blood droplets of over
50 plinto a1.5-ml Eppendorf microtube. The collected blood sample
was set aside for 40 min at room temperature for blood clotting. After
40 minresting, the blood sample was centrifuged at 2,000g for 15 min
to separate the serum from the clotted white and red blood cells. The
supernatant serumwas collected in a1.5-ml Eppendorf microtube and
storedina-18 °C freezer until use.

Jetlagexperiment

Four healthy volunteers (three males and one female) participated in
thejetlag study. Allvolunteers experienced a time difference of more
than eight hours, as well as varying degrees of jet lag symptomes. All
volunteers took flights from the USA to East Asia and stayed there for
more than two weeks. Before travel, baseline sweat cortisol concen-
trations were quantified using the LFA device in the morning (09:30)
and afternoon (16:00). For two participants, capillary blood samples
were collected at the same time, with sweat cortisol measurement.
Likewise, sweat and blood samples were collected and measured in
the morning (09:30) and afternoon (16:00) on the first and twelfth
day after thereturn flight.

Statistics and reproducibility

Allstatistical analyses were performed using OriginPro (version 2022;
OriginLab) and G*Power 3.1.9. For Fig. 2¢, four different batches were
imaged to characterize the shape and size of the AuNFs. The selected
image is representative of approximately 85 nanoparticles.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All of the data generated and analysed during the study are included
inthe paper, extended data figures and Supplementary Information.
Source data are provided with this paper.

Code availability
All code related to the LFA data presented in this paper is available at
https://github.com/cho8690/LFA.git.
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Extended Data Fig. 10 | Principles, characterizations and simulations for the
electrochromic timer. a, Schematic illustration of an electrochromic timer.

b, Optical and scanning electron micrographs of timer electrodes at different
points during assembly. ¢, Cyclic voltammetry of smooth and electrochemically
roughened Au electrodes, illustrating an increase in the electroactive surface
areafollowing roughening. d, Electroactive surface areas computed from the
resultsin c. e, Electrochemical impedance spectroscopy of bare and roughened
Auelectrodes. f, Electrochemical impedance spectroscopy of an electrochromic
timer using artificial sweat (pH =4.5) as the electrolyte. The inset depicts a
modified Randle’s circuit used to fit the experimental data. g, Cell discharge

curves obtained at different discharge currents. h, Correlation between
discharge current and discharge time. i, Correlation between discharge current
and cell capacity.j, Colorimetric response obtained from timers bothin the
presence and absence of chemical pretreatments to remove reductants from
incoming sweat. Data are presented as mean values + SD. (n = 3) k, Simulated

pH gradients within electrochromic timing elements with different load resistors
computed at the end of cell discharge. Irrespective of load resistor, only modest
changes to solution pH are obtained, although discharging at elevated current
densities (low resistance) results in exaggerated concentration gradients.
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