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Gene set analysis (GSA) has been used for analysis of microarray data to aid the interpretation and to
increase statistical power. With the advent of next-generation sequencing, the use of GSA is even more
relevant, as studies are often conducted on a small number of samples. We propose the use of soft truncation
thresholding and the Gamma Method (GM) to determine significant gene set (GS), where a generalized
linear model is used to assess per-gene significance. The approach was compared to other methods using an
extensive simulation study and RNA-seq data from smallpox vaccine study. The GM was found to
outperform other proposed methods. Application of the GM to the smallpox vaccine study found the GSs to
be moderately associated with response, including focal adhesion (p = 0.04) and extracellular matrix
receptor interaction (p = 0.05). The application of GSA to RNA-seq data will provide new insights into the
genomic basis of complex traits.

ith the advent of next-generation sequencing, many researchers are using RNA-Seq to profile mRNA

expression of the entire transcriptome. The use of RNA-Seq allows researchers to determine: all

transcripts (novel and known); different isoforms; allelic expression; splicing patterns; fusion genes;
and differences in expression levels of each transcript'. However, due to the relatively high cost of RNA-Seq, many
experiments are done with relatively few samples, thus limiting the statistical power to detect differences in gene
expression under different conditions. In addition to the limited sample size, the number of features measured on
each subject has increased from approximately one million to 10-15 million features (including SNV, indels, and
structural variants) for each subject (depending on the depth of coverage and region targeted for sequencing™?)
which increases the multiple testing penalty.

As many complex disorders may be controlled by the interplay of multiple genes within the same molecular
pathway or gene set (GS), gene set analysis (GSA) has been widely used for mRNA data from microarrays to
aggregate the association signals for a set of genes within a GS. This incorporates biological knowledge, reduces
the multiple-testing burden, and may increase the association signal, thus increasing the power to detect mean-
ingful associations. With the advent of next-generation sequencing technologies, the use of GSA is even more
relevant due to limited statistical power resulting from generally small sample sizes. Over the past ten years, many
approaches have been proposed for GSA of mRNA data from microarrays*®. In addition, many of the gene set
methods proposed for mRNA data have been extended for use in genome-wide genetic association studies using
single nucleotide polymorphism (SNP) microarrays® .

Previous research of self-contained GSA methods (i.e., approaches that test the null hypothesis H,: genes within
the GS of interest are not associated with the phenotype versus the alternative hypothesis H,: genes within the GS
are associated with the phenotype) found the global random effect model'* and Fisher’s method to be two powerful
approaches for analysis of microarray based mRNA expression data'. In addition, we found the soft truncation
thresholding Gamma method (GM)", a generalization of Fisher’s method for combining p-values, to be more
powerful than Fisher’s method and the global random effects model for GSA of SNP data'®. Thus, we hypothe-
sized that the GM would be a powerful approach for GSA of mRNA gene expression data measured by microarray
or next generation sequencing technologies to determine sets of genes associated with an endpoint (e.g. differ-
ential expressed genes between two experimental conditions). In this manuscript, we present the findings from an
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extensive simulation study which compares performance of the GM
to that of other commonly used self-contained GSA methods on gene
expression data. We also applied the GM for GSA to a smallpox
vaccine immunogenetic study involving RNA-Seq data to determine
GSs with differentially expressed genes between high and low
responders to the vaccine.

Results

Simulation studies. The results from the simulation studies found
the GM to outperform other proposed approaches for self-contained
GSA. All methods had adequate control of the type I error rate.
Table 1 presents the summary of the power for the various
methods across all simulation scenarios and Figure 1 presents a
power comparison between simulation scenarios for the subset of
the most powerful GSA methods. The full set of results for
all methods assessed can be found in Supplemental Table 1. The
GM with soft truncation threshold (STT) < 1/e consistently
outperformed the other commonly used GSA approaches for gene
expression data. The only method that had similar performance was
the full model with fixed effects; however, this approach could only
be applied to approximately two-thirds of the simulation scenarios
where the number of genes in the GS was less than the number of
samples.

Comparison of the GM with various STT values, ranging from
0.20 to 0.01, is presented in Figure 2. As expected, there was more
similarity between the GM with similar STT values (e.g., GM with
STT = 0.20 versus GM with STT = 0.15) and less similarity between
results when the STT values were further apart (e.g., GM with STT =
0.20 versus GM with STT = 0.01). The optimal value of the STT for a
given GSA will depend on the underlying, unknown, disease model,
but in general STT values that are not too small, e.g. between 0.01 and
1/e (=0.36), tend to give the best power. This coincides with the
rationale for GSA, in that we wish to detect GSs with multiple genes
with moderate or small effects for which we have limited power to
detect individually.

Finally, based on results from the null simulations designed from
the smallpox vaccine study, no relationship was found between type I
error rate and: number of genes in a GS; average length of genes in a
GS; sum of all lengths of genes in a GS; and the number of "large"
genes in a GS (Supplemental Figure 1). We also observed that the
GM’s type I error rate was found to be controlled for all values of STT
(and thus the corresponding shape parameter o in the Gamma
transformation).

Smallpox vaccine study. The GM with various STT values, including
FM, was applied to the smallpox vaccine study to determine if any
GSs in KEGG' were associated with response to the smallpox
vaccine. Table 2 presents GSs with p < 0.05 for any of the GM
analyses with various STT values. To adjust for multiple testing,
FDR q-values were computed'”. For the analysis of response to
smallpox vaccine, there was little difference between the GM
results with STT < 0.20, while the largest p-values resulted from
FM (ie, GM with STT = 1/e). The top associated GSs (with
pathway coverage = 70%) included: Biotin metabolism (p
0.0005, ¢ = 0.02); non-homologous end-joining (p = 0.02, q =
0.17); focal adhesion (p = 0.04, ¢ = 0.17); D-Glutamine and D-
glutamate metabolism (p = 0.04, ¢ = 0.17); and ECM-receptor
interaction (p = 0.05, q = 0.17).

Within the top GSs, Table 3 presents the genes with gene-level
association p < 0.15. Of particular relevance to vaccine response are
the genes within the focal adhesion GS (p < 0.15 for 30 genes out of
the 148 genes measured in pathway of 201 genes), as many of these
genes are involved in cytokine-cytokine receptor interactions.
Another interesting GS is the EMC-receptor interaction GS (p <
0.15 for 9 genes out of the 59 genes measured in the pathway of 84
genes). Genes within this GS interact with a number of immunolo-
gically important cell surface molecules including: integrins which
mediate cytokine adhesion, extravasation, and homing; CD44 (a cell
surface glycoprotein involved in lymphocyte homing, migration, and
activation); and CD36 (a scavenger receptor expressed on multiple

Table 1 | Summary of power across all 1440 non-null simulation scenarios for sample sizes of N = 500 and N = 100, with 1000 simulated
data sets per scenario. The GM with various STT values is compared to ten previously proposed self-contained GSA methods. Table entries
are sorted by descending mean power for the scenarios with sample size of 500
N = 500 N =100
Method STT Min. Tst Qu. Median Mean Min. 1st Qu. Median Mean
Gamma Method (GM) 0.1 0.264 1 1 0.991 0.072 0.994 1 0.923
GM 0.05 0.331 1 1 0.993 0.073 0.990 1 0.921
GM 0.15 0.210 1 1 0.990 0.073 0.995 1 0.920
Global model with fixed 0.223 1 1 0.985 0.068 0.998 1 0.906
effects (GMFE)*
GM 0.2 0.171 1 1 0.988 0.068 0.992 0.916
GM 0.01 0.449 1 1 0.993 0.067 0.96 1 0.903
Global model using random 0.111 1 1 0.983 0.065 0.945 1 0.896
effects (GMRE)
Fisher's Method/Gamma 1/e 0.096 1 1 0.980 0.059 0.943 1 0.889
Method (FM)
PCA using principal components 0.101 1 1 0.974 0.06 0.856 1 0.855
that explain 80% of variation
(PCA80)
Stouffer’s Method (SM) 0.062 1 1 0.933 0.051 0.674 1 0.816
FTS. GS Modified Tail Strength 0.057 1 1 0.924 0.045 0.574 1 0.787
(MTS)
PCA using top five principal 0.07 0.958 1 0.920 0.056 0.631 0.993 0.788
components (PCA1.5)
Tail Strength (TS) 0.078 0.981 1 0.867 0.059 0.621 1 0.797
Kolmogorov-Smirnov (KS) 0.051 0.960 1 0.819 0.047 0.394 0.999 0.738
PCA using top principal 0.056 0.591 1 0.808 0.051 0.314 0.991 0.704
component (PCAT)
*198 and 396 scenarios were unable to be fit do to size of gene set for N = 500 and N = 100, respectively.
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Figure 1 | Power comparison between the Gamma Method with STT = 0.15 and 0.05 (GM.15, GM.05), Fisher’s Method (FM), Global model with
random effects (GMRE), Principal components analysis with 80% of components that explained the variability included in the model (PCA.80),

Kolmogorov-Smirnov test (KS).

cell types including: monocytes, macrophage, dendritic cells). SPP1
(osteopontin), the top-most associated gene in the ECM-receptor
interaction GS, up-regulates the production of IFNy and IL-12
thereby driving Thl-type immune responses. The MAPK9 gene
identified in the focal adhesion GS is a member of the MAP kinase
family and is required for differentiation of T helper cells into Thl
cells. As depicted in the dendrogram in Figure 3, these two GSs
contain many genes in common, including genes COLIA2 (p =
0.0278), THBS4 (p = 0.0311) and ITGB3 (p = 0.0168).

Discussion
In this paper, we present the use of the GM for GSA to determine GSs
in which the transcript levels for genes within the GS are associated
with a phenotype. The method is able to be used in both the context
of microarray data and next-generation sequence data, along with
the ability to be used for both binary and quantitative traits. An
extensive simulation study, involving over 1,400 simulation scen-
arios, was completed to compare the GM with various levels of
STT to other GSA methods, including Fisher’s method and the
Global model with random effects of Goeman et al. (2004), that were
found to be powerful approaches for self-contained GSA in past
research”. From our simulation study we found the GM with STT
< 0.20 to uniformly outperform the other methods, while maintain-
ing type I error rate control.

In addition to the simulation study, we applied the GM for GSA to
a RNA-Seq smallpox study to identify GSs with differences in mRNA
expression between high and low responders to the smallpox vaccine.

The top biologically relevant GSs included focal adhesion (p = 0.04)
and ECM-receptor interaction (p = 0.05). Of note, these GSs mediate
communication and interactions between the leukocytes involved in
immune responses. It is possible that the differential expression seen
in the high and low responders reflects a differential ability of cir-
culatory peripheral blood mononuclear cells to recognize viral infec-
tion and coordinate the resulting immune responses. These results
indicate that further examination of these gene pathways in mixed
cell populations and in specific cell subsets (i.e. B cells, monocytes,
CD4 T cells) is warranted, as such studies may further our under-
standing of poxvirus immunity.

In conclusion, this research shows the GM with STT < 0.20 to be a
powerful method for GSA. In practice, we suggest the selection of an
STT value between 0.10 and 0.20, realizing the optimal STT depends
on each individual study. Care should be taken in the interpretation
of results from GSA completed based on multiple STT values (i.e.,
multiple testing and “data snooping”). In addition, the application of
the method to a smallpox vaccine study has provided new insights
into the genomic basis of individual variations in immune response
to the vaccine.

Methods

Vaccine study. In brief, 21 high and 23 low responders to smallpox vaccine based on
extremes of antibody titer were selected from a cohort of 1076 successful smallpox
vaccine recipients. Aliquots of these 44 subjects’ peripheral blood mononuclear cells
(PBMCs) were either left unstimulated or were stimulated with vaccinia virus for a
total of 88 specimens. Specimens were allocated to flow cell and lane for sequencing
ensuring that response status was balanced over these potential experimental effects,
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Figure 2 | Power comparison between the Gamma Method with various STT values.STT values ranged from 0.20 to 0.01.

ensuring the paired specimens from a given subject were in adjacent lanes on the same
flow cell. For purposes of the GSA methods comparison here, we focus on the 44
stimulated specimens to test the hypothesis of differential gene expression between
high and low responders. Full details of the study cohort are provided in Kennedy et
al. (2009), Haralambieva et al.(2011), Ovsyannikova et al. (2011)'**', and of the
PBMC stimulation and RNA-Seq methods in Kennedy et al (2013)*.

Simulation study. Power and type I error simulations. The simulation of gene
expression data and a quantitative phenotype was completed in a similar manner as
outlined in Fridley et al"*. Briefly, let # represent the number of subjects and m
represent the number of genes in a GS. The expression data for each subject (i =
1,...,n) was simulated from a multivariate normal distribution with mean equal to
zero and covariance matrix X. The matrix X was set to either the case where there is no
correlation between the genes in a GS or a structure in which all genes in the GS are
correlated the same amount. While these precise correlation structures are not

biologically realistic, they do facilitate the comparison of the algorithms, and the
relative performance of the algorithms should extend to correlation structures
observed in real data. The quantitative phenotype (Y;) for each subject was generated
conditional on the gene expression data, Y; ~ N(u;, %) with y; = p"X;, where X;
represents the vector of gene expression values for genes within the GS for subject i
and B is the vector of gene level effects. The simulation scenarios varied in terms of the
number and size of the effects (), sample size, GS size, correlation between genes
within a GS, and variation in the phenotype. For each of the simulation scenarios,
1000 data sets were generated to assess either the power (1440 scenarios) or the type I
error rate (72 scenarios). For determining power and type I error rate, the significance
level was set to 0.05.

Null simulations based on smallpox vaccine study. In addition to the power and type I
error rate estimates based on the simulated data, we also investigated the possible
impact of gene size and gene set size on the type I error rate in GSA of RNA-Seq data.

‘ Table 2 | Top GSs associated with response to Smallpox vaccine for various STT values. Results with p < 0.05 from GSA using the GM with

any of the STT values are presented

GSA P-values for various STT Value

N Genes N Genes Coverage
Gene Set 0.05 0.10 0.15 0.20 1/e inKEGG  in Analysis  of Pathway
Biotin metabolism 0.0005* 0.0005 0.0005 0.0005  0.002 2 2 100%
Pentose and glucuronate interconversions 0.018 0.021 0.025 0.031 0.119 28 8 29%
Non-homologous end-joining 0.022 0.026 0.031 0.039 0.121 14 12 86%
Focal adhesion 0.039 0.053 0.065 0.076 0.103 201 148 74%
D-Glutamine and D-glutamate metabolism 0.041 0.041 0.042 0.041 0.050 4 4 100%
ECM-receptor interaction 0.046 0.064 0.080 0.093 0.129 84 59 70%
Lysine biosynthesis 0.058 0.055 0.048 0.042 0.044 4 3 75%

*FDR g-value was 0.02.
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Table 3 | Gene-level results (p < 0.15) for GSs with p < 0.05

Gene Set Gene P-value Gene Set Gene P-value
Biotin metabolism HLCS 0.0005 Focal adhesion COL1A2 0.0278
Pentose & glucuronate interconversions UGP2 0.1160 THBS4 0.0311
DCXR 0.0115 AKT3 0.0385
Non-homologous end-joining PRKDC 0.0164 SOS2 0.0430
RAD50 0.0613 BRAF 0.0468
MRET1A 0.0802 PDGFA 0.0493
D-Glutamine & D-glutamate metabolism GLS2 0.0176 JUN 0.0496
GLS 0.1061 FLNB 0.0521
ECM:-receptor inferaction SPP1 0.0117 ZYX 0.0626
ITGB3 0.0168 PIK3CA 0.0776
LAMBI1 0.0208 PPP1R12A 0.0788
COL1A2 0.0278 MAPK8 0.0801
THBS4 0.0311 ERBB2 0.0814
COL5AT 0.0947 ROCK2 0.0899
COL11A2 0.1277 COL5A1 0.0947
COL5A2 0.1288 GRLF1 0.0996
HSPG2 0.1452 PIK3R1 0.1028
focal adhesion PRKCA 0.0090 CCND3 0.1089
SPP1 0.0117 SHC1 0.1170
MAPK9 0.0131 ARHGAP5 0.1252
IGFIR 0.0132 COL11A2 0.1277
ITGB3 0.0168 COL5A2 0.1288
LAMB1 0.0208 BIRC3 0.1440
VASP 0.0219

Using the stimulated group of samples in the smallpox study, we permuted the high
(H) and low (L) responder status 100 times to generate 100 “null” data sets with no
association (beyond that of chance) between response and level of gene expression. In
doing so, we keep the structure of the RNA-Seq data intact to preserve the correlation
structure between the gene expression levels. For each null data set, we then com-

pleted GSA with the GM for various soft truncation threshold (STT) values for the
200 KEGG GSs. In completing the gene level association analyses, the same gene-

specific dispersion estimate was used for all 100 data sets. We then compared the type

I error rates between the various sizes of gene sets (number of genes), average gene
length in the GS, sum of all the gene lengths within a GS, and number of genes in a
gene set with gene size larger than the 75% of all gene lengths.

Gene set analysis method for RNA-Seq data. Gene-level assessment. Prior to the
completion of the self-contained GSA with the GM, the gene-level association p-
values must be determined. In contrast to microarray based mRNA data in which
relative mRNA expression is measured for pre-defined probe sets via fluorescence,
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Figure 3 | Dendrogram of top 25 GS associated with response to smallpox vaccine to visualize relationship and overlap between gene sets.GSs
containing a large set of genes in common would be clustered close together while GSs with no genes in common would not be clustered together.
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RNA-Seq experiments measure the gene expression levels from the total number of
reads that fall into the exons of a gene. To assess the significance of each gene with the
outcome (i.e., differential gene expression analysis), we used a generalized linear
model that assumed a Negative Binomial distribution®. The Negative Binomial
distribution is appropriate for count data where within-subject technical variation
follows a Poisson distribution with subject-specific mean A, and the between-subject
biological variation of A follows a Gamma distribution. In addition, we assumed that
the nature of over-dispersion differs across genes. Thus, an Empirical Bayes-like
moderated test implemented in the R package edgeR was used, in which gene specific
dispersion parameters were estimated with “shrinkage” of estimates to the overall
mean using a quantile-adjusted conditional maximum likelihood method, scaled by
the 75%-tile****. Genes were removed from analysis if they had low coverage (i.e.,
average count =5).

Gene set assessment. The GSA is then completed with the application of the GM to the
gene-level association p-values produced from the negative binomial testing frame-
work. The GM is based on summing p-values transformed using an inverse Gamma
(w, 1) transformation. For a particular shape parameter w, the test statistic is defined

N
asT= ) G;’}(l —pi), where G is the inverse of a Gamma (o, 1) cumulative
i=1

distribution function'. The varying of  results in different transformations applied
to the p-values, resulting in more emphasis being given to p-values below a particular
threshold, referred to as the STT. The STT is controlled by the shape parameter w,
where v = G(;'%(l —STT)". When o is 1, the GM becomes equivalent to Fisher’s
method (FM) with a STT value of 1/e.

Non-independence of gene-specific p-values due to correlation of expression of
genes in a gene set can lead to departures of p-values from the expected Uniform(0,1)
distribution under the null hypothesis. Due to this lack of independence between the
gene-level p-values, we utilized Monto Carlo estimation of the test-statistic T’s null
distribution to compute empirical or “non-parametric” based p-values for each
GS"™¥. In doing so, the phenotypic variable is randomly permuted, preserving the
correlation structure in the RNA-seq gene expression count data. Using the permuted
data, differential expression analysis for each gene was then computed using edgeR,
followed by the determination of the GSA T test statistic. This process was repeated
many times (e.g. 1,000 times), producing an empirical distribution of the test statistic
T. The proportion of permutations in which the test statistic was smaller than the
observed data test statistic was the empirical estimate of the GS p-value. To visualize
the overlap of the genes within the various GSs, hierarchical clustering was completed
using a distance measure between GSs defined as 1 — T, where T represents the average
proportion of genes shared between the GSs.

For the smallpox vaccine study and the simulation studies, GSA was completed
using the GM with six different STTs ranging from 0.01 to 1.0 (i.e., Fisher’s method).
We also compared the results from the GM to methods assessed in Fridley et al
(2010)": global model with fixed effects (GMFE); global model with random effects
(GMRE)"; tail strength (TS)**; Kolmogorov-Smirnov (KS); and a principal com-
ponent approach with either the top k principal components needed to explain 80%
(PCA80) of the variation in the gene expression values within the gene set, the top
principal component (PCA1) or top five principal components (PCA1.5).
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