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Synchronization occurs widely in natural and technological world, but it has not been widely used to extend
the life time of the desirable behavior of the coupled systems. Here we consider the globally coupled system
consisting of n units and show that the initial synchronous state extends the lifetime of desired behavior of
the coupled system in the case when the excitation of one or few units is suddenly (breakdown of energy
supply) or gradually (as the effect of aging and fatigue) switched off. We give evidence that for the properly
chosen coupling the energy transfer from the excited units allows unexcited units to operate in the desired
manner. As proof of concept, we examine the system of coupled externally excited rotating pendula. After
the partial excitation switch off the initial complete synchronization of all pendula is replaced by phase
synchronization with a constant phase shift between the clusters of excited and unexcited pendula. Our
results show that the described extension of the system’s life time occurs for the wide range of coupling
parameters and is robust to the external perturbations.

he concept of synchronized behavior in coupled systems is pervasive in both nature' and physical systems’.

Examples of synchronization include rhythmic blinking of fireflies?, rhythmic hands clapping after a musical

performance?, crowd synchrony on the oscillating bridge®®, and the spin-orbit resonance of the planet
Mercury’. In physical systems, synchronization has been studied for more than three centuries, starting with
Huygens’ experiment with two coupled pendulum clocks®® and leading to modern-day experiments of coupled
nano-oscillators'®"* and chaos based communication'*'*. These examples illustrate fundamental elements of
synchronization: the individual units display periodic motion, they display adjustable phase and frequency, and
they couple'.

Consider the system of # globally coupled excited identical units as shown in Figure 1(a,b) (example for n = 6).
For the appropriately chosen coupling such a system can reach the state of complete synchronization>"* (all the
units behave identically). However, in such a system it is possible that some units suddenly (breakdown of energy
supply) or gradually (as the effect of aging and fatigue) loss their excitation. Here, we show that in such case the
synchronization can extend the life time of the desirable behavior of the coupled system. As proof of concept, we
examine the mechanical implementation of globally coupled system, i.., the system of n rotating pendula
mounted to the beam which can move in horizontal direction as shown in Figure 1(a,b) (example for 6 pendula)
and assume that the rotation of all pendula is a desired behavior of coupled system. Initially all pendula are excited
and reach complete synchronization as shown in Figure 1(a), them the excitation of some pendula is swiched off.
We show that all pendula can still rotate but the unexcited pendula (two green pendula in Figure 1(b)) are phase
shifted with the excited pendula (three red pendula in Figure 1(b)).

The selection of this example has been motivated by the studies of Blekhman'® who considers the case of two
identical (or nearly identical) unbalanced rotors mounted on the oscillating base. It has been shown the oscilla-
tions of the base can maintain the rotation of one rotor when its excitation is switched off (effect of the oscillatory
maintenance of rotation which is also used in the well-known game ‘hoola-hoop’). Contrary to these studies we
are not assuming weak coupling between pendula and not using small parameter method which for example do
not allow identification of co-existing synchronous states'”'®. Our considerations of two synchronized pendula
with significantly different masses allow generalization of our results to the case on n pendula.

In our studies we consider the system shown in Figure 2(a). It consists of a rigid beam of mass my on which n
rotating pendula are mounted. In Figure 3(a,b) the beam is connected to a stationary base by the spring (or
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Figure 1| System of 6 globally coupled units and its mechanical
implementation as a system of 6 externally forced pendula mounted to
the beam which can move horizontally, (a) all units (pendula) are
externally excited (red color) and synchronized, (b) two units (green color

are not excited - the cluster of four excited pendula is phase synchronized
with the cluster of two unexcited pendula.

springs) with stiffness coefficient k, and a damper (or dampers) with
a damping coefficient c,. Due to the existence of the forces of inertia,
which act on each pendulum pivot, the beam can move in horizontal
directions (this motion is described by coordinate x). The masses of
the pendula are indicated as my; [; are the lengths of the pendula. The
rotation of the i-th pendula is described by ¢;. The rotations of the
pendula are damped by linear dampers with damping coefficient c,;.
Each pendulum is driven by the drive torque inversely proportional
to its velocity: po; — ;p1;. If any other external forces do not act on the
pendulum, then under the action of such a torque it rotates with
constant angular velocity ¢;. As the system is in a gravitational field
(g = 9.81[m/s’] — acceleration of gravity), the weight of the pen-
dulum causes the unevenness of its rotation: the pendulum slows
down, when the center of mass rises up and accelerates when the
center of mass falls down. The effect of gravity is important in the
case of slow rotations of the pendula'®*. To explain how the syn-
chronization can be achieved in the systems of Figure 2(a) first con-
sider the case of identical pendula and nonmovable beam. In this case
all pendula have the same period of rotations (the pendula have the
same masses and lengths). The rotations of the pendula are initiated
by non-zero initial conditions and the pendula’s evolutions tend to
the limit cycles. The pendula are not coupled and the phase angles
between their displacements have fixed values, depending on initial
conditions. Any perturbation of the pendula results in the changes of
these angles. When the beam can move, its oscillations excited by the
forces with which pendula act on it, cause the changes of the phase
shifts between the pendula’s displacements and differentiate the
angular velocity of their rotations. When after the transient time,
all pendula have the same angular velocity of rotation and there
are constant phase shifts between the pendula’s displacements, we
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Figure 2 | (a) n externally forced pendula mounted to the beam which can move horizontally; (b,c) The regions of the parameters k, — my, space of
complete C (green), antiphase A (navy blue), quasiperiodic Q (violet) synchronizations for the system of two pendula with different masses

rotating in the same direction; N indicated the region in which pendulum 2 stops, I = 0.25[m], ¢, = 0.03[Nsm], py;

= po> = 5.0[Nm],

P11 = p12 = 0.2[Nms], (b) m; = 1.9[kg] and m, = 0.1[kg], after the initial time equal to 50N, excitation of pendulum 2 is switched off, (c) m; = 0.9[kg]
and m, = 1.1[kg], after the initial time equal to 50N, excitation of pendulum 2 is switched off.
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Figure 3 | (a,b,e,f,g,h) Time series showing the transient behavior of pendula’s angular velocities ¢;, the difference of pendula’s displacement g; —

(i # j) and beam’s displacement x (magnified 100 times) in the case when the excitations of a number of pendula are switched off: py; = 5.0, p;; = 0.2,
Po2 = 5.0, p12 = 0.2, p2; = p2> = 0, k, = 7000.0[N/m], my, = 12.0[kg], (a) n = 2, m; = 1.9[kg], m, = 0.1[kg], the excitation of pendulum 2 switched off
at N = 20, (b) m; = 0.85[kg], m, = 1.15[kg]) the excitation of pendulum 2 switched off at 50N. (c,d) Bifurcation diagrams of pendula’s angular
velocities ¢,,(, and the difference of pendula’s displacement g, — @, versus parameter &, excitation of pendulum 2 gradually decays to zero, i.e.,

(1 = &)(po2 — @, P12)>» n =2, m; = 1.9[kg], m, = 0.1[kg] (c) k, = 7000.0[N/m], my, = 12.0[kg], (d) k, = 3700.0[N/m], m, = 18.0[kg], (e-h) n = 20,
identical pendula with mass m;_,, = 0.1, (e,f) at N = 50, excitation of p pendula is simultaneously switched off, (¢) p = 11, (f) p = 12, (g,h) n =
identical pendula, m;_,y = 0.1[kg], at the moments indicated by the arrows the excitations of one pendulum is switched off, (g) excitation of 11 pendula
is switched off at N = 50, 60,...150, excitation of the 12-th pendulum is switched off at N = 300, (h) excitation of 12 pendula are switched off for
N = 50,60,...150,160, excitation of the 13-th pendulum is switched off for N = 220.
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Figure 4 | Experimental observation, (a) synchronous rotation of 3 excited pendula, (b) phase synchronization between two excited pendula (left and

middle) and unexcited pendulum (right).

can say that the pendula achieve synchronization. The state of syn-
chronization is achieved when the motion of the system is periodic
and there are constant phase shifts between the pendula displace-
ments'®'. The values of the phase shifts characterize the synchron-
ous configuration and are independent of the initial conditions.

First let us consider the case of two pendula with different masses
(m;#m;). Figure 2(b,c) shows the dependence of the synchronous
configuration on the parameters k, and my,. After the initial time N =
50 during which the pendula reach complete (phase shift between
pendula is equal to zero), antiphase (phase shift between pendula is
equal to ) or quasiperiodic (pendula perform identical quasiperio-
dic rotation) synchronizations the excitation of pendulum 2 is
switched off. Figure 2(b) illustrates the case of m; = 1.9[kg] and
m, = 0.1[kg]. In regions indicated in green, navy blue and violet
colors the pendula are respectively in the state of complete C, anti-
phase A, quasiperiodic Q synchronizations when the excitation of
pendulum 2 is switched off. In region N pendulum 2 stops. The
synchronization and the rotation of both pendula are preserved
but the complete synchronization is replaced by phase synchroniza-
tion (phase shift not equal to zero or m). For the wide range of k, and
my, parameters the desired behavior of the coupled system is pre-
served. Contrary to this for m; = 0.9[kg] and m, = 1.1[kg] the set
parameters for which both pendula rotate is very small as shown in
Figure 2(c). Notice that in this case the excitation of the heavier
pendulum has been switched off.

Figure 3(a,b) shows time series of the transient behavior of pen-
dula’s angular velocities ¢,,(,, the difference of pendula’s displace-
ment ¢, — ¢; and beam’s displacement x (magnified 100 times) in
the case when the excitation of pendulum 2 is switched off (m; =
1.9[kg], m, = 0.1[k] and m, = 12.0[kg], ky = 7000[N/m]). Both
pendula are in the state of complete synchronization when at time
20N the excitation of pendulum 2 is switched off. After the transient
time the system reaches the state of phase synchronization with
nonzero phase shift between pendula. Both pendula rotate with the
same angular velocity (smaller that before the switch off). Figure 3(b)
shows the case for m; = 0.85[kg] and m, = 1.15[kg]. At time 20N the
excitation of pendulum 2 is switched off. Synchronization and rota-
tion of both pendula are preserved but the phase shift ¢, — ¢,
increases to the value larger than m/2. Further increase of the

difference of pendula’s masses (down to m; = 0.83[kg] and m, =
1.17[kg]) leads to the loss of synchronization and pendulum 2 stops.

Now let us consider the case when the excitation of pendulum 2
gradually decays to zero. The excitation decay can be described as
(1 = &)(po2 — @,p12), where & (¢ € [0,1]) is a control parameter. The
bifurcation diagrams shown in Figure 3(c,d) present the values of the
pendula’s angular velocities ¢, ,¢, (at the moments when pendulum 1
moves through the lower equilibrium position) and the difference of
pendula’s displacement ¢, — ¢, versus parameter £. In the case of
Figure 3(c) (ky = 7000.0[N/m], m, = 12.0[kg], both pendula are
initially in the state of complete synchronization) synchronization is
preserved up to the value ¢ = 0.85. The phase shift between pendula
is visible for larger values of & (complete synchronization is replaced
by phase synchronization). In the whole interval of ¢ pendulum 1
transfers enough energy to pendulum 2 to ensure the pendula’s syn-
chronization. The difference of the pendula’s displacements ¢, — ¢,
is so small that it is not visible (in the scale of Figure 3(c)). The case of
ky, = 3700[N/m] and m,, = 18[kg] is illustrated in Figure 3(d). In the
interval 0.0 < & < 0.49 one observes periodic rotations of the syn-
chronized pendula (with the phase shift larger than zero). For larger
values of ¢ (0.49 < & < 0.70) pendula perform periodic synchronous
rotations with higher periods or quasiperiodic synchronous rota-
tions. Further increase of ¢ < 0.70 stops pendulum 2.

In the state of complete synchronization the forces with which
pendula act on the beam are algebraically added™'*"** so this example
can be generalized to the case of any number of pendula of total mass
equal to m; + m,. Consider the case of n pendula in the state of
complete synchronization. The effect of the switch off of the excita-
tion of p pendula is the same as the effect of switch off of the excita-
tion of pendulum with mass (m; + my)p/n in the system of two
pendula (the second one with mass (m; + my)(n — p)/n). As an
example consider the system of 20 identical pendula rotating in the
same direction with masses (m;_, = 0.1[kg], m, = 12.0[kg], ky =
7000[N/m] shown in Figure 3(e-f). All pendula are in the state of
complete synchronization when at time 50N the excitation of eleven
(Figure 3(e)) and twelve (Figure 3(f)) pendula is switched off. Up to
the case of 11 pendula the initial complete synchronization is
replaced by the phase synchronization and all pendula rotate. The
phase shift between the clusters of excited and unexcited pendula
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increases with the increase of the number of unexcited pendula.
When the excitation of the 12 pendula is switched off the synchron-
ization is lost and all unexcited pendula stop to rotate as shown in
Figure 3(f).

In the considered examples a number of pendula losses excitation
simultaneously, if the pendula’s excitation is switched off one by one
scenario can be different. In the case described in Figure 3(g,h) (1, 50
= 0.1[kg], m;, = 12.0[kg], kx = 7000[N/m]) the excitation is switched
off at the moments indicated by arrows. In Figure 3(g) eleven pen-
dula are losing excitations in the time intervals of 10N starting at 50N.
The increase of the phase shift between the clusters of excited and
unexcited pendula is visible. For N = 300 the excitation of the 12-th
pendulum is switched off leading to the loss of synchronization (12
pendula stop to rotate). Different scenario is described in Figure 3(h).
The 12-th pendulum loses excitation just after 11-th at N = 160.
Shortly after it 11 pendula (which lost excitation before) stop to
rotate but the 12-th pendulum still rotates and is phase synchronized
with the cluster of 8 excited pendula (the phase shift is close to m/4).
Later at N = 220 the 13-th pendulum loses excitation and two clus-
ters of 7 excited and 2 unexcited are created.

Our examples show that it is possible to estimate the critical num-
ber of pendula which excitation can be switched off and the rotation
of all of them is preserved. In the case when the pendula’s excitations
are switched off non-simultaneously it is possible to observe the case
in which unexcited pendula form two groups one of them stops to
rotate and the second one rotates and is phase synchronized with the
excited pendula.

The described phenomenon has been observed experimentally -
Figure 4(a,b). A simple rig consisting of three direct-current electrical
motors mounted on the wooden plate which can oscillate horizont-
ally (details on the experimental rig are provided in the
Supplementary Information) has been considered. The pendula are
mounted at the end of the motor’s rods. The control system has been
used to vary the angular velocity of pendula’s rotation. Figure 4(a)
shows the case when all pendula are excited and reach the state of
complete synchronization. Next the excitation of the left pendulum
has been switched off. Both pendula still rotate (slower than in the
previous case) and there is a phase shift between excited pendula and
unexcited pendulum as - Figure 4(b).

Thus we have shown that the initial synchronization extends the
life-time of the desired behavior of the coupled system. It is possible
to estimate the critical number of units which excitation can be
switched off and the behavior of the system is not changed qualita-
tively. The appearance of the phase shift between some units, i.e.,
transition from the complete to the phase synchronization can be
considered as the indicator of the breakdown of excitation in some
units. We expect the physical mechanisms that we uncovered here
will have important and far-reaching ramifications in the design and
use of engineering devices base on coupled systems and in under-
standing of coupled systems’ behavior in nature.

Methods are available in the Supplementary Information.
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