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Topological centrality is a significant measure for characterising the relative importance of a node in a
complex network. For directed networks that model dynamic processes, however, it is of more practical
importance to quantify a vertex’s ability to dominate (control or observe) the state of other vertices. In this
paper, based on the determination of controllable and observable subspaces under the global minimum-cost
condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention
capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality
is, to a great extent, encoded by the underlying network’s degree distribution and that most network
positions through which one can intervene in a system are vertices with high domination centrality rather
than network hubs. To analyse the interaction and functional dependence between vertices when they are
used to dominate a network, we define the domination similarity and detect significant functional modules
in glossary and metabolic networks through clustering analysis. The experimental results provide strong
evidence that our indices are effective and practical in accurately depicting the structure of directed
networks.

S
tudies of the structure and function of complex networks can yield a variety of useful quantities or measures
that capture particular features of social, biological and information-technology systems1. In this context,
the concept of centrality addresses the most important or central vertices in a network. Despite the diversity

of systems, several basic, universal measures of centrality have been developed to rank the vertices of a network
according to their topological importance, including the vertex degree, betweenness2,3, closeness4, eigenvector5,
subgraph6, PageRank7 and various types of random walks8,9. Although these measures have significantly enriched
our understanding of many networks, our ultimate goal is to locate the most significant vertices that have the
ability to dominate the networks.

Although the actual domination of complex networks has not yet been achieved at present, a necessary
stepping stone is to understand the controllability and observability of complex networks, which has become a
topic of active pursuit38–42. Based on control theory, Liu et al.10 have proposed an efficient methodology for
identifying the minimum driver vertex set (MDS), the time-dependent control of which can guide the entire
network to any desired final state11,12. The number of elements of the MDS, ND, is thus a key quantity of interest, as
it characterises the cost of bringing the system under full control. The proposed maximum matching link set M
can be used to assess and quantify structural controllability. On the other hand, a network is observable if its
internal state can be determined from the given output vertex set, where observability depends on both the
number and placement of the output vertices13. Liu et al.14 have adopted a graphical approach to determining the
set of output vertices that are not only necessary but also sufficient for the observability of a complex network.
Specifically, given a complex-networked dynamical system, the controllable subspace reflects the control cap-
ability of a vertex when we input a signal at that single vertex only, and the observable subspace reflects the
observation capability of a vertex when we measure the output from that single vertex only. Recently, Liu et al.15

and Wang et al.16 have further introduced the concept of control centrality to quantify the ability of a single vertex
to control a directed weighted network. However, the use of only the control capability to quantify the vertex
centrality is not comprehensive, as a vertex may directly intervene only in its downstream subspace from the
viewpoint of controllability. For example, in figure 1, by inputting a signal at the vertex i, the state variables in the
downstream system S2 can be controlled. This is the manner in which a vertex controls its downstream system,
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but this process embodies only one aspect of a vertex’s power in
dominating a system. If the state variables are looped back, the feed-
back signal can then control a system within itself. State feedback is
self-related and helps to maintain stability in a system despite
external changes. However, state feedback can be established only
on the condition that all state variables are measurable. If not, the
state variables must be estimated by utilising a state observer. In
figure 1, the state observer obtains the state variables of the upstream
system S1 by measuring the state of vertex i; the feedback loop can
then be constructed to control S1. In this manner, a vertex can control
its upstream system through feedback, and this process reflects
another aspect of a vertex’s power in dominating a system.
Therefore, the ability to examine the role that a vertex plays in both
controlling the downstream subspace and observing the upstream
subspace is an issue of significant practical interest in vertex
centrality.

In this paper, we focus on the domination centrality (DC) index to
assess the capabilities of vertices in directed networks. Intuitively,
domination centrality includes two aspects: control capability and
observation capability. Under the minimum-control-cost condition,
for a single vertex, the control capability captures the dimension of
the controllable subspace and quantifies the influence that can be
exerted on the downstream subnetwork through this vertex.
Similarly, the observation capability captures the dimension of the
observable subspace and quantifies the intervention that can be
exerted on the upstream subnetwork through this vertex. The pur-
pose of emphasising the global minimum cost is to determine the
responsibility and capability of each individual vertex cooperating
with others in dominating the entire system. Mathematically, dom-
ination centrality is the harmonic mean of these two capabilities and
represents the capability of a vertex synthetically. This approach is in
good agreement with our original notion regarding the ‘‘power’’ of a
vertex in dominating the entire network. Inspired by this general
consideration, we perform statistical studies of the index DC for
several types of real-world directed networks, including citation,
metabolic, glossary and synthetic networks, and analyse the under-
lying topological factors by which the distribution of DC is primarily
determined. To uncover DC and functions of vertices, a clustering
analysis is presented based on the intuitive assumption that vertices
that control and observe the same subspaces tend to serve identical
functions in a network. Our domination centrality index bridges the
concepts of directed network topology and function by providing
useful insights into the effect of the former on the latter from the
viewpoint of cybernetics.

Results
Domination centrality. Consider the linear time-invariant dynamic
system _X tð Þ~A:X tð ÞzB:u tð Þ, Y(t) 5 C?X(t) with the state vector
X[Rn, the adjacency matrix A[Rn|Rn, the input matrix
B[Rn|Rm, the control vector u[Rm, the output matrix
C[Rr|Rn and the output vector Y[Rr . The underlying directed
network of this system is denoted by G(A), with vertex set V and

link set L. The rank of the n 3 nm controllability matrix QC ; [B, AB,
A2B,…, An21B], which is denoted by rank(QC), provides the
dimension of the controllable subspace of the structural system (A,
B, C)17,18. (A, B, C) is completely controllable12 iff rank (CC) 5 n.
Analogously, the rank of the nr 3 n observability matrix QO ; [[C]T,
[CA]T, [CA2]T, …, [CAn21]T]T, which is denoted by rank(QO),
provides the dimension of the observable subspace of this system.
(A, B, C) is completely observable iff rank (QO) 5 n. Furthermore, the
duality theorem12 indicates that system (A, B, C) is completely
controllable if and only if system (AT, CT, BT) is completely
observable, and vice versa.

Liu’s Minimum Input Theorem10 states that the minimum num-
ber of driver vertices (ND) required to fully control a network G(A) is
one if there is a perfect matching in G(A). Otherwise, it is equal to the
number of unmatched vertices with respect to any maximum match-
ing, ND 5 max{n 2 jMj,1}. A maximum matching is a link set M(L
with maximum cardinality (size), and no two links in M may share a
common starting vertex or a common ending vertex. A vertex is
matched if it is an ending vertex of a link in M. jMj denotes the size
of the maximum matching.

For a given maximum matching link set M of a directed network
G(A), the minimum-control-cost configuration CF V,M|ALð Þ car-
ries the structural information of completely control16. CF is a span-
ning subnetwork of G(A), with vertex set V and link set M|AL(L.
M is a stem-cycle disjoint cover of G(A) and indicates the directed
routes along which the input control signals are transmitted. AL is
the set of additional links that begin in vertices of stems (except the
top vertices) and end in vertices of cycles. The n 3 n adjacent matrix
A(M) is used to indicate the wiring diagram of the spanning subnet-
work CF that corresponds to the maximum matching link set M of
G(A). As an example, in figure 2(a), the red links are elements of a
maximum matching. When vertices are connected by red links, the
network thus constructed is composed of vertex-disjoint stems (two
in shades of green) and cycles (four in shades of red); l3,7 and l4,9 are
the additional links that connect the stems and cycles.

The controllability of a complex network concentrates on the
interaction structure in which the pattern of influence may be
known, but not the specific extent of influence. In response to
unknown or uncertain edge weights, the controllability is used to
uncover the generic properties of systems, independent of parameter
values. The cactus is the most economical topology-structure pattern
to propagate control influence, since the cactus is a minimal structure
such that removing any link will render the structure uncontrollable.
A maximum matching shows the important links by which we can
construct the cactus structures efficiently in a complex system.
Therefore, the maximum matching not only reveals the minimum
driver set but also consists of a backbone of the key control routes,
which are a stem-cycle cover of the original network. The minimum-
control-cost configuration CF is just constructed for showing the
backbone of the propagation of control influence.

To quantify the control capability of a single vertex i under the
minimum-control-cost condition, B reduces to the vector b(i) with a
single non-zero entry, and A reduces to the matrix A(M). Then, the
control capability of a single vertex i can be defined as

rank Qi
C Mð Þ

� �
:rank b ið Þ,A Mð Þb ið Þ,

h

A Mð Þð Þ2b ið Þ,:::, A Mð Þð Þn{1b ið Þ
i
:

ð1Þ

Lin’s theorem11 has demonstrated that a linear control system (A, B)
is structurally controllable if and only if the associated digraph G(A)
can be spanned by cacti. A cactus is a subnetwork in the form of a
distinct stem or a stem connected to several buds. A stem is simply an
elementary path that originates from an input vertex. The initial (or
terminal) vertex of a stem is known as the root (or top) of the stem. A
bud is an elementary cycle with an additional link that ends, but does

Figure 1 | A schematic diagram illustrating the physical meaning of
domination capability. By inputting a signal at the vertex i, the state

variables in the downstream system S2 can be controlled. By observing the

state variables by measuring the state of vertex i, a feedback loop can be

constructed to control the upstream system S1.

www.nature.com/scientificreports
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not begin, in a vertex of the cycle, and the top vertex of the stem is not
the initial vertex of any additional link. The network can be spanned
by cacti using links of A(M). Thus, A(M) demonstrates the manner in
which vertices control the entire network under the minimum-con-
trol-cost condition. When the vertex i is taken as an input vertex, the
subspace that is accessible from vertex i in the spanning subnetwork
CF is cactus-structured and structurally controllable. A vertex j is
called accessible if there is at least one directed path that passes from
the input vertex i to vertex j. For example, in figure 2(b), the access-
ible subspace of vertex 1 is highlighted in bold purple and spanned by
the links of this CF in the form of a cactus.

We can therefore use the size of the accessible subspace of vertex i
as an accurate measure of rank Qi

C Mð Þ
� �

. Thus, equation (1) can be
represented by

rank Qi
C Mð Þ

� �
~ CSi Mð Þ
�� ��, ð2Þ

where

CSi Mð Þ~ jjf j is accessible from vertice i

in CF V , M|ALð Þð Þg
ð3Þ

is the set of vertices in the controllable subspace of vertex i.
By invoking the duality between controllability and observability

in a linear system, it can be seen that the driver vertices in network
G(A) for inputting signals are simply the output vertices for mea-
surement in the transposed network G(AT), which is obtained by
inverting the direction of all links. The network G(AT) is guaranteed
to be observable by monitoring those output vertices. Thus, all our
controllability conditions can be readily extended to the observability
case. The link set MT that is obtained by inverting the direction of all
links in M forms a maximum matching link set of G(AT). Thus, the
minimum-observation-cost configuration (OF) can be defined as

Figure 2 | A schematic diagram illustrating the domination centrality and the domination similarity of vertices in a directed network. (a): A maximum

matching M1 consisting of red links, forms a stem (in shades of green)-cycle (in shades of red) disjoint cover of the network. Additional links (AL) that

connect the stems and cycles are highlighted by bold dashed lines. (b): The controllable subspace of vertex 1 is highlighted by a purple dotted line, and its

observable subspace is highlighted by a green dotted line. The domination centrality of vertex 1 is the harmonic mean of the size of these two subspaces.

(c): Another maximum matching, M2, is given. (d): The controllable subspace of vertex 2 is highlighted by an orange dotted line, and its observable

subspace is highlighted by a blue dotted line. (e): The overlapping phenomenon of the controllable subspaces and the observable subspaces is depicted.

The Jaccard similarity coefficients of the controllable subspaces and the observable subspaces are calculated, and the arithmetic-geometric mean thereof is

used to determine the domination similarity.

www.nature.com/scientificreports
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OF V ,MT|AL’
� �

, where AL9 is the set of additional links in G(AT),
and AT(MT) can be used to indicate the wiring diagram of OF that
corresponds to MT in G(AT). As an example, in figure 2(a), l12,18 is the
only additional link in AL9.

To quantify the observation capability of a single vertex i under
the minimum-observation-cost condition, the output matrix BT

reduces to the vector (B(i))T with a single non-zero entry, and AT

reduces to the matrix AT(MT). Then, the observation capability can
be represented by the size of the observable subspace OSi(MT) of
vertex i in OF V,MT|AL’

� �
and can be accurately measured as

follows:

rank Qi
O MT
� �� �

:rank b ið Þ
� �T

, b ið Þ
� �T

AT MT
� �

,

�

b ið Þ
� �T

AT MT
� �� �2

,

:::, b ið Þ
� �T

AT MT
� �� �n{1

�T

,

ð4Þ

rank Qi
O MT
� �� �

~ OSi MT
� ��� ��, ð5Þ

where

OSi MT
� �

~ jjf j is accessible f rom vertice i

in OF V, MT|AL’
� �� �	

: ð6Þ

Considering the role that a vertex plays in both controlling the
downstream subspace and observing the upstream subspace, the
domination centrality (DC) index for the assessment of the cap-
abilities of vertices in directed networks can be synthetically
defined as the harmonic mean of a vertex’s control capability
and observation capability. The domination centrality of vertex i
is represented by

DCi~
2

1
rank Qi

C Mð Þð Þz
1

rank Qi
O MTð Þð Þ

: ð7Þ

The DC index is used to detect the most powerful vertex through
which we can not only control but also observe a network.
Therefore, as the harmonic mean of the control capability and
observation capability of the vertex, DC will be significant only
when the control capability and observation capability attain high
values simultaneously. In figure 2(b), for the given maximum
matching M1, the controllable subspace of vertex 1, CS1(M1), is
highlighted by a purple dotted line and has rank Q1

C M1ð Þ
� �

~10,
and the observable subspace, OS1 MT

1

� �
, is highlighted by a green

dotted line and has rank Q1
O MT

1

� �� �
~7; thus, the domination cent-

rality of vertex 1 is DC1 5 2/(1/10 1 1/7) < 8.2, and vertex 1 is
powerful in dominating the network. By contrast, vertex 14 has the
highest value of control capability but a very small observation
capability, meaning that DC14 5 2/(1/13 1 1/1) < 1.9. Thus,
vertex 1 has a stronger overall ability to dominate the network
than does vertex 14. In the worst case, when a vertex i can only
control and observe itself, DCi 5 1.

Furthermore, we note that there are multiple different maximum
matchings (N! matchings for a complete connected network). Each
one illustrates a unique manner in which vertices may control and
observe the entire network under a minimum-cost condition.
Therefore, in combination with other vertices, a vertex may play
several different roles in dominating a network. Thus, we may ask
this question: in all possible minimum-cost configurations, if two

vertices can perform similar control and observation functions, does
that fact indicate that they can also play similar functions in inter-
vening in the system? To answer this question, the domination sim-
ilarity (DS) is defined as

DS i,jð Þ~agm JC i,jð Þ,JO i,jð Þð Þ, ð8Þ

where agm(x, y) is the arithmetic-geometric mean29 of two positive
real numbers x and y. We calculate the Jaccard similarity coefficient
of the complete controllable subspaces of i and j to determine their
control-function similarity. Meanwhile, the Jaccard similarity coeffi-
cients of the complete observable subspaces of i and j are calculated to
determine their observation-function similarity. The complete con-
trollable subspace CSi~|K

k~1CSi Mkð Þ and the complete observable
subspace OSi~|K

k~1OSi MT
k

� �
, where K is the number of different

maximum matchings. JC(i, j) 5 Jaccard(CSi, CSj), JO(i, j) 5

Jaccard(OSi, OSj). agm(x, y) is a number between the geometric
and arithmetic means of x and y; thus, DS(i, j) will be significant only
when JC(i, j) and JO(i, j) attain high values simultaneously.
Furthermore, in the case that there is a large difference between
the two quantities, agm (x,y) yields a more reasonable result than
the arithmetic or harmonic mean.

Figure 2 vividly illustrates this concept. M1 and M2 are two differ-
ent maximum matchings of this toy network, with links highlighted
in red in figure 2(a) and figure 2(c), respectively. We concentrate on
the domination capabilities of vertices 1 and 2. In figure 2(b), for
vertex 1, the controllable subspace CS1(M1) in CF(A(M1)) is indi-
cated in purple, and the observable subspace OS1 MT

1

� �
in

OF AT MT
1

� �� �
is indicated in green. Similarly, the situation for vertex

2 is illustrated in figure 2(d), with orange and blue colours corres-
ponding to M2. A great deal of information regarding the functions of
these two vertices can be determined based on the overlapping of
their controllable and observable subspaces, as shown in figure 2(e).

Distribution of domination centrality. If a structural system can be
shown to be controllable for almost all weight combinations10 and the
dimension of the controllable subspace is stable, in the sense that for
almost any set of system parameters, the dimension is equal to some
maximal constant (the generic rank of the controllability matrix)19,
all these properties also hold for observability14. Thus, to some extent,
domination centrality and domination similarity can be calculated
without assessing the link weights. This property is one of the greatest
advantages of controllability-based topological measures: they are
robust to uncertainty in link weights, which frequently arises in
networks constructed from real data, such as biological networks.

In this section, we perform statistical studies of the domination
centrality on several types of real-world directed networks, including
citation, glossary, metabolic and synthetic scale-free networks, as
summarised in table 1. We have manually reconstructed the global
human enzyme-centric network based on data available in the
August 2009 release of the Kyoto Encyclopedia of Genes and
Genomes (KEGG)20. The citation and glossary networks are drawn
from Pajek datasets and can be downloaded at http://vlado.fmf.uni-
lj.si/pub/networks/data/. The synthetic scale-free networks were
constructed using the method of Fan et al.21. In table 1, we provide
the statistical values of the numbers of vertices (n), links (m) and
minimum driver vertices (ND) for the original networks.

We first consider the distribution of the domination centrality. For
a given network, any existing algorithm22,23 can be used to compute a
maximum matching M. For this M, the domination centrality reveals
the responsibility and capability of each individual vertex in control-
ling and observing the system with the global minimum cost. Figure 3
presents the distribution of the domination centrality for the syn-
thetic scale-free networks listed in table 1. In double-logarithmic
coordinates, the relation between the DC value and the probability
P(DC) is nearly linear, suggesting the coexistence of a few powerful

www.nature.com/scientificreports
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vertices and a large number of vertices that have little domination
over the system’s dynamics. However, we also must consider that
even the most powerful vertex can dominate only a small local sub-
space within the entire system, and thus, it is preferable to identify
multiple collaborating vertices for the domination of the entire sys-
tem. Therefore, cooperative relations among vertices are of signifi-
cant concern. This is why we insist on measuring all vertices’
capabilities in collaboratively dominating an entire network in a
certain minimum-control-cost configuration.

To statistically explain which topological features determine the
distribution of the domination centrality itself, we compare the DCs
of each vertex in the real networks and their randomised counter-
parts (denoted as rand-ER and rand-Degree). A full randomisation
procedure (rand-ER) turns the network into a fairly homogeneous,
directed Erdős-Rényi random network24. The domination centrality
values in rand-ER (DCER) and the corresponding number of driver
vertices (NER

D ) change dramatically, as shown in table 2. For almost all
networks, there is no correlation between DC and DCER, indicating
that full randomisation eliminates the topological characteristics that
influence domination centrality. We also apply a degree-preserving
randomisation (rand-Degree)25, which leaves the in-degree, kin, and
the out-degree, kout, of each vertex unchanged but randomly selects
which vertices link to each other. We find that this procedure does
not significantly alter the number of driver vertices (NDegree

D ) or the
domination centrality (DCDgeree). For example, in figure 4(b, c, d), we
present scatter plots of the DC values versus the in-degree, out-degree
and degree in the Homo sapiens networks; the results for the real
networks (green) are reasonably consistent with that for the rand-
Degree counterparts (blue), whereas the results for the rand-ER
counterparts (purple) are significantly different from the others.

In addition, we calculate the mean, the average of absolute devi-
ation26 and the relative entropy27 for the distribution of the domina-
tion centrality in each real network and their random counterparts in
table 3. Compared to the real networks, the rand-Degree counter-
parts yield similar mean values, similar averages of absolute deviation
and small relative entropies. The same indices of the rand-ER coun-
terparts differ significantly in comparison. From all these observa-
tions, we conclude that domination centrality is, to a great extent,
encoded by the degree distribution of the underlying network.

Another interesting phenomenon observed in this study is that the
hubs (vertices of high degree) do not tend to play more important
roles in dominating a system. We divide the vertices into three
groups of equal size according to their degree k (low, medium and
high) and calculate the average values of DC among the low-degree,
medium-degree and high-degree vertices. As table 2 demonstrates,
for real networks and two random network models (Erdős–Rényi24

and scale-free21–25), the average DC value of the set of low-degree
vertices is not significantly lower than that of the set of hubs in each
case. Figure 4(a) graphically represents the values for the Homo
sapiens networks. In figure 4(b, c, d), as expected, in all cases, a
low-degree vertex can also have a significant domination centrality.
For a vertex with a degree equal to 1, either the control capability or
the observation capability must also be equal to 1; thus, as the har-
monic mean of these two capabilities, the domination centrality must
be less than 2. Intuitively, a vertex with a degree of 1 must have either
no downstream space it can control or no upstream space it can
observe. This is the reason why the hubs are observed to attain
slightly larger DC values than the low-degree vertices. To conclude,
this experimental study demonstrates that there is no obvious cor-
relation between the degree and the DC. This result is very useful in
the following sense: the most effective method by which we can

Table 1 | Summarized statistics for the original representative networks

Type Name n m ND

Glossary GlossTG 67 122 32
Citation SmaGri 1024 4918 511

SciMet 2729 10412 1156
Kohonen 3772 12729 2115

Metabolic(enzyme-centric) Homo sapiens 689 2382 149
Synthetic Scale Free Ækinæ 5 Ækoutæ 5 3, P kinð Þ*kin

{c,
P koutð Þ*kout

{c
SF c 5 2.1 5000 14972 2059
SF c 5 2.4 5000 14989 1583
SF c 5 3 5000 14996 1007
SF c 5 4 5000 14997 532

Figure 3 | The distribution of the domination centrality in double-logarithmic coordinates. The results for scale-free synthetic directed networks with

N 5 5000, Ækinæ 5 Ækoutæ 5 Ækæ/2 5 3, P kinð Þ*kin
{c and P koutð Þ*kout

{c are shown.

www.nature.com/scientificreports
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intervene in a system’s dynamics is to identify vertices with great
domination capability, which are not restricted to hubs alone.

Clustering analysis. In fact, a consensus among the topological
criteria for measuring the functional similarity of vertices is often
lacking in directed networks28. Ignoring the direction of the links
may lead to partial or even misleading clustering results. Domina-
tion similarity is a direction-specific index and concentrates on
quantifying the unique relation between the upstream and down-
stream subspaces of vertices in directed networks. Independent of the
weights of the links used in the calculation, the domination similarity
is a parameter-free index for analysing data with noise. With the
global minimum-cost limitation, the domination similarity
represents the ability of vertices to work synergistically with others
and provides guidance for dominating a system using multiple
vertices operating cooperatively at the minimum cost. In this
section, we apply the DS index to detect and analyse functional
modules in a glossary network and the enzyme-centric network of
Homo sapiens.

We utilise the DS values as the input of the AP algorithm30 to
identify the functional modules in the glossary network. In this case,
we test the performance on a directed word network that has also
been recently introduced by Newman31 and Boccaletti32. The net-
work represents the connections among a set of technical terms, such
as ‘‘Tree’’ and ‘‘Digraph’’, contained in a glossary of network jargon.
Vertices represent terms, and a directed link from one vertex to
another exists in the network iff the second term is used to describe
the meaning of the first term. Because circular definitions are unhelp-
ful and are normally avoided, most links in the network are not
reciprocal. The statistics for this network are provided in table 1.

Figure 5 shows the modules identified in this network using our
DS-based method. This method identifies nine modules in this case,
which appear to correspond to the meaningful groups in understand-
ing the relations among glossary terms. For instance, module 1,
which is highlighted in red in the figures, deals with words that
describe tree structure. Remarkably, as an upstream vertex, the term
‘‘Decision Tree’’ can be explained by its downstream terms in module
1, and these downstream vertices constitute the controllable sub-
space of the vertex ‘‘Decision Tree’’. As a downstream vertex, the
term ‘‘Tree’’ is the basic foundation for the formation of other
upstream terms, and these upstream vertices constitute the observ-
able subspace of the vertex ‘‘Tree’’. Module 9 contains the glossary
terms derived from the fundamental term ‘‘Digraph’’ and provides
an overview of the dominance of this term. Additionally, all other
detected modules represent not only groups of terms with similar
meanings but also the etymology of the network jargon. Thus, the
DS-based method appears to identify meaningful structure in the
network, of a type that could be useful in understanding the broader
shapes of otherwise poorly understood systems.

We return now to the global human metabolic (enzyme-centric)
network. The vertices in this network represent enzymes, and there is
a directed link from one enzyme to another if the product of a
reaction catalysed by the first enzyme is used as the substrate of a
reaction catalysed by the second. The statistics for the human
enzyme-centric network are provided in table 1. There are 689
enzymes and 2382 directed links derived from 90 metabolic path-
ways. Metabolism is a vital cellular process, and its malfunction is a
major contributor to human disease33. Metabolic networks are com-
plex, and thus, systems-level computational approaches are required
to elucidate and understand them. Here, we wish to discuss the

Table 2 | Summarized statistics for the domination centrality values in representative networks

Ntework NDegree
D (change rate) NER

D (change rate) DCa DCDgeree a DCER a

GlossTG 32 (0.00%) 10 (32.84%) 1.31/1.44/2.47 1.25/1.74/1.85 2.94/3.31/5.14
SmaGri 458 (5.18%) 8 (49.12%) 1.19/1.68/1.95 1.35/1.91/2.59 41.04/42.72/44.92
SciMet 1075 (2.97%) 81 (39.39%) 1.84/1.34/1.76 2.11/2.42/2.73 20.08/23.52/23.50
Kohonen 2039 (2.01%) 178 (51.35%) 1.19/1.41/1.68 1.21/1.50/1.88 11.20/14.58/14.86
Homo sapiens 174 (3.63%) 24 (18.14%) 2.59/3.77/5.36 2.32/3.94/4.84 16.58/20.21/19.65
SF c 5 2.1 2103 (0.88%) 360 (24.46%) 1.29/1.67/2.31 1.26/1.61/2.25 8.66/11.3/12.3
SF c 5 2.4 1633 (1.00%) 1.6/2.34/3.06 1.59/2.27/2.93
SF c 5 3 982 (0.50%) 2.44/3.71/4.18 2.51/4.07/4.74
SF c 5 4 517 (0.30%) 4.97/7.06/7.56 4.95/6.80/7.33
aThe domination centrality average values of Low/Medium/High degree vertices.

Figure 4 | A schematic diagram illustrating the domination centrality in Homo sapiens networks. (a): The average values of domination centrality

among low-, medium- and high-degree vertices. The scatter plots of the domination centrality versus the vertex in-degree, out-degree and degree are

presented in panel (b), panel (c) and panel (d), respectively. The green, blue and purple plots represent the real network, rand-Degree network and rand-

ER network, respectively.
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interventional effect of enzymes in the metabolic system and detect
the relevant modules.

We cluster the network into modules using the AP algorithm
augmented by our DS index to identify the pathways that correspond
to metabolic functions. In total, 63 modules are detected by our
method. We measure the biological quality of the clustering result
by means of Gene Ontology (GO) enrichment34 and use the tool GO
TermFinder35 to compute the functional enrichment p-values of
components with respect to their biological process annotations. In
the results, 28 modules are annotated by GO terms with p-values
# 0.01 (the most significant p-value 5 3.45E-16), which means
that these modules represent significant biological functions in the

metabolic system. In figure 6, certain representative modules are
depicted with their corresponding GO terms and p-values. We note
that not only dense subnetworks but also functional modules, with
distinctive circle and path structures, are detected. These experi-
ments provide compelling evidence that the DS is a meaningful
and practical indicator in accurately depicting the structures of direc-
ted networks.

Discussion
The domination capability of a vertex reflects the vertex’s ability to
interfere in dynamical control processes in many directed complex
systems. The key task is to explain the manner in which a vertex

Table 3 | Summarized statistics for the distribution of domination centrality

Ntework Meana Average Deviationa Relative Entropyb

GlossTG 1.77/1.62/3.76 0.69/0.46/1.61 0.0386/0.5244
SmaGri 1.61/1.96/42.87 0.46/0.87/18.80 0.1047/3.2409
SciMet 1.73/1.93/22.37 0.51/0.71/13.56 0.043/2.7694
Kohonen 1.43/1.54/13.58 0.31/0.43/8.21 0.02/2.8511
Homo sapiens 3.96/3.736/18.826 2.42/2.33/11.01 0.0732/1.3426
SF c 5 2.4 2.32/2.26/10.94 1.02/0.98/7.18 0.0049/1.5441
aIn Origional/rand-Degree/rand-ER networks.
bRand-Degree/rand-ER relative to the original networks.

Figure 5 | Module-detection results in the directed glossary network. The modules are labelled with colours.
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intervenes in its downstream and upstream spaces in the imple-
mentation of dynamical functions. In this paper, based on the deter-
mination of controllable and observable subspaces under the
minimum-cost condition, we introduced the DC index to assess
the capabilities of vertices in directed networks. The results of our
statistical studies demonstrate that the domination centrality is, to a
great extent, encoded by the degree distribution of the underlying
network, yet there is no discernible correlation between the degree
and DC of a vertex. This result provides guidelines for the selection of
the most effective means through which we can intervene in a sys-
tem’s dynamics. Furthermore, to analyse the cooperative relations
among vertices in the domination of an entire network, we defined
the domination similarity, and we were able to detect significant
functional modules in glossary and metabolic networks through
clustering. As direction-specific and parameter-free indexes, DC
and DS are effective and practical in accurately depicting the struc-
tures of directed networks. In our future studies, we intend to invest-
igate the most effective approach to intervening in the dynamical
functions of complex systems through selected vertices.

Methods
Enumerating all possible different maximum matching link sets Ms is infeasible when
calculating DS, as in the worst case scenario, there may be an exponential number of
them. However, we note that there are many ‘‘redundant’’ links in real networks that
may never appear in any maximum matching. Based on their role in the Ms, links can
be classified into three categories: ‘‘critical’’ links must appear in all Ms, ‘‘redundant’’
links may never appear in any one of them and ‘‘ordinary’’ links play roles in some,
but not all, Ms10. In combination with the sparseness of real networks, we can
approximate the control subspaces and observation subspaces of vertices via an

optimisation routine. As shown in figure 7, we observe the beneficial phenomenon
that in a real network, there always exists some consistent set of control subspaces and
observation subspaces of vertices induced by different maximum matchings. This
observation supports the feasibility of using a small number of maximum matchings
to approximate the complete control and observation subspaces of vertices. A random
optimisation can be performed rather quickly using a Markov sampling process.

Algorithm for DS.
Input network G(A)
h 5 1, t 5 1, t 5 0
do
Markov random sampling to produce a maximum matching M

CSi Mð Þ~ jjf j is accessible from vertice i

in CF V , M|ALð Þð Þg

OSi MT
� �

~ jjf j is accessible f rom vertice i

in OF V , MT|AL’
� �� �	

CSi~CSi|CSi Mð Þ, OSi~OSi|OSi MT
� �

h~
X

i
CSi
�� ��zX

i
OSi
�� ��

if jh 2 tj/t # e t 5 t 1 1 else t 5 0
t 5 h
While t # y
Calculate Domination Similarity

Figure 6 | Module-detection results in the Homo sapiens network. Certain representative modules are marked with colours and the corresponding GO

terms and p-values are given.
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In every loop, we randomly produce a maximum matching M and update the
complete control subspace CS and complete observation subspace OS of each vertex
by merging the additional accessible vertices introduced in this M. CS s and OS s are
added but never deleted throughout the entire procedure. h is the sum of all CS s and
OS s. If the rate of increase of h is less than e for y continuous loops, the random
optimisation procedure terminates, and we then calculate the Jaccard similarity
coefficients of the CS s and OS s of two arbitrary vertices. The growth rates of h during
the random optimisation procedures for the GlossTG, Homo sapiens and SmaGri
networks are presented in figure 7. Clear improvement in h is achieved for 90, 7845
and 4527 maximum matchings in 247, 27995 and 15172 random samples for
GlossTG, Homo sapiens and SmaGri, respectively. We note that the growth rate of h
rapidly decreases to nearly 0 as the sampling number increases. This observation
supports the appropriateness of using only a certain number of Ms to approximate the
domination similarities of vertices in real networks. We set e 5 0.000001 and y 5 50
in the clustering-analysis case studies.

A Markov process, as described by Jia et al.36,37, performs unbiased random sam-
pling among all maximum matchings and can be used to estimate the role of each
vertex in controlling the network. This algorithm randomly chooses a vertex in a
given M, enumerates all alternative maximum matchings that include all other ele-
ments except this vertex by removing all its links, then randomly chooses one of these
alternative maximum matchings as the current M and repeats the process.

However, removing a vertex in a random sampling may not be effective for cal-
culating DS. Usually, we identify a maximum matching in a bipartite graph and
attempt to increase the matching size via an augmenting path that begins at a matched
vertex, ends at an unmatched vertex and alternates between unmatched and matched
links on the path. For example, in figure 8, a bipartite graph that is separated into the

out and in sets is constructed in figure 8(b) for the network in figure 8(a). The red links
are matched, the black dotted links are unmatched, and the matched link set
{l1,2, l2,3, l4,5} forms a maximum matching M1. Proceeding from this maximum
matching, we randomly choose vertex 2 and leave the current matched vertices and
links unchanged. Instead of removing all links of vertex 2, we delete only the matched
link l1,2. Then, we can identify an augmenting path that begins at the relevant matched
vertex 1 and ends at the presently unmatched vertex 2; in the figure, this path is
indicated by a blue line. Finally, by alternating between unmatched and matched links
on this blue path, we obtain a new maximum matching M2 in which the matching of
vertex 2 has been replaced, as shown in figure 8(c). By contrast, because it removes all
links of vertex 2, the method of Jia et al.37 cannot produce any new maximum
matching from the given M1. Nevertheless, we use the Markov process defined by
these authors to perform unbiased random sampling among all maximum matchings
to estimate DS. The only difference is that we also enumerate all alternative maximum
matchings that include all other elements except the matching link of the chosen
vertex.

In fact, the maximum matchings reveal the functions and the roles that the vertices
and links play for controlling the whole network with minimum cost. Different
combinations of ordinary links constitute different maximum matchings and pro-
duce different choices of minimum-control-cost configurations. Ordinary links are
alternatives for constructing the backbone of the propagation of control influence.
Therefore, we consider each combination of ordinary links (COL) to be one state. The
set of ordinary links of a network is {l1,l2,…,lv}, where v is the number of ordinary
links. The Markov chain can be characterised by a transition matrix P with the
elements Pi,j~Tlj | 1{Qið Þ|Qj , where Qi is the probability of ordinary link li being
included in an M. The transition from state i to state j requires the choice of a matched
link from an M, with a probability of Tlj ~1= Mj j; the choice of a COL set that excludes
li, with a probability of (1 2 Qi); and the choice of a COL set that includes lj, with a
probability of Qj. Clearly, Pi,j ? Pj,i; our algorithm is not guaranteed to choose each set

Figure 8 | A schematic diagram illustrating the process of random
sampling. (a): The original network. (b): A bipartite graph separated into

the out and in sets; the red link set {l1,2,l2,3,l4,5} forms a maximum

matching, M1, and the blue path is an augmenting path when the matched

link l1,2 is removed. (c): A new maximum matching M2 constructed by

alternating the blue augmenting path.

Figure 7 | The influence of the number of random samples among all
maximum matchings on the domination-similarity result. The growth

rates of the sum of the complete control and observation subspaces as

functions of the number of random samples of maximum matchings in the

GlossTG, Homo sapiens and SmaGri networks are shown.

Figure 9 | The distribution of the counts in each of the 164 COLs in the GlossTG network. (a): A matched link lj is randomly selected from an M with a

probability of 1/ | M | . (b) The selection probability is adjusted based on the number of alternative COLs that are enumerated by our sampling procedure.
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of matched links with equal probability. For example, in figure 9(a), for the real
network GlossTG with 164 COLs, we perform 239,000 iterations of our sampling
algorithm and count the number of times that each COL is picked. We find that a few
COLs are sampled many times, but it is very difficult to ensure that all COLs are
sampled at least once. Thus, we adjust the transition matrix P and construct a new
transition matrix P9 with the elements P’i,j~T ’li | 1{Qið Þ|Qj . If we can set
T ’lj ~Tlj | 1{Qj

� �
|Qi , then Pi,j ; Pj,i, meaning that the transition matrix P is

symmetric and the steady-state distribution possesses equal probabilities for all states.

However, Qj cannot be determined effectively; in practice, uj

.X
k

uk is used to

approximate (1 2 Qj), where uj is the average number of all alternative COLs that can
be enumerated by removing lj in the first jMj2 iterations of our sampling procedure.
Intuitively, if many alternative COLs can be enumerated by removing lj, then the
probability of choosing lj from an M should be increased. With this modification, the
sampling procedure becomes more efficient, and the 164 COLs in GlossTG can be
obtained within 20,000 iterations. As shown in figure 9(b), we perform our modified
sampling algorithm 193,500 iterations and count the number of times that each COL
is picked. The result demonstrates that this procedure provides a more even-handed
random sampling among all maximum matchings.
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