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Long-distance movements of animals are an important driver of population spatial dynamics and
determine the extent of overlap with area-focused human activities, such as fishing. Despite global
concerns of declining shark populations, a major limitation in assessments of population trends

or spatial management options is the lack of information on their long-term migratory behaviour.
For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-
tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-
trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred
between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude
oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat.
Partial migration also occurred, with smaller, immature individuals displaying reduced migration
propensity. Foraging may be a putative motivation for these oceanic migrations, with summer
behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory
patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar
to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial
management and conservation measures of highly mobile sharks.

Migration is typically identified as persistent, straightened movement that requires temporary inhibition
of station-keeping behaviour, and is recognised as an adaptation driven by the transitory availability and
location of resources’. In this context, migration is ubiquitous across animal taxa and its elucidation has
been an important component in a wider understanding of animal population ecology'. Generally, this
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is because temporal change in the density of a population at a specific geographic location is not only a
function of births and deaths but also of movements, including migration®. However, long-term tracking
studies have focused largely on terrestrial and aerial species, with the most commonly identified (‘classi-
cal’) form of migration involving seasonal movements between a breeding and non-breeding area'. The
availability of remote marine telemetry systems in recent years has enabled increasing studies tracking
marine predators, such as turtles, seabirds and marine mammals, many of which reveal long-distance
movements consistent with population-level migration®®. By comparison, a general understanding of
migratory behaviour in large sharks is less well developed, in part due to still few studies achieving
multi-year tracks to detect repeated seasonal patterns*®'!. Determining the timing, repeatability and
potential motivations for annual movements of large sharks is necessary to understand the ecological
and evolutionary role of such behaviour more generally in marine predators.

Global exploitation of large pelagic fish by industrialised fisheries has resulted in dwindling catches
of important stocks despite increasing fishing effort'?, emphasising the urgent need for enhanced man-
agement and conservation efforts'®. Management action ideally necessitates evidence of population-wide
declines but there is controversy'*!> over whether reported declines in shark catch rates within analysed
regions reflect decreasing population abundance over entire ranges'®"’, or are confounded by shifts in
shark movements and habitat selection and changes in the areas exploited by fisheries's. More reliable
interpretation of population size trends from shark fishery catch data will benefit from identifying the
migratory ranges, routes and residency patterns of exploited species, particularly in the Atlantic where
there is little appreciation of the spatial dynamics of overlap between sharks and fishing fleets despite
fishing exploitation being exceptionally high!®?. With few exceptions*®”*1°, detailed, long-term move-
ment information remains sparse for many large shark species, making it very difficult to assess the
potential efficacy of oceanic Marine Protected Areas (MPAs) for these highly mobile species?..

The tiger shark Galeocerdo cuvier (Péron & Lesueur, 1822) is an interesting and suitable species to
investigate migratory patterns because it is one of the largest predatory sharks, reaching up to ~5.5m
in length and ~600kg in mass, and is found circumglobally in tropical and warm temperate coastal/
pelagic waters?. It is captured in commercial fisheries, and is listed as ‘near threatened” in the Red
List of the International Union for Conservation of Nature (IUCN)?. The tiger shark typically occupies
the highest trophic level available where it occurs, often being the sole predator on a wide range of
other large, highly mobile marine vertebrates (e.g. marine mammals, turtles, other elasmobranchs)?-?’.
Moreover, tiger sharks have a very cosmopolitan diet and, consequently, are highly connected in marine
food webs, displaying a wide niche breadth that is mostly attributable to high individual variation in prey
consumed and depth utilisation’®*8. A wide niche breadth of a predator could indicate an adaptation
allowing it to remain within relatively localised areas, thus foregoing the necessity for seasonal migration
to specific foraging grounds to feed on seasonally abundant prey. But several studies have documented
long-distance movements for individual tiger sharks®?#-**. Additionally, seasonal variation in movement
behaviour has been inferred from non-continuously tracked animals in acoustic telemetry-based pres-
ence/absence studies®*. However, detailed spatial behaviour observed by continuous tracking over mul-
tiple years consistent with more classical, seasonal migratory patterns between discrete focal habitats has
not been described.

In this study we use long-term satellite tracking of tiger sharks to determine movement patterns
across multiple years, including examination of whether a large, marine predator with high intraspecific
variability in diet and vertical habitat use shows any predictable migratory behaviour.

Results

We tagged a total of 24 tiger sharks, 20 of which were male, varying in total length (TL) from 1.73 to
3.96m (mean 3.03m; Supporting Information, table S1). Overall, tiger shark movements were tracked
for a total of 411 months (mean 17.1 months), covering an estimated distance of 356,085m (mean
14,836 km), averaging 865.3 km month~'. Tracking periods for individual sharks ranged from 41 to 1101
days (mean 514d), generating between 19 and 2,404 geolocations (mean 821) of varied Argos location
class. Four individuals experienced intermediate transmission absences of 100 days or more. None of
the sharks showed evidence from their SPOT transmissions of being captured during their tracks (e.g.
a sudden sequence of LC3s).

Repeated, long-distance migration. Tiger sharks tagged at Bermuda displayed extensive space-use
throughout the northwest Atlantic, ranging between latitudes of 17-40°N and longitudes of 48-79°W
(Fig. 1), covering 6.7 millionkm?, as determined by the 95% isopleth of a kernel density plot for all
sharks. This space-use varied seasonally, however, revealing long-distance north-south migrations
(Fig. 1). Locations occupied during winter were primarily associated with coral reef-bound islands in the
Bahamas, Turks and Caicos Islands, and Anguilla/Saint Martin. None of the tiger sharks was recorded
entering the Caribbean Sea, nor crossing the mid-Atlantic Ridge. In contrast, during summer the major-
ity of sharks adopted a temperate, oceanic habit, with most occupying open water north/northeast of
Bermuda. There was a more dispersed distribution of locations in both spring (sharks generally moving
north) and autumn (generally moving south), representing migratory transitions between the winter
insular and summer oceanic phases.
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Figure 1. SSM adjusted geolocations for all tiger sharks separated by season and overlaid on
bathymetry. Maps created in ArcGIS, using GSHHG coastline data and ETOPO2v2 bathymetry data.

Partial migration. The majority of tiger sharks (16; 273-396 cm TL) displayed a seasonal pattern of
considerable latitudinal displacement (up to 2,500km), between southern islands in winter and north-
ern oceanic areas in summer (Fig. 2). The precise timing and duration of these migrations varied both
between years and individuals. Notably, the five smallest tagged sharks (two females and three males:
sharks 5, 12, 13, 15, and 20; 173-259 cm TL; table S1) did not conform to this general seasonal migratory
pattern, staying in the vicinity of Bermuda over winter (Figs. 1,2). The two largest of these Bermuda
overwintering residents (12 and 13, both 259 cm TL at tagging) did eventually undertake longer distance
movements, but not until eight and eleven months after tagging, respectively, and neither migrated in
the first winter season of their tracks. Overall, larger sharks tended to travel at increased rates (Spearman
rank correlation between mean number of kilometres travelled per month and shark total length:
r,=0.58, p<0.01). Although only four female sharks were tracked, both patterns — seasonal migrations
and Bermuda winter residence - were displayed by both sexes.

During winter, migratory individuals occupied the warmer, southern waters of the northwest Atlantic,
and the expansion in range north during the summer coincides with warmer waters (>25°C) extending
up to the Gulf Stream (Fig. 3). The mean sea surface temperature (SST) of the southern insular regions
exceeds that of the northern oceanic area throughout the year; however only during late summer and
early autumn (July, August, September) does the mean SST in the north exceed the mean winter SST in
the southern extent (Supporting Information, Fig. S3). Consequently, the individuals that undertook the
annual north-south migrations occupied waters with surface temperatures of approximately 24-26°C in
both winter and summer, whereas those remaining near Bermuda over winter experienced lower surface
temperatures (18-20°C).

Despite the large range of movements by most tiger sharks, high occupancy was spatially restricted
while in insular southern areas: up to 6-12 weeks within a given 0.5° x 0.5° cell (Supporting Information,
Fig. S4a). In contrast, occupancy in oceanic areas was considerably more transient: little time was spent
in any given oceanic cell, although there was elevated space-use around Bermuda, especially Challenger
Bank, in the northeast of their tracked range.

Philopatry. There were nine individuals with enough data to investigate seasonal migratory philopatry
across two or more years, six of which displayed distinct repeatability in the locality of their space-use.
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Figure 2. Latitude of all tiger shark locations over time (2009-2012), colour coded by season
(blue = winter; green = spring; red = summer; orange = autumn).

Winter philopatry was high, whilst summer philopatry appeared low (Fig. 4). The mean winter-to-winter
centroid displacement was 191.4km (ranging 12.4-1036.2km, SD 331.6 km), whereas the mean
summer-to-summer centroid displacement was 756.1km (ranging 51.0-1308.2km, SD 386.2km). The
repeated, philopatric migration pattern is exemplified by shark 7, which displayed spatially restricted
use of a particular insular region and offshore oceanic regions over 3,500 km away, punctuated by rela-
tively direct dispersals (Fig. 5). In both years of its two year track, shark 7 occupied the same area in the
Bahamas during winter, displaying a winter-to-winter centroid displacement of only 65.7 km, although
its centroid displacement between summers was 819.2km. Over a three year track, shark 1 displayed
similar insular winter philopatry (centroid displacements of 24.3 and 56.2km), but also some degree of
philopatry to offshore areas over 2,500km away across consecutive summers, with summer-to-summer
centroid displacements of 51.0km and 545.3km. In contrast, use of insular areas by shark 4 was compar-
atively dispersed, spending no more than 13 days within any given cell and providing multiple centroids
for each season (Supporting Information, Fig. S5).

Straightness of movement. Analysis of the comparative straightness of shark movements revealed
overall reduced straightness around the southern islands, and also on the northern edge of the recorded
range adjacent to the Gulf Stream. In contrast, shark movements were more directed in the oceanic
environment in between these locations (Supporting Information, Fig. S4b). Despite lower occupancy
compared to insular regions, the north-eastern area of the tracked sharks’ range (south of the Flemish
Cap and in the general proximity of the Corner Rise Seamounts) is an area of particularly high turning
frequency. Considering only summer straightness of movement emphasises this high turning frequency
further (Supporting Information, Fig. S6). Overlaid with the juvenile loggerhead turtle Caretta caretta
tracks of McClelland and Read (2007) and Mansfield et al. (2009), this area of high tiger shark turn-
ing overlaps with the pelagic distribution of C. caretta both in summer and year round (Supporting
Information, Fig. S6). These turtle tracks overlapped with 37.6% of the 0.5° x 0.5° cells in which the tiger
sharks were recorded during summer. Moreover, the stomachs of four out of five tiger sharks opportun-
istically sampled from a commercial long-lining vessel contained C. caretta, including small juveniles
consumed whole (Supporting Information, table 2; Fig. S6).

Discussion

Our study is one of only a handful in obtaining multi-year, continuous, high resolution tracks of individ-
ual fish migrations**-#1%11 and provides the first report of annually repeated, distinct seasonal migrations
for tiger sharks in the Atlantic. The satellite tracks are also the longest reported for individual tiger shark
movements to date throughout their distribution (up to 1101 days, previously 517 days*). This apex
marine predator displays remarkable plasticity in ecosystem use, accomplished by extensive, seasonal
migrations between insular, coral reef ecosystems in winter and temperate oceanic, potentially foraging
areas in summer. These round-trip migrations span over 7,500 km annually, with individuals displaying
marked philopatry to overwintering areas. These migrations are also partial in nature: the five sharks
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Figure 3. SSM corrected geolocations for all tiger sharks in winter and summer, overlaid on mean
seasonal sea surface temperature (SST). Maps created in ArcGIS, using GSHHG coastline data and OSTIA
SST data.

that remained close to Bermuda over winter were all juveniles (including both sexes), whilst all migrants
were large males, with the exception of the single mature female tracked.

Use of disparate, contrasting habitats is common among diadromous fish, but the repeated switch-
ing between such markedly different ecosystems (in terms of thermal regime, bathymetry, structural
complexity and insular coral reef to oceanic ecosystems) as we show here for the tiger shark is not com-
monly reported for marine fish species. Consequently it is particularly notable that the sharks we tracked
invested in dual strategies, switching between highly focused use of insular reef systems and dynamic
use of open ocean, in addition to exhibiting strong, repeated migratory philopatry to overwintering sites.
Philopatry may improve foraging success and be less costly than searching for other suitable habitat
elsewhere, potentially enhancing individual fitness.

Few marine fish have been shown to adopt such marked behavioural plasticity in ecosystem use,
in particular repeated within individuals across years. The closest parallel reported among elasmo-
branchs is for endothermic sharks in contrast to the ectothermic tiger shark. For example, the white
shark Carcharodon carcharias in the Pacific and Indian Oceans switches between high fidelity to par-
ticular coastal areas and long-distance migrations to oceanic areas”®*. The closely related salmon shark
Lamna ditropis also makes long-distance migrations oftshore in the Pacific Ocean, before returning to
specific regions of the Alaskan coast®. For ectothermic sharks, philopatry to tropical insular regions
has been shown for the sympatric oceanic whitetip shark Carcharhinus longimanus, which returns to
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Figure 4. The relation between season-to-season centroid displacement (‘o> = winter; ‘©> summer) and
the intervening centroid displacement for both successive winters and summers, from sharks with tracks
of two years or more.

particular areas of the Bahamas after movements into the Atlantic®®, however this behaviour has not
been demonstrated across multiple years nor across as vast oceanic distances as displayed by the tiger
sharks. Among teleosts, some large, temperate, demersal species such as Atlantic cod Gadus morhua are
known to return to within a few kilometres of the previous year’s spawning sites, despite long-distance
migrations in between to foraging grounds®. However, the behaviours displayed by the tiger sharks
migrating between tropical islands and distant, higher latitude, temperate oceanic zones are seemingly
more similar to some turtle, bird and mammal movements than to other fish. For instance, loggerhead
turtles display a marked dichotomy of ranging behaviours, switching between coastal and oceanic habits,
often returning to within a few kilometres of previous foraging sites®*°. Leatherback turtles Dermochelys
coriacea display similar seasonal movements, associating with aggregations of gelatinous zooplankton in
the Irish Sea in summer*. Among birds, Cory’s shearwaters Calonectris diomedea in the Atlantic under-
take long-distance, trans-equatorial, round-trip migrations between particular nesting sites and foraging
areas®, as do sooty shearwaters Puffinus griseus in the Pacific*’. Baleen whales, such as the humpback
whale, Megaptera novaeangliae, exemplify similarly substantial repeat migrations in mammals, which
move thousands of kilometres seasonally between near-polar feeding grounds and tropical breeding
grounds®. Southern elephant seals Mirounga leonina have also been demonstrated to show very high
fidelity to offshore foraging areas in the Antarctic between years*.

Understanding the motivations behind such migrations will better enable prediction of how move-
ments might respond to environmental changes. However, despite a number of tracking studies correlat-
ing animal movements with environmental variables*34>46, the motivation for migration often remains
unknown”#32, The tracked tiger sharks migrated north in spring and summer as sea surface temperatures
increase, displaying very high turning frequencies in the north and north eastern extent of their range,
which may reflect potential foraging activity’’. Another ocean migrant, the leatherback turtle, displays
similarly high foraging activity at higher latitudes, following extended migration from tropical waters*!.
In addition, the northerly limit of tiger shark movements may be driven by thermal preferences, as it
appears from comparisons with seasonal SST that their movements are contained within an isotherm of
approximately 24°C. Isotherms are thought to drive range limits of other ectothermic species, such as
leatherback turtles, which also undertakes large north-south movements in the Atlantic*®. Consequently
a conceivable motivation for the sharks to migrate in the summer may be foraging opportunities in the
area, including on juvenile turtles, cued by increasing sea surface temperature. Elsewhere turtles make up
a significant portion of the diets of larger individual tiger sharks**?, so it is possible that the tracked tiger
sharks may migrate to exploit an abundance of preferred prey in the summer, connecting the trophic
ecologies of disparate coral reef and oceanic ecosystems. However, this hypothesis remains untested and
requires further investigation; for instance turtles may simply appear more prevalent in a diet if their
shells digest more slowly than other items.

As the majority of sharks tagged in our study were mature males, a possible reason for them to return
from foraging to their overwintering areas is to find mates. Consistent with our study, some large female
tiger sharks tracked from the Bahamas have also travelled long distances into the Sargasso Sea, but most
remained relatively close to the Bahamas and Florida®, where there is an apparent peak in pupping
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Figure 5. The occupancy and mean straightness of movement for shark 7 (384 cm male) for the first and
second year of its track (measured from tagging date). Maps created in ArcGIS, using GSHHG coastline
data and ETOPO2v2 bathymetry data.

during early summer®. Given that tiger sharks in the northwest Atlantic have a 13-16 month gestation
period®, mating should have peaked in late winter/early spring, when adults of both sexes are known to
be in tropical insular regions. Although other factors may be involved, including foraging and thermal
preferences, given the available information it is reasonable to hypothesise that a driver of winter philo-
patry is returning for mating opportunities.

Complex population structure and extensive movements by a segment of the population can result
in regional fishing activity having disproportionate effects on different population components'. Thus,
understanding potential demographic segregation and partial migration patterns - who goes where,
when and why - is crucial for the sustainable management of any population. Partial migration is wide-
spread across taxa, although the driving processes often remain unclear, with animal size, sex, condition
and personality (e.g. boldness) all reported as factors contributing towards the propensity to migrate or
not™'. Partial migration has been reported for female tiger sharks in Hawaii based on presence/absence
data from acoustic telemetry, where seasonal presence appears to be associated with reproductive state
and individual foraging targets®. From work on other species it has been suggested that swim speed and
migration propensity and ability may be linked to size-related dispersal ability>"2. This is consistent with
the observation in the present study that distance travelled per month increased with tiger shark length
and, furthermore, that all individuals observed overwintering around Bermuda were comparatively small
and immature®. Similarly in Hawaii larger tiger sharks were also more likely to undertake long range
movements®, and year-round residency has been reported for sub-adult tiger sharks at the Chesterfield
Islands in the Coral Sea®2. Work on salmonids Coregonus spp. suggests that smaller individual fish within
an ectothermic species may incur a greater metabolic cost in warmer waters, potentially reducing the
benefits of migration®. If such a size-dependent limitation on long-distance dispersal were applicable
to tiger sharks, it would be consistent with our observation of fewer smaller individuals migrating sea-
sonally to exploit prey elsewhere and remaining within cooler water over winter. The overwintering of
smaller, immature sharks in cooler waters is also consistent with the hypothesis of mating as a driver for
southerly migrations of mature individuals.

Individual condition may therefore be a strong driver of migration propensity in tiger sharks: adults
may be of sufficient condition to absorb the costs of migration to exploit disparate, but profitable, food
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sources, with females possibly skipping migration if gravid, whilst juveniles may have to invest more in
somatic growth.

Such segregated use of large oceanic areas by size, as shown here, combined with high fidelity to par-
ticular regions, can result in differential exploitation by spatially-focused fisheries and contribute towards
rapid population declines'®*. With the observed size-related migration differences in tiger sharks, such
differential exploitation by long-line fisheries in summer could disrupt the age structure of the popula-
tion, exacerbating any impact of fisheries-induced mortalities. Some overwintering sites are covered by
the Bahamian Exclusive Economic Zone, where long-lining and commercial trade of shark is prohibited,
whereas sharks migrating to oceanic areas may be at greater risk of fishing mortality. This highlights the
need for informed, spatially dynamic, management and conservation measures, such as the designation
of MPAs or time/area closures of fisheries in summer foraging areas, or for greater spatial protection of
philopatric overwintering sites.

Our study reveals unexpected predictability in tiger shark horizontal movements in the north-
west Atlantic, which contrasts with the high intraspecific variability observed in their vertical move-
ment behaviour in the same region®. They seasonally and repeatedly switch between coastal coral reef
and temperate oceanic habitats, displacing thousands of kilometres in the process, yet also showing
marked philopatry to overwintering sites. However, the expansive movements of tiger sharks through-
out the northwest Atlantic leaves them exposed to international fisheries for extended periods of time.
Understanding these migration patterns, particularly when partial in nature and size segregated, is cru-
cial for future conservation efforts. Identifying where tiger sharks may focus their movements and use
migration corridors will inform assessments of where, when and how high space-use areas overlap with
commercial fisheries in the North Atlantic.

Methods

We tagged 24 tiger sharks with Argos satellite platform terminal transmitters, or PTTs (SPOT5, Wildlife
Computers, Redmond, Washington, USA) between August 2009 and July 2012 at Challenger Bank (N
32°05, W 065°03’) near Bermuda in the northwest Atlantic (Supporting Information, table S1). All field
work was approved by, and conducted with the knowledge of, the Marine Resources Section of the
Bermuda Department of Environmental Protection. The shark handling and tagging methods were per-
formed in accordance with the approved guidelines of Nova Southeastern University. The SPOT5 tag
location accuracy is determined by the timing and number of transmissions received by Argos satellites
within a single overpass®. The location classes (LCs) available are 3, 2, 1, 0, A and B, with LC3 providing
the lowest errors and LCB the highest®®.

As Argos positions vary in frequency and quality it was necessary to process the data to obtain nor-
malised positions that were comparable between individuals and over time. The raw Argos positions
were processed in three steps, each adopted to address a specific issue. Firstly, it was necessary to avoid
inclusion of steps between positions that were deemed too large to be biologically plausible, basing filter
rules on previously documented swimming speeds for large sharks®®. To do this we analysed all raw
positions point-to-point with a 3m s™! swim speed filter and 20 km distance filter: any position separated
from both adjacent positions by either too great a distance or speed were shifted to a linearly interpo-
lated position between the two (i.e. the most parsimonious location). Positions where either the distance
or speed to only one of the adjacent positions was too great were ignored. Secondly, because each raw
position has a different error field according to its Argos location class, we needed to decide the most
probable location for each point within its error field. We achieved this by using a Bayesian state-space
model (SSM) that adjusted the filtered tracks by producing regular positions based on the Argos location
class, mean turning angle, and autocorrelation in speed and direction, producing the most probable track
through the error fields®. Given that 80.1% of gaps between positions in our tracks were under 12 hours
(Supporting Information, Fig. S1), we used a time step of 12hours in the SSM to produce two positions
per day for each shark’s track. However, the SSM produces regular positions for the entire track, even on
days where there were no raw positions. Consequently we deleted all positions for days on which there
were no real Argos transmissions. This step resulted in our normalised track positions and formed the
dataset used for the plotting of positions on maps by season and plotting latitude over time to display
how the distribution of animals changes over time.

Argos tracks only have locations for when the sharks were at the surface; consequently there is high
variability in the number of locations in a given area, as a result of the shark’s varied surfacing behaviour
rather than because of its actual location. This would introduce a bias into the analysis of time spent
in different areas. To correct this bias, linear interpolation was used to normalise the transmission fre-
quency by generating points at 12 hour intervals along track gaps of <20 days. Where gaps >20 days were
encountered the track was split into sections to avoid spurious interpolation. Moreover, in order for these
space-use analyses to be as conservative as possible, all were conducted at a grid resolution of 0.5° x 0.5°,
greater than the reported errors of the worst location class (LCB, ~10km®®%). Examples of how track
positions varied between each processing step can be found in Figure S2 of the Supporting Information.

To determine track sections with higher turning frequency from those with more directed movement,
the ‘straightness’ of individual trajectories was calculated for successive 12 day portions of each SSM
processed, linearly interpolated track, where:

Straightness = displacement over 12 days / distance travelled over 12 days
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Values closer to 1 indicate periods of straighter movement, and values closer to 0 indicate periods of
higher turning frequency, providing a proxy for station-keeping or area-restricted searching (foraging)
behaviour?”. Straightness was calculated over 12 day periods as this was, on average, the time taken for
the sharks to traverse a distance greater than the error of the worst location class (LCB, ~10km®**7). The
mean distance travelled per month was also calculated for each individual, and correlated with individual
total length using a Spearman rank correlation.

To perform analyses on space-use and movement behaviour, the SSM normalised, linear interpolated
tracks were plotted on a 0.5°x0.5° grid cell in ArcGIS (ESRI Inc., CA, USA). Coastline and bathym-
etry data were obtained from the U.S. Department of Commerce, National Oceanic and Atmospheric
Administration (NOAA): coastlines from the Global Self-consistent, Hierarchical, High-resolution
Geography Database (GSHHG) and bathymetry from the 2-minute Gridded Global Relief Data
(ETOPO2v2). Computerised digital images and associated databases are available from the National
Geophysical Data Center, NOAA, U.S. Department of Commerce, http://www.ngdc.noaa.gov/. Sea sur-
face temperature (SST) data were obtained from the Operational Sea Surface Temperature and Sea Ice
Analysis (OSTIA) system via the UK. National Centre for Ocean Forecasting (Contains public sector
information licensed under the Open Government Licence v3.0 http://www.nationalarchives.gov.uk/
doc/open-government-licence/version/3/). All maps were created using the Plate Carrée projection.

The total time spent within each cell (occupancy) was calculated by summing the number of 12-hourly
points located within cells. The mean straightness for each 0.5° x 0.5° cell was calculated by averaging
the straightness values associated with points located within them. This was performed for all sharks
combined as well as individuals, and for both complete tracks and tracks separated by season to address
any seasonality in distribution. The seasons were defined as follows: Winter, Dec-Feb; Spring, Mar-May;
Summer, Jun-Aug; Autumn, Sep-Nov. When occupancy was calculated for all sharks combined, the
results were corrected for tagging location by dividing the occupancy value for each 0.5° x 0.5° cell by
the number of tags active in that cell. The overall geographical range of tracked sharks was calculated in
ArcGIS using the 95% isopleth of the kernel density estimate for all locations.

For qualitative comparison of seasonal distribution of locations with sea surface temperature (SST),
track locations were overlaid in ArcGIS on seasonal SST means throughout the northwest Atlantic. In
addition, the mean monthly SST for 5° x 2° areas at the northern and southern extents of the tracked
sharks’ range were calculated to examine the SSTs likely experienced by sharks at the surface when in
those areas compared to the typical annual variation in SST. The bounding for the northern extent was
37-39°N by 62-57°W, and for the southern extent was 24-26°N by 76-71°W.

A number of sharks displayed focused space-use in both winter and summer, so potential philopatry
was tested for in individuals with sufficiently long tracks to cover repeat seasons (1 =9 sharks). First, cen-
tral locations were calculated for individuals for each winter and summer period, defined as the central
point, or centroid, of the 5% isopleth of the kernel density estimate for that season, and calculated using
Geospatial Modelling Environment®. Season-to-season centroid displacement was then plotted against
intervening centroid displacement for both successive winters and summers to test the spatial resolution
at which sharks returned to a particular location given the intervening long-distance migration.

One of the authors (GRM) was opportunistically able to retain the stomachs of the five tiger sharks
caught by a Spanish commercial long-lining vessel operating in the northwest Atlantic in 2012 for con-
tents analysis whilst acting as a scientific observer on-board. The stomachs appeared to predominantly
contain juvenile loggerhead turtles Caretta caretta (Linnaeus, 1758), and so maps of spatial and tempo-
ral variation in the straightness index were compared to the locations of juvenile loggerhead turtles as
determined by satellite tracks reported in McClellan and Read (2007) and Mansfield et al. (2009). The
loggerhead tracks were digitised using ArcGIS, where they were projected to the correct spatial reference
and had their features recreated manually. To quantify any spatial overlap, the percentage of 0.5° x 0.5°
grid cells in which both tiger sharks and loggerhead turtles were tracked was calculated in ArcGIS.

All shark tracks used in the present study are available for viewing on the Nova Southeastern
University website: http://www.nova.edu/ocean/ghri/tracking/. However, given the tiger shark is listed
as ‘near threatened’ in the IUCN Red List, the raw, detailed location data are considered sensitive infor-
mation. Consequently the raw tracks are not freely available at present so as not to encourage further
fisheries interactions.
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