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Published: 27 July 2015 modes of a fermionic chain. The dissipative and dephasing noises induce the non-parity- and parity-
preserving transitions between the eigenstates of the system, respectively. Therefore, these two
. types of noises lead to the different decoherence mechanisms. In each type of noise, we discuss the
. low- and high-frequency regimes to describe the different environments. We numerically calculate
the dissipation and dephasing rates in the presence of long-range interactions. We find that the
decoherence rate of interacting Majorana modes is different to that of non-interacting modes.
We show the examples that the long-range interactions can reduce the decoherence rate. It is
advantageous to the potential applications of quantum information processing.

Majorana fermions are exotic particles’ which show non-abelian statistics>*. Indeed, non-abelian sta-
tistics is necessary for performing topological quantum computation® which is a kind of fault-tolerant
quantum computation. Thus, the study of Majorana fermions is of fundamental importance and also it
is useful to the applications of quantum information processing (QIP).

Kitaev predicted that an unbound pair of Majorana fermions® exhibits at the two ends of a spin-polarized
one-dimensional (1D) superconductor. This provides a promising way to realize Majorana fermions.
Recently, a number of methods has been proposed to simulate Majorana fermions in a 1D system such
as by using a semiconductor nanowire”® and cold atoms in an optical lattice®!°.

Decoherence severely hinders the performance of QIP applications which rely on quantum coher-
ence'!. The various approaches have been proposed to combat against decoherence such as quantum
error correction'?!® and dynamical decoupling techniques'*'®, etc. Remarkably, Majorana fermions are
robust against local perturbations'® due to a large energy gap from the two degenerate ground states.
It is believed that they can be exploited without further protection. Still, they suffer from decoherence.
Recently, decoherence of Majorana modes has been studied in more detail’’-?2. The noises sources from
the different physical settings have also been discussed!®-2!.

In addition, the effects of long-range interactions between fermions on the Majorana modes®*-* have
recently been studied. The long-range interactions can broaden the range of parameters for exhibiting
Majorana fermions®*?. It is natural to ask the effect of long ranged interactions on decoherence of the
Majorana modes. In this paper, we study the decoherence rate of Majorana modes of a chain of spinless
fermions in the presence of long-range interactions between fermions. Our study is helpful to understand
the relationship between interactions and the decoherence properties in a many-body system.

We study the two typical noises in the system, where they are dissipation and dephasing, respectively.
These two types of noises are widely studied in the context of open quantum problems and also they
are two main forms of decoherence occurring in quantum computing®. Dissipation and dephasing lead
to the different decoherence mechanisms of Majorana modes. Dissipation induces the non-parity pre-
serving transitions between the eigenstates of the system while dephasing gives rise to parity preserving
transitions.

Moreover, we investigate the low- and high-frequency noises to describe the different types of envi-
ronment. The frequency domain of the low-frequency noise spectrum is much lower than the transition
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frequency of the two degenerate ground states and their first excited states. For example, the low-frequency
noise can be described by the 1/f-noise® which commonly occurs in the solid-state devices. On the other
hand, the high-frequency noise is to describe the environment in which the frequency domain of the
noise spectrum is comparable to the transition frequencies between the different eigenstates. We consider
the high-frequency baths to be Markovian in this paper.

We show the examples that the long ranged interactions between fermions can reduce the decoher-
ence rates. In fact, the dissipation and dephasing rates depend on the collective properties of fermions
which can be changed by the interactions between the fermions. As a result, long ranged interactions can
change the decoherence properties of Majorana modes. In this way, the coherence time of the Majorana
modes can be prolonged by appropriately choosing the interaction parameters. It may be useful for
Majorana-based applications*>3!,

System

Majorana modes occur in a spin-polarized 1D superconductor®. This 1D superconductor can be described
by a chain of spinless fermions with an open boundary condition. The Hamiltonian of this fermionic
system is given by, (A=1),

Hp= Z[—W(C}CHI + c}ch) + A(cjch + chHc})l
j

Sl 1)
j 2 (1)
where ¢; and ¢! are annihilation and creation fermionic operators at site j. The parameters w, A and u
are the tunneling strength, superconducting gap and chemical potential, respectively.
We consider the fermions to be interacted with their nearest neighbors. The Hamiltonian, describes
long-range interaction?, is written as,

B P 1) 1
Hy = UZ[cjcj — E][Cj+16j+l — E],
j (2)
where U is the repulsive interaction strength between the nearest neighbours.
A fermionic chain can be mapped onto a spin chain by applying the Jordan-Wigner transforma-
tion's. The fermionic operators are related to spin-half operators via the Jordan-Wigner transformation

as follows:

oozl
c;= (—1)]_1 H szojf,
k=1

3)

.l
¢ =(-1) IkH of o,
=1

(4)

1
ey = (o7 +1), (5)

where cr]-i and ajz are the Pauli spin operators at site j. The Hamiltonian H= H,, + Hy of the system can
be recast as

H= Z[W (UJ'JrUJ'_H + ”j_af:l) + A(”J'Jraitl + Jj_”ill)}
j

o U
— EZajz + ZZszajzﬂ'
j j (6)

The quantum simulation of the Ising spin chain with the transverse field by using trapped ions has
recently been proposed*.

This 1D system possesses the Z, symmetry. The parity operator P can be defined as (— 1)z§V %4 and
]‘[;V:1 o; for a fermionic chain and a spin chain, respectively. Therefore, each eigenstate has a definite
parity. It is either to be P=1 (even) or P=—1 (odd).

Majorana fermions
Majorana operators can be defined as®!°
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Figure 1. (Color online) In (a) energy gap AE versus interaction strength U, for N=12 and p=w. The
different interaction strengths A are denoted by the different lines: A = w (black solid), 2w (blue dashed),
3w (red dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively. In (b) log-log plot of energy gap
AE versus N, for y=w, A =5w and U= 8w.

czj_lza}—i—aj, czj:i(aT— aj). (7)
The Majorana operators satisfy the anti-commutation rules, and also they are Hermitian operators. In
fact, the Hamiltonian of a fermonic chain can be expressed in terms of Majorana operators®!®. A pair
of unbound Majorana fermions exhibit at the ends of a chain and the remaining Majorana fermions
are bounded in pair®'®. The pair of unbound Majorana fermions (Majorana modes) are shown when
the system has the two-fold ground-state degeneracy, where the two degenerate ground states have the
different parities.
The Majorana modes can exhibit even if the fermions interact with their nearest neighbours**. This
can be indicated by examining the ground-state degeneracy. We calculate the energy difference between
the two ground states with the different parities. It can be defined as*

AE = ‘Ele - Elo‘v (8)

where E/ and E; are the ground-state eigen-energies in the even- and odd-parities, respectively. If AE
is zero, then the system supports the Majorana modes®.

We numerically solve the Hamiltonian in Eq. (6) by using exact diagonalization. In Fig. 1(a), we plot
the energy difference AE as a function of interaction strength U, for the different interaction strengths
A. The zero energy gap is shown, this implies that the Majorana modes exist. When A increases, the
broader range of interaction strength U can be obtained. We also study the relation of the energy gap and
the size N of system. In Fig. 1(b), we plot AE verus N in the logarithmic scale. The energy gap exponen-
tially decreases as the size N. This shows that the feature of topological degeneracy!®.
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Figure 2. (Color online) Schematic of phase diagram of the XYZ model (see, e.g.>>"?”**). The red line is
marked for the transition when =0 and U< —2(1+ |A|/w)w.

Phase diagram
To understand the ground-state properties of the system, we briefly discuss the phase diagram. To facil-
itate our discussion, we recast the Hamiltonian in Eq. (6) as

w A A
oz = ?Z{[l + ;]UJ?CU]{H + [1 - ;]U]?’Uj};l
j

U z __z
T2

_ B,z
2; ! )

Indeed, it is the XYZ model?>*. Note that the system is invariant if the sign of y is changed, i.e., p— — pu.
This can be seen by transforming the spin operators 0% into —¢;**. The Hamiltonian Hyy; in Eq. (9)
remains unchanged.

The phase diagram of the XYZ model is known?-*"33. Let us briefly discuss their results. The sche-
matic of phase diagram as a function of y and U is shown in Fig. 2. This system has the four differ-
ent phases. They are trivial, topological, density-wave (DW) and incommensurate density-wave (IDW)
phases. The topological phase can be found by examining the energy difference AE in Eq. (8) between
the two ground states with the different parities*?. The DW and IDW phases can be found when the
two ground states occur in the same parity”’. The DW phase is also called the anti-ferromagnetic (AFM)
in which the total magnetization becomes zero in the z direction®’. But the IDW phase, which is termed
as floating phase?>?%, has a finite magnetization. Also, at the zero magnetic field (x=0), the system is
characterized by a ferromagnetic (FM) phase® for large negative U. When the magnetic field becomes
large, the system is in a trivial (PP) phase with a large magnetization which depends on the direction of
the magnetic field. There is a transition®® between them when U is less than —2(1+ |A|/w)w.

We examine the “finite-size” phase diagram by studying AE and the total magnetization M = 3 <sz >

in the z direction. In Fig. 3(a), the contour plot of AE is plotted as a function of ; and U. The topological
phase (TP) can be indicated when AE=0, i.e. the deep blue region in Fig. 3(a). Indeed, the topological
phase can be described by the two Néel states in the x-direction. A more detailed discussion can be found
in supplementary information. When the two ground states occur in the same parity, the DW and IDW
phases can be distinguished from the topological phase in Fig. 3(a). Also, the transition between the FM
and PP phases at zero p can also be indicated in Fig. 3(a). In addition, we plot the total magnetization
M versus p and U in Fig. 3(b). The trivial (PP) and DW (AFM) phases can be clearly shown. But the
transition between the topological phase and IDW phase cannot be distinguished by this method?®. By
comparing the energy gap and its parity and also the magnetization, we are able to determine the phase
which is labelled in Fig. 3(a). The transitions between the different phases cannot be manifestly shown
due to the relatively small size of the system.

In Fig. 4, we show the contour plot of AE versus p and U with a larger A =5w. In this case, the
region of nearly zero AE becomes larger than that in Fig. 3(a) since U increases. This means that the
topological phase can be obtained with a wider range of parameters. However, the topological phase
tends to shift to the right-hand side and it is smaller than that of the schematic phase diagram in Fig. 2
due to the finite-size effect.
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Figure 3. (Color online) Contour plots of AE and M versus interaction strengths 1 and U in (a,b)
respectively, for N=12 and A =w. In (a) the black dashed lines are marked to indicate that the two
ground states occur in the same parity. The red horizontal dotted line is marked for the parameters we
discussed in the subsequent figures. The different phases are labelled and the white dotted lines are used for
showing the phase region.
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Figure 4. (Color online) Contour plots of AE versus interaction strengths 1 and U, for N=12 and
A =5w. The red dotted horizontal line is marked for the parameters used in the subsequent figures.
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Decoherence
We consider the fermions to be coupled to an environment. This causes decoherence of the Majorana
modes. We study the two different types of noises which are dissipation and dephasing, respectively.

In general, the total Hamiltonian, which includes the system and bath and their interactions, can be
written as

H,=H+ Hy + Hy, (10)

where H, Hy and Hy; are the Hamiltonians of the system, bath and system-bath interactions, respectively.
It is convenient to express the Hamiltonian H, in terms of the system’s eigenstates, i.e.,

H = SE;n),, (] "

where E," is the eigen-energy of the n-th eigenstate |}, of the system in the even (a=e¢) and odd (av=0)
parities. In the interaction picture, the Hamiltonian Hp; can be written in terms of the eigenstate |n),, as

Hy() = 3 [n),, (nlHylm),, (m].

,f3,n,m

s oo gt
S g (nls;|m) &' EEDB (6) |n) (m],
whmmg T e (12)

where g; is the system-bath coupling strength, s; and B(t) are the system and bath operators at site j,
and o, f=e and o. Here we study the eigenstates of a spin chain which can be easier to numerically
implement.

For the low-frequency noise, we consider the frequency domain of the noise spectrum to be much
lower than the transition frequency between the degenerate ground states and their first excited states.
However, the two degenerate ground states are still subject to low-frequency noise.

In the case of high-frequency noise, the frequency domain of the noise spectrum is comparable to the
transition frequencies between the different eigenstates. We assume that the coupling between the system
and bath is weak so that the Born-Markovian approximation can be applied. At zero temperature, the
system maintains in the two degenerate ground states. We have also assumed that the coupling between
the two degenerate ground states and the bath is zero for this environment. However, the bath will induce
the transitions between the degenerate ground states and higher excited states at finite temperature. In
the subsequent discussion, we will study the low- and high-frequency regimes in the different types of
noises.

Dissipation. In this subsection, we discuss the effect of dissipation on the Majorana modes. The
Hamiltonian of system-bath interaction, which describes the dissipation, is of the form:

Hy =Y g.(c]+¢;)B;
RN (13)

where g; and B; are the system-bath coupling strength and the bath operator, respectively. Here each
fermion independently couples to a fermionic bath. Such dissipation noise leads to transitions between
the eigenstates in the different parities. Transitions between the eigenstates in the different parities is
shown in Fig. 5(a).

Low-frequency noise. Here we consider the low-frequency noise to be dominant. The frequency domain
of the noise spectrum is much lower than the transition frequency between the two degenerate ground
states and their first excited states. The Hamiltonian, describes the interaction between the two degener-
ate ground states and the bath, can be written as

Hp = Zgjcfl‘lmeo (1|eiAﬁtB (t) +H.c., (14)
j

where le-l = (1fe; + c}|1) , Al = Ef — E/, and B(¢) is a time-dependent bath operator. Here AJ] is
very close to zero. It should'be noted that the the dissipation does not cause the energy damping to the
two ground states in the low-frequency noise, but it leads to decoherence.

We assume that the system-bath coupling strengths g;~ g are nearly equal. The coupling strength
between the two ground states and the bath is given by

L =& chl'l :
j (15)

SCIENTIFIC REPORTS | 5:12530 | DOI: 10.1038/srep12530 6



www.nature.com/scientificreports/

(a) Dissipation (b) Dephasing
3 T T T AT ) T
& - - ~ '
- v A
A A i
even odd even odd

Figure 5. (Color online) Transitions between eigenstates via dissipation in (a) and dephasing in (b). In
(a) dissipation induces the transitions between the eigenstates with the different parities. In (b) dephasing
induces the transitions in the same parity. In both cases, transitions between the two degenerate states occur
via low-frequency noise, and transitions between higher excited states occur through high-frequency noise at
finite temperature.
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Figure 6. (Color online) Parameter ~; versus interaction strength U, for N=12 and p=w. The different
interaction strengths A are denoted by the different lines: A = w (black solid), 2w (blue dashed), 3w (red
dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively. In the inset, the parameter +y; versus N,
for p=w, A=5wand U= 8w.

The decoherence rate is closely related to the parameter ;. In fact, the decoherence rate also depends on
the explicit property of the noise spectrum®. For example, we consider 1/f noise which can be described
by the spin fluctuator model. The decoherence rate is proportional to the ratio of 7, to 7 where ; is
the switching rate of spin fluctuator. Therefore, the parameter -, plays an important role to describe the
decoherence effect. Here we investigate the parameter ~; only. This parameter ; can reflect how strong
the decoherence effect is. In Fig. 6, we plot 7, versus the interaction strength U, for the different strengths
A. The parameter -y, decreases as U increases. This means that the interactions between fermions can
reduce the decoherence rate in the low-frequency regime. In addition, we plot 7, versus N in the inset
of Fig. 6. The parameter ; is nearly constant when the system N grows. We briefly discuss why this
parameter ; does not depend on N in supplementary information.
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High-frequency noise. Now we study the effect of dissipation on the Majorana modes, where the fre-
quency domain of the noise spectrum is comparable to the transition frequencies between the different
eigenstates. We assume that this high-frequency noise does not affect the dynamics between the two
degenerate ground states, where their transition frequency is nearly zero. We consider that the environ-
ment can be modelled by a bath of fermions. In the interaction picture, the Hamiltonian of system-bath
coupling can be written as

Hg = Zzg m\e (ka e bT e’“’nf) +H.c.,
j,kn,m (]6)

where CI"™ = (n|c; + c;f|m)o and A’ = E; — E,. The coupling strength g is much smaller than
| A% 4 o, |, where A%? >0 and n>m. Therefore, we can apply the rotating-wave-approximation
(RWA) to ignore the fast-oscillating terms. The Hamiltonian can be written as

Hy = Y57, C"|n),, (m|b, S o

j.k nm (17)

We assume that the Born-Markovian approximation can be applied to this system. The master equa-
tion can be derived® in the dressed-state picture which can provide the correct steady state even for a
strongly interacting system. The master equation, which describes the dissipation, can be written as®*

p=—ilH, pl + > Ufl = 7 (A5 |L(Im),, (n])p

+ 2Tt (A5 £(|m),, (m]) p

(18)

where T, = 27d (A% )g*>" ‘C"'” and d (A,,) is the density of states, g, ~g and n > m. The param-
eter7i; (A}),) = lexp(hAG, /kpT) + 1]"! is the mean occupation number for fermions at the frequency

AY . where kg is the Boltzmann constant and T is the temperature. The superoperator £ (p) is of the
Lindblad form as®

1
L(p) = sps’ — E(psTs + sTsp), (19)

where s = |m) (n| and m < n.

The master equation in Eq. (18) is valid if there is no degeneracy between the transitions*. We assume
that there is no degeneracy between the transitions in deriving the master equation in Eq. (18). The
energy difference A}, is large enough and the system-bath coupling g, is sufficiently weak. Therefore,

the RWA can be applied to the master equation to ignore the fast- 0sc1ll1at1ng terms®. Although it may
encounter the accidental degeneracy of the transitions between the higher excited states, we can ignore
those transitions within the coherence time of the degenerate ground states at low temperature. The
master equation can give a reasonably good approximation to describe the dynamics of the Majorana
modes.

In Fig. 7(a,b), we plot the energy differences, |Af;| and |A%]],
four eigen-energies in their opposite parities, respectively. The energy difference decreases when the
system exhibits the Majorana fermions, i.e., AE=0 for A =5w in Fig. 1. Therefore, the mean number

(Ae" ) increases. Also, it should be noted that the degeneracy between the higher excited states occurs
as shown in Fig. 7(a,b). This master equation can still be used to describe the dissipative dynamics in the
wide range of parameters except those degeneracy pomts

The d15$1pat10n rate I, is proportional to 3 |C”m Let us denote the parameters " and "' to be

Z |C1n and Z Cnl
and higher exc1ted states in the opposite parity. In Fig. 7(c,d), we plot the parameters ~." and "' versus
U, where n=2, 3, 4 and 5. These two parameters decreases when U increases. Thus, the dissipation rates
I'}, and I, also decrease. We can see that the interchange of the parameters 'y(iz and 7;3 occurs around
U="7w in Fig. 7(c,d). It is because the two energy levels avoid crossing around U= 7w in Fig. 7(a,b), and
the wavefunction must be contmuous at this point. Although the mean number 71 ;(A}],) increases as U
increases, the parameters ., and 7,2 decreases. Therefore, I, decreases if the temperature T is suf-
ficiently low. The interaction between fermions can reduce the eéect of d1551pat10n at low temperature.
Also, we study the relationship between the behaviours of v, and 7' and the system’s size. In Fig. 8,

we plot the two parameters +,." and "' versus N, for n=2, 3. The parameters %a and fyeal decreases with
small N, and then slightly increases when N becomes larger. The parameters +,.> and ~, ! decrease with
N. Besides, the parameters > (%182) and ('yoe ) start to converge at N= 16 in Fig. 8.

, respectively. These parameters give the transition rates between the ground state
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Figure 7. (Color online) Energy differences versus U in (a,b). The energy differences |A{7| = |E{ — E; |
and |A}]| = |E{ — E,| are plotted in (a,b) respectively. The different transitions n are denoted by the
different lines: n=2 (black solid), 3 (blue dashed), 4 (red dotted) and 5 (green dot-dash), respectively.
Parameters 4" and "' are plotted versus U in (c,d). The different transitions # are denoted by the different
symbols: n=2 (black circle), 3 (blue square), 4 (red upper triangle) and 5 (green diamond), respectively.
Parameters are used: N=12, u=w and A =5w.

Dephasing. We study the effect of dephasing on the Majorana modes. In contrast to the case of
dissipation, the dephasing noise gives rise to the transitions between the eigenstates in the same parity.
In this model, the fermions are coupled to a common bosonic bath. The Hamiltonian, describes the
system-bath coupling, is given by

Hp =33 cjc;B
jlor

j (20)
where Z is the coupling strength at site j and B is the bath operator. This decoherence model is similar

to the model discussed in'®. Dephasing can induce the transitions between the eigenstates of the system
which are summarized in Fig. 5(b).

Low-frequency noise. We study the effect of dephasing in the low-frequency regime. In this regime,
we can express this Hamiltonian in terms of eigenstates of the two lowest degenerate states. Now the
Hamiltonian is given by
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Figure 8. (Color online) Parameters v and ~"*! versus N, for n=2,3. In (a) 7> and 7’ are denoted by
black circle and red square, respectively. In (b) 72! and ~,)! are denoted by blue diamond and green upper
triangle, respectively. The parameters are used: pt=w, A =5w and U= 8w.

%=Zﬂw 11+ Dy 2),, (21)B (1),

L5 (02 - o) (1, 01 — [2),, 2)5(0)
J
1 11 11

+ E(Dej + Dy )B(1), (21)

where g ; is the coupling strength, Delj1 and D;jl aree (1|c}c j1),ando (1|c}L ¢;|1),, respectively. The effective
coupling strength between the Majorana modes and bath is

205 = i)

j

=%

(22)

where g, is roughly equal to g. We study the relationship between the coupling strength 7, and the
interaction strength U. In Fig. 9, we plot the parameter 7, versus U, for the different strengths A. The
numerical results show that 7, can reach nearly zero when the Majorana modes exhibit (AE=0 in
Fig. 1). This shows that Majorana modes are robust against the low-frequency dephasing noise. In fact,
this can be easily understood by writing the fermion operator in terms of spin operators. From Eq. (5),

we have cjc] (sz + 1)/2. It will flip the spin state from |0) (|1)x) to 1) (|0)x) It gives e (l\c;cj|1)e

and o (1|c]c ¢jcj|1), to be 0.5 if the two degenerate ground states can be approximately described by the two
Neéel states. Therefore, the parameter 7, is nearly zero.
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Figure 9. (Color online) Parameter 5, versus interaction strength U, for N=12 and p=w. The different
interaction strengths A are denoted by the different lines: A =w (black solid), 2w (blue dashed), 3w (red
dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively.

High-frequency noise. We consider the frequency domain of the noise spectrum to be comparable to
the transition frequency between the different eigenstates. We presume that the high-frequency noise
will not affect the dynamics between the two degenerate ground states. We follow the similar treatment
in the previous subsection to study the high-frequency noise. We assume that the coupling between the
system and bosonic bath is sufficiently weak, so that the RWA can be applied. In the interaction picture,
the Hamiltonian of system-bath coupling can be approximated as

HB,:EZgD"m\ m|be(a f)t—i—H.c.,
jika,nm (23)

where D" = a<n|c;rcj\m)a and A| = E® — E%, a=e, o. Here the energy difference A, is positive
and n>m.

The master equation can be obtained by using the Born-Markovian approximation®. The master
equation, describes the dephasing noise, can be written as

p=—ilH, p] + anmnb(Anm)c(\m>m< )p

+ Zrnm + nb nm) (‘n)aa <m|)p7 (24)

where T, = Zﬂd(Anm)g |Z D,

Ty ( A ) is the mean occupation number for the bosons, at the frequency A .. and the temperature T.
Here we have assumed that there is no degeneracy in the transrtlons

In Fig. 10(a,b), we plot the energy dlfferences(i ‘ and | A ol between the ground state and the first
four excited states in the same parity. The energy ifference decreases when U increases. The mean num-

2) Q(Za ) is the density of states, gj ~ :g' and n > m. The parameter

ber 7, (sz) also increases with U. Then, we study the parameters 7 = |Z D(l);’| as a function of U.
They are proportional to the dephasing rate fim. In Fig. 10(c,d), we plot 7" and 7" versus U, where
n=2, 3, 4 and 5 For even-parity transitions, the parameter 72 increases and then decreases when U
attain 7w, and 7. are much smaller than 7. for higher n. In the case of odd-parity transitions, the
parameters 7' decreases when U increases. The parameter 7> is nearly zero. However, ' increases as
U becomes larger. Since the energy difference between the ground state and the third and forth excited
states are larger, this transition is less important compared to the other transitions with the smaller
energy gaps. The effect of dephasing, I}, 7, should be small if the temperature is sufficiently low.

We also study the behaviours of the parameters 5" and 7", for the different system’s sizes. In Fig. 11,
we plot the parameters 7. and 7" versus N. The results are different for the even- and odd-number of
fermions. The parameter 7 ef, is much smaller(larger) than 72’ in the even(odd)-number case. Similarly,

4'2 is much smaller(larger) than 7 if N is even(odd).
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Figure 10. (Color online) Energy differences versus U in (a,b). The energy differences |Zin| = |E{ — E,|
and |A,,| = |E{ — E, | are plotted in (a,b), respectively. The different transitions » are denoted by the
different lines: n=2 (black solid), 3 (blue dashed), 4 (red dotted) and 5 (green dot-dash), respectively. In
(c,d), the parameters ’75’ and f~yll,;’ are plotted versus U. The different transitions # are denoted by the different
lines: n=2 (black circle), 3 (blue square), 4 (red upper triangle) and 5 (green diamond), respectively.
Parameters are used: N=12, y=w and A =5w.

Discussion

We have investigated the two general types of noises which are dissipation and dephasing, respectively.
The low- and high-frequency noises are also discussed in each type of noise. Although we have not
discussed the noise source for a specific environment, our study should capture the essential feature of
the decoherence properties for various types of environment. We show the examples that long-range
interactions between the fermions can change the decoherence properties of the Majorana modes. This
is the main result of our paper.

In addition, our study is related to the fundamental problem in quantum mechanics. It is an impor-
tant question on the validity of quantum mechanics in the macroscopic regime®®*. Indeed, studies of
macroscopic superpositions® shed light on this fundamental question®. One can consider to create a
superpositions of the two degenerate ground states of a fermonic chain which can be realized by either
a 1D topological superconductor® or trapped-ion chain®?. Although it is impossible to create the super-
position states of two Majorana fermions of a single chain'”?"*! according to the superselection rule, it
can be resolved by encoding the states by using the four Majorana fermions with two fermionic chains.
We assume that decoherence does not set in between the two chains. Our present analysis can then be
directly applied to this case. For a spin chain, the superposition of two degenerate ground states can be
created. The similar study can also be done. In fact, the fermionic and spin chains can be regarded as
macroscopic systems. Thus, the decoherence properties of Majorana modes is important to understand
the behavior of such superposition states.

SCIENTIFIC REPORTS | 5:12530 | DOI: 10.1038/srep12530 12



www.nature.com/scientificreports/

(a) 0.16
0.12
1n0.08

0.04

(c) 0.1

0.075

~1n

Vee

0.025

(b) 02— . . .

. 0.15

~

Vo 0.1}

. 0.05

0.05+

o

[0}

0

co®
BN
o el

(d) 0.16— . . .

I 0.12

n

~1
7 700

<&

0.08

1 0.04

1 1 1 A A 1

ni]

m

[ [ [
T T T

N N
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Conclusion

In summary, we have studied the effect of dissipation and dephasing on the Majorana modes of a fermi-
onic chain in the presence of the nearest neighbor interactions between the fermions. The dissipation and
dephasing noises can induce the parity- and non-parity preserving transitions. We have also investigated
the low- and high-frequency noises to describe the different kinds of environment. We show the exam-
ples that the dissipation and dephasing rates can be reduced by increasing the interaction strength at the
sufficiently low temperature. This means that the coherence time of Majorana fermions can be extended.
It may be useful to the applications of QIP. In addition, we have studied the relationship between the
decoherence rate and the system’s size.
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