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Decoherence of interacting 
Majorana modes
H. T. Ng

We study the decoherence of Majorana modes of a fermion chain, where the fermions interact with 
their nearest neighbours. We investigate the effect of dissipation and dephasing on the Majorana 
modes of a fermionic chain. The dissipative and dephasing noises induce the non-parity- and parity-
preserving transitions between the eigenstates of the system, respectively. Therefore, these two 
types of noises lead to the different decoherence mechanisms. In each type of noise, we discuss the 
low- and high-frequency regimes to describe the different environments. We numerically calculate 
the dissipation and dephasing rates in the presence of long-range interactions. We find that the 
decoherence rate of interacting Majorana modes is different to that of non-interacting modes. 
We show the examples that the long-range interactions can reduce the decoherence rate. It is 
advantageous to the potential applications of quantum information processing.

Majorana fermions are exotic particles1 which show non-abelian statistics2–4. Indeed, non-abelian sta-
tistics is necessary for performing topological quantum computation5 which is a kind of fault-tolerant 
quantum computation. Thus, the study of Majorana fermions is of fundamental importance and also it 
is useful to the applications of quantum information processing (QIP).

Kitaev predicted that an unbound pair of Majorana fermions6 exhibits at the two ends of a spin-polarized 
one-dimensional (1D) superconductor. This provides a promising way to realize Majorana fermions. 
Recently, a number of methods has been proposed to simulate Majorana fermions in a 1D system such 
as by using a semiconductor nanowire7,8 and cold atoms in an optical lattice9,10.

Decoherence severely hinders the performance of QIP applications which rely on quantum coher-
ence11. The various approaches have been proposed to combat against decoherence such as quantum 
error correction12,13 and dynamical decoupling techniques14,15, etc. Remarkably, Majorana fermions are 
robust against local perturbations16 due to a large energy gap from the two degenerate ground states. 
It is believed that they can be exploited without further protection. Still, they suffer from decoherence. 
Recently, decoherence of Majorana modes has been studied in more detail17–22. The noises sources from 
the different physical settings have also been discussed19–21.

In addition, the effects of long-range interactions between fermions on the Majorana modes23–28 have 
recently been studied. The long-range interactions can broaden the range of parameters for exhibiting 
Majorana fermions23,28. It is natural to ask the effect of long ranged interactions on decoherence of the 
Majorana modes. In this paper, we study the decoherence rate of Majorana modes of a chain of spinless 
fermions in the presence of long-range interactions between fermions. Our study is helpful to understand 
the relationship between interactions and the decoherence properties in a many-body system.

We study the two typical noises in the system, where they are dissipation and dephasing, respectively. 
These two types of noises are widely studied in the context of open quantum problems and also they 
are two main forms of decoherence occurring in quantum computing29. Dissipation and dephasing lead 
to the different decoherence mechanisms of Majorana modes. Dissipation induces the non-parity pre-
serving transitions between the eigenstates of the system while dephasing gives rise to parity preserving 
transitions.

Moreover, we investigate the low- and high-frequency noises to describe the different types of envi-
ronment. The frequency domain of the low-frequency noise spectrum is much lower than the transition 
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frequency of the two degenerate ground states and their first excited states. For example, the low-frequency 
noise can be described by the 1/f-noise30 which commonly occurs in the solid-state devices. On the other 
hand, the high-frequency noise is to describe the environment in which the frequency domain of the 
noise spectrum is comparable to the transition frequencies between the different eigenstates. We consider 
the high-frequency baths to be Markovian in this paper.

We show the examples that the long ranged interactions between fermions can reduce the decoher-
ence rates. In fact, the dissipation and dephasing rates depend on the collective properties of fermions 
which can be changed by the interactions between the fermions. As a result, long ranged interactions can 
change the decoherence properties of Majorana modes. In this way, the coherence time of the Majorana 
modes can be prolonged by appropriately choosing the interaction parameters. It may be useful for 
Majorana-based applications4,5,31.

System
Majorana modes occur in a spin-polarized 1D superconductor6. This 1D superconductor can be described 
by a chain of spinless fermions with an open boundary condition. The Hamiltonian of this fermionic 
system is given by, (ħ =  1),
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where cj and †cj  are annihilation and creation fermionic operators at site j. The parameters w, Δ  and μ 
are the tunneling strength, superconducting gap and chemical potential, respectively.

We consider the fermions to be interacted with their nearest neighbors. The Hamiltonian, describes 
long-range interaction24, is written as,
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where U is the repulsive interaction strength between the nearest neighbours.
A fermionic chain can be mapped onto a spin chain by applying the Jordan-Wigner transforma-

tion16. The fermionic operators are related to spin-half operators via the Jordan-Wigner transformation 
as follows:
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where σ±j  and σj
z are the Pauli spin operators at site j. The Hamiltonian H =  H1D +  HU of the system can 

be recast as
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The quantum simulation of the Ising spin chain with the transverse field by using trapped ions has 
recently been proposed32.

This 1D system possesses the 2 symmetry. The parity operator P can be defined as (− )∑
†

1 a aj
N

j j and 
σ∏ =j

N
j
z

1  for a fermionic chain and a spin chain, respectively. Therefore, each eigenstate has a definite 
parity. It is either to be P =  1 (even) or P =  − 1 (odd).

Majorana fermions
Majorana operators can be defined as6,16
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( )= + , = − . ( )−
† †c a a c i a a 7j j j j j2 1 2

The Majorana operators satisfy the anti-commutation rules, and also they are Hermitian operators. In 
fact, the Hamiltonian of a fermonic chain can be expressed in terms of Majorana operators6,16. A pair 
of unbound Majorana fermions exhibit at the ends of a chain and the remaining Majorana fermions 
are bounded in pair6,16. The pair of unbound Majorana fermions (Majorana modes) are shown when 
the system has the two-fold ground-state degeneracy, where the two degenerate ground states have the 
different parities.

The Majorana modes can exhibit even if the fermions interact with their nearest neighbours23,28. This 
can be indicated by examining the ground-state degeneracy. We calculate the energy difference between 
the two ground states with the different parities. It can be defined as23

Δ = − , ( )E E E 8e o
1 1

where E e
1  and E o

1  are the ground-state eigen-energies in the even- and odd-parities, respectively. If Δ E 
is zero, then the system supports the Majorana modes23.

We numerically solve the Hamiltonian in Eq. (6) by using exact diagonalization. In Fig. 1(a), we plot 
the energy difference Δ E as a function of interaction strength U, for the different interaction strengths 
Δ . The zero energy gap is shown, this implies that the Majorana modes exist. When Δ  increases, the 
broader range of interaction strength U can be obtained. We also study the relation of the energy gap and 
the size N of system. In Fig. 1(b), we plot Δ E verus N in the logarithmic scale. The energy gap exponen-
tially decreases as the size N. This shows that the feature of topological degeneracy16.

Figure 1.  (Color online) In (a) energy gap Δ E versus interaction strength U, for N =  12 and μ =  w. The 
different interaction strengths Δ  are denoted by the different lines: Δ  =  w (black solid), 2w (blue dashed), 
3w (red dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively. In (b) log-log plot of energy gap 
Δ E versus N, for μ =  w, Δ  =  5w and U =  8w.
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Phase diagram
To understand the ground-state properties of the system, we briefly discuss the phase diagram. To facil-
itate our discussion, we recast the Hamiltonian in Eq. (6) as
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Indeed, it is the XYZ model25,33. Note that the system is invariant if the sign of μ is changed, i.e., μ →  − μ. 
This can be seen by transforming the spin operators σ ,j

x z into σ− ,
j
x z. The Hamiltonian HXYZ in Eq. (9) 

remains unchanged.
The phase diagram of the XYZ model is known25–27,33. Let us briefly discuss their results. The sche-

matic of phase diagram as a function of μ and U is shown in Fig.  2. This system has the four differ-
ent phases. They are trivial, topological, density-wave (DW) and incommensurate density-wave (IDW) 
phases. The topological phase can be found by examining the energy difference Δ E in Eq. (8) between 
the two ground states with the different parities23,27. The DW and IDW phases can be found when the 
two ground states occur in the same parity27. The DW phase is also called the anti-ferromagnetic (AFM) 
in which the total magnetization becomes zero in the z direction33. But the IDW phase, which is termed 
as floating phase25,26,33, has a finite magnetization. Also, at the zero magnetic field (μ =  0), the system is 
characterized by a ferromagnetic (FM) phase33 for large negative U. When the magnetic field becomes 
large, the system is in a trivial (PP) phase with a large magnetization which depends on the direction of 
the magnetic field. There is a transition33 between them when U is less than − 2(1 +  |Δ |/w)w.

We examine the “finite-size” phase diagram by studying Δ E and the total magnetization σ= ∑M j j
z  

in the z direction. In Fig. 3(a), the contour plot of Δ E is plotted as a function of μ and U. The topological 
phase (TP) can be indicated when Δ E =  0, i.e. the deep blue region in Fig. 3(a). Indeed, the topological 
phase can be described by the two Néel states in the x-direction. A more detailed discussion can be found 
in supplementary information. When the two ground states occur in the same parity, the DW and IDW 
phases can be distinguished from the topological phase in Fig. 3(a). Also, the transition between the FM 
and PP phases at zero μ can also be indicated in Fig. 3(a). In addition, we plot the total magnetization 
M versus μ and U in Fig. 3(b). The trivial (PP) and DW (AFM) phases can be clearly shown. But the 
transition between the topological phase and IDW phase cannot be distinguished by this method33. By 
comparing the energy gap and its parity and also the magnetization, we are able to determine the phase 
which is labelled in Fig. 3(a). The transitions between the different phases cannot be manifestly shown 
due to the relatively small size of the system.

In Fig.  4, we show the contour plot of Δ E versus μ and U with a larger Δ  =  5w. In this case, the 
region of nearly zero Δ E becomes larger than that in Fig.  3(a) since U increases. This means that the 
topological phase can be obtained with a wider range of parameters. However, the topological phase 
tends to shift to the right-hand side and it is smaller than that of the schematic phase diagram in Fig. 2 
due to the finite-size effect.

Figure 2.  (Color online) Schematic of phase diagram of the XYZ model (see, e.g.25–27,33). The red line is 
marked for the transition when μ =  0 and U <  − 2(1 +  |Δ |/w)w.
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Figure 3.  (Color online) Contour plots of ΔE and M versus interaction strengths μ and U in (a,b) 
respectively, for N =  12 and Δ  =  w. In (a) the black dashed lines are marked to indicate that the two 
ground states occur in the same parity. The red horizontal dotted line is marked for the parameters we 
discussed in the subsequent figures. The different phases are labelled and the white dotted lines are used for 
showing the phase region.

Figure 4.  (Color online) Contour plots of ΔE versus interaction strengths μ and U, for N = 12 and 
Δ = 5w. The red dotted horizontal line is marked for the parameters used in the subsequent figures.
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Decoherence
We consider the fermions to be coupled to an environment. This causes decoherence of the Majorana 
modes. We study the two different types of noises which are dissipation and dephasing, respectively.

In general, the total Hamiltonian, which includes the system and bath and their interactions, can be 
written as

= + + , ( )H H H H 10t B BI

where H, HB and HBI are the Hamiltonians of the system, bath and system-bath interactions, respectively. 
It is convenient to express the Hamiltonian Ht in terms of the system’s eigenstates, i.e.,

∑= ,
( )

α
ααH E n n

11n
n

where αEn  is the eigen-energy of the n-th eigenstate |n〉 α of the system in the even (α =  e) and odd (α =  o) 
parities. In the interaction picture, the Hamiltonian HBI can be written in terms of the eigenstate |n〉 α as
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where gj is the system-bath coupling strength, sj and Bj(t) are the system and bath operators at site j, 
and α, β =  e and o. Here we study the eigenstates of a spin chain which can be easier to numerically 
implement.

For the low-frequency noise, we consider the frequency domain of the noise spectrum to be much 
lower than the transition frequency between the degenerate ground states and their first excited states. 
However, the two degenerate ground states are still subject to low-frequency noise.

In the case of high-frequency noise, the frequency domain of the noise spectrum is comparable to the 
transition frequencies between the different eigenstates. We assume that the coupling between the system 
and bath is weak so that the Born-Markovian approximation can be applied. At zero temperature, the 
system maintains in the two degenerate ground states. We have also assumed that the coupling between 
the two degenerate ground states and the bath is zero for this environment. However, the bath will induce 
the transitions between the degenerate ground states and higher excited states at finite temperature. In 
the subsequent discussion, we will study the low- and high-frequency regimes in the different types of 
noises.

Dissipation.  In this subsection, we discuss the effect of dissipation on the Majorana modes. The 
Hamiltonian of system-bath interaction, which describes the dissipation, is of the form:

( )∑= + ,
( )

†H g c c B
13

BI
j

j j j j

where gj and Bj are the system-bath coupling strength and the bath operator, respectively. Here each 
fermion independently couples to a fermionic bath. Such dissipation noise leads to transitions between 
the eigenstates in the different parities. Transitions between the eigenstates in the different parities is 
shown in Fig. 5(a).

Low-frequency noise.  Here we consider the low-frequency noise to be dominant. The frequency domain 
of the noise spectrum is much lower than the transition frequency between the two degenerate ground 
states and their first excited states. The Hamiltonian, describes the interaction between the two degener-
ate ground states and the bath, can be written as

∑= ( ) + . . ,
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where = + †C c c1 1j e j j o
11 , Δ = −E Eeo e o

11 1 1 , and B(t) is a time-dependent bath operator. Here Δeo
11 is 

very close to zero. It should be noted that the the dissipation does not cause the energy damping to the 
two ground states in the low-frequency noise, but it leads to decoherence.

We assume that the system-bath coupling strengths gl ≈  g are nearly equal. The coupling strength 
between the two ground states and the bath is given by

∑γ = .
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g C
15

L
j

j
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The decoherence rate is closely related to the parameter γL. In fact, the decoherence rate also depends on 
the explicit property of the noise spectrum30. For example, we consider 1/f noise which can be described 
by the spin fluctuator model. The decoherence rate is proportional to the ratio of γL to γf, where γf is 
the switching rate of spin fluctuator. Therefore, the parameter γL plays an important role to describe the 
decoherence effect. Here we investigate the parameter γL only. This parameter γL can reflect how strong 
the decoherence effect is. In Fig. 6, we plot γL versus the interaction strength U, for the different strengths 
Δ . The parameter γL decreases as U increases. This means that the interactions between fermions can 
reduce the decoherence rate in the low-frequency regime. In addition, we plot γL versus N in the inset 
of Fig.  6. The parameter γL is nearly constant when the system N grows. We briefly discuss why this 
parameter γL does not depend on N in supplementary information.

Figure 5.  (Color online) Transitions between eigenstates via dissipation in (a) and dephasing in (b). In 
(a) dissipation induces the transitions between the eigenstates with the different parities. In (b) dephasing 
induces the transitions in the same parity. In both cases, transitions between the two degenerate states occur 
via low-frequency noise, and transitions between higher excited states occur through high-frequency noise at 
finite temperature.

Figure 6.  (Color online) Parameter γL versus interaction strength U, for N = 12 and μ = w. The different 
interaction strengths Δ  are denoted by the different lines: Δ  =  w (black solid), 2w (blue dashed), 3w (red 
dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively. In the inset, the parameter γL versus N, 
for μ =  w, Δ  =  5w and U =  8w.
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High-frequency noise.  Now we study the effect of dissipation on the Majorana modes, where the fre-
quency domain of the noise spectrum is comparable to the transition frequencies between the different 
eigenstates. We assume that this high-frequency noise does not affect the dynamics between the two 
degenerate ground states, where their transition frequency is nearly zero. We consider that the environ-
ment can be modelled by a bath of fermions. In the interaction picture, the Hamiltonian of system-bath 
coupling can be written as

( )∑∑= + + . . ,
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ω ω
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16
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j k n m

j j
nm

eo
i t

j
i t

j
i t

k

nm
eo

k
jk

k
jk

where = + †C n c c mj
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e j j o
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m
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 is much smaller than 

ωΔ +nm
eo

jk
, where Δ ≥ 0nm

eo  and n >  m. Therefore, we can apply the rotating-wave-approximation 
(RWA) to ignore the fast-oscillating terms. The Hamiltonian can be written as
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We assume that the Born-Markovian approximation can be applied to this system. The master equa-
tion can be derived34 in the dressed-state picture which can provide the correct steady state even for a 
strongly interacting system. The master equation, which describes the dissipation, can be written as34
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eter (Δ ) = ( Δ / ) + −n k T[exp 1]f nm

eo
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B
1 is the mean occupation number for fermions at the frequency 

Δnm
eo , where kB is the Boltzmann constant and T is the temperature. The superoperator  ρ( ) is of the 

Lindblad form as35
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where =s m n  and m <  n.
The master equation in Eq. (18) is valid if there is no degeneracy between the transitions34. We assume 

that there is no degeneracy between the transitions in deriving the master equation in Eq. (18). The 
energy difference Δnm

eo  is large enough and the system-bath coupling g jk
 is sufficiently weak. Therefore, 

the RWA can be applied to the master equation to ignore the fast-oscillating terms34. Although it may 
encounter the accidental degeneracy of the transitions between the higher excited states, we can ignore 
those transitions within the coherence time of the degenerate ground states at low temperature. The 
master equation can give a reasonably good approximation to describe the dynamics of the Majorana 
modes.

In Fig. 7(a,b), we plot the energy differences, Δ n
eo
1  and Δn

eo
1 , between the ground states and the first 

four eigen-energies in their opposite parities, respectively. The energy difference decreases when the 
system exhibits the Majorana fermions, i.e., Δ E =  0 for Δ  =  5w in Fig. 1. Therefore, the mean number 
(Δ )n f nm

eo  increases. Also, it should be noted that the degeneracy between the higher excited states occurs 
as shown in Fig. 7(a,b). This master equation can still be used to describe the dissipative dynamics in the 
wide range of parameters except those degeneracy points.

The dissipation rate Γ nm is proportional to ∑ Cj j
nm 2

. Let us denote the parameters γeo
n1  and γeo

n1 to be 

∑ Cj j
n1 2

 and ∑ Cj j
n1 2

, respectively. These parameters give the transition rates between the ground state 
and higher excited states in the opposite parity. In Fig. 7(c,d), we plot the parameters γeo

n1  and γeo
n1 versus 

U, where n =  2, 3, 4 and 5. These two parameters decreases when U increases. Thus, the dissipation rates 
Γ 1n and Γ n1 also decrease. We can see that the interchange of the parameters γα

12 and γα
13 occurs around 

U =  7w in Fig. 7(c,d). It is because the two energy levels avoid crossing around U =  7w in Fig. 7(a,b), and 
the wavefunction must be continuous at this point. Although the mean number (Δ )n f nm

eo  increases as U 
increases, the parameters γeo

n1  and γeo
n1 decreases. Therefore, Γ nnm f  decreases if the temperature T is suf-

ficiently low. The interaction between fermions can reduce the effect of dissipation at low temperature.
Also, we study the relationship between the behaviours of γeo

n1  and γeo
n1 and the system’s size. In Fig. 8, 

we plot the two parameters γeo
n1  and γeo

n1 versus N, for n =  2, 3. The parameters γeo
12 and γeo

21 decreases with 
small N, and then slightly increases when N becomes larger. The parameters γeo

13 and γeo
31 decrease with 

N. Besides, the parameters γ γ( )eo oe
12 12  and γ γ( )eo oe

13 13  start to converge at N =  16 in Fig. 8.
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Dephasing.  We study the effect of dephasing on the Majorana modes. In contrast to the case of 
dissipation, the dephasing noise gives rise to the transitions between the eigenstates in the same parity. 
In this model, the fermions are coupled to a common bosonic bath. The Hamiltonian, describes the 
system-bath coupling, is given by

∑= ,
( )



†H g c c B
20

BI
j

j j j

where g j is the coupling strength at site j and B is the bath operator. This decoherence model is similar 
to the model discussed in19. Dephasing can induce the transitions between the eigenstates of the system 
which are summarized in Fig. 5(b).

Low-frequency noise.  We study the effect of dephasing in the low-frequency regime. In this regime, 
we can express this Hamiltonian in terms of eigenstates of the two lowest degenerate states. Now the 
Hamiltonian is given by

Figure 7.  (Color online) Energy differences versus U in (a,b). The energy differences Δ = −E En
eo e

n
o

1 1  
and Δ = −E En

eo o
n
e

1 1  are plotted in (a,b) respectively. The different transitions n are denoted by the 
different lines: n =  2 (black solid), 3 (blue dashed), 4 (red dotted) and 5 (green dot-dash), respectively. 
Parameters γeo

n1  and γeo
n1 are plotted versus U in (c,d). The different transitions n are denoted by the different 

symbols: n =  2 (black circle), 3 (blue square), 4 (red upper triangle) and 5 (green diamond), respectively. 
Parameters are used: N =  12, μ =  w and Δ  =  5w.
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where 
g j

 is the coupling strength, Dej
11 and Doj

11 are †e c c1 1j j e
 and †o c c1 1j j o

, respectively. The effective 
coupling strength between the Majorana modes and bath is

( )∑γ = − ,
( )


g D D

22
L

j
ej oj
11 11

where 
g l is roughly equal to 

g . We study the relationship between the coupling strength γ
L and the 

interaction strength U. In Fig. 9, we plot the parameter γ
L versus U, for the different strengths Δ . The 

numerical results show that γ
L can reach nearly zero when the Majorana modes exhibit (Δ E =  0 in 

Fig. 1). This shows that Majorana modes are robust against the low-frequency dephasing noise. In fact, 
this can be easily understood by writing the fermion operator in terms of spin operators. From Eq. (5), 
we have ( )σ= + /†c c 1 2j j j

z . It will flip the spin state from ( )0 1x x
 to ( )1 0x x

. It gives †e c c1 1j j e
 

and †o c c1 1j j o
 to be 0.5 if the two degenerate ground states can be approximately described by the two 

Néel states. Therefore, the parameter γ
L is nearly zero.

Figure 8.  (Color online) Parameters γeo
1n and γeo

n1 versus N, for n = 2,3. In (a) γeo
12 and γeo

13 are denoted by 
black circle and red square, respectively. In (b) γeo

21 and γeo
31 are denoted by blue diamond and green upper 

triangle, respectively. The parameters are used: μ =  w, Δ  =  5w and U =  8w.
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High-frequency noise.  We consider the frequency domain of the noise spectrum to be comparable to 
the transition frequency between the different eigenstates. We presume that the high-frequency noise 
will not affect the dynamics between the two degenerate ground states. We follow the similar treatment 
in the previous subsection to study the high-frequency noise. We assume that the coupling between the 
system and bosonic bath is sufficiently weak, so that the RWA can be applied. In the interaction picture, 
the Hamiltonian of system-bath coupling can be approximated as

∑∑ ( )= + . . ,
( )α

α αα
ω

, , ,

Δ −
∼α

H g D n m b e H c
23

BI
j k n m

j j
nm

j
i tnm j

where =α α α
†D n c c mj

nm
j j  and Δ = −

α α α˜ E Enm n m, α =  e, o. Here the energy difference Δ
α˜
nm is positive 

and n >  m.
The master equation can be obtained by using the Born-Markovian approximation34. The master 

equation, describes the dephasing noise, can be written as





( )

( )

∑

∑

ρ ρ ρ

ρ

= − , + Γ (Δ )

+ Γ + (Δ ) ,
( )

α α
αα

α α
αα

∼

∼

∼

∼

 i H n m n

n n m

[ ]

[1 ]
24

nm
nm b nm

nm
nm b nm

where πΓ = (Δ ) ∑
∼α α

α




d g D2nm nm j j
nm2 2

, Ω(Δ )
∼α



nm  is the density of states, ≈ g gj
 and n >  m. The parameter 

(Δ )
∼α

nb nm  is the mean occupation number, for the bosons, at the frequency Δ
∼α

nm and the temperature T. 
Here we have assumed that there is no degeneracy in the transitions34.

In Fig. 10(a,b), we plot the energy differences Δ
∼

n
e
1  and Δ

∼
n

o
1  between the ground state and the first 

four excited states in the same parity. The energy difference decreases when U increases. The mean num-
ber (Δ )

∼α
nb nm  also increases with U. Then, we study the parameters γ = ∑αα α

Dn
j j

n1 1 2
 as a function of U. 

They are proportional to the dephasing rate Γαnm. In Fig.  10(c,d), we plot γ
ee

n1  and γ
oo

n1  versus U, where 
n =  2, 3, 4 and 5. For even-parity transitions, the parameter γ

ee
12 increases and then decreases when U 

attain 7w, and γ
ee

n1  are much smaller than γ
ee

12 for higher n. In the case of odd-parity transitions, the 
parameters γ

oo
12 decreases when U increases. The parameter γ

oo
13 is nearly zero. However, γ

oo
14 increases as 

U becomes larger. Since the energy difference between the ground state and the third and forth excited 
states are larger, this transition is less important compared to the other transitions with the smaller 
energy gaps. The effect of dephasing, Γα nnm b, should be small if the temperature is sufficiently low.

We also study the behaviours of the parameters γ
ee

n1  and γ
oo

n1 , for the different system’s sizes. In Fig. 11, 
we plot the parameters γ

ee
n1  and γ

oo
n1  versus N. The results are different for the even- and odd-number of 

fermions. The parameter γ
ee

12 is much smaller(larger) than γ
ee

13 in the even(odd)-number case. Similarly, 
γ
oo

12 is much smaller(larger) than γ
oo

13 if N is even(odd).

Figure 9.  (Color online) Parameter γ∼L versus interaction strength U, for N = 12 and μ = w. The different 
interaction strengths Δ  are denoted by the different lines: Δ  =  w (black solid), 2w (blue dashed), 3w (red 
dotted), 4w (yellow dash-dotted) and 5w (green solid), respectively.
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Discussion
We have investigated the two general types of noises which are dissipation and dephasing, respectively. 
The low- and high-frequency noises are also discussed in each type of noise. Although we have not 
discussed the noise source for a specific environment, our study should capture the essential feature of 
the decoherence properties for various types of environment. We show the examples that long-range 
interactions between the fermions can change the decoherence properties of the Majorana modes. This 
is the main result of our paper.

In addition, our study is related to the fundamental problem in quantum mechanics. It is an impor-
tant question on the validity of quantum mechanics in the macroscopic regime36,37. Indeed, studies of 
macroscopic superpositions38 shed light on this fundamental question37. One can consider to create a 
superpositions of the two degenerate ground states of a fermonic chain which can be realized by either 
a 1D topological superconductor6 or trapped-ion chain32. Although it is impossible to create the super-
position states of two Majorana fermions of a single chain17,21,31 according to the superselection rule, it 
can be resolved by encoding the states by using the four Majorana fermions with two fermionic chains. 
We assume that decoherence does not set in between the two chains. Our present analysis can then be 
directly applied to this case. For a spin chain, the superposition of two degenerate ground states can be 
created. The similar study can also be done. In fact, the fermionic and spin chains can be regarded as 
macroscopic systems. Thus, the decoherence properties of Majorana modes is important to understand 
the behavior of such superposition states.

Figure 10.  (Color online) Energy differences versus U in (a,b). The energy differences Δ = −
∼ E En

e e
n
e

1 1  
and Δ = −
∼ E En

o o
n
o

1 1  are plotted in (a,b), respectively. The different transitions n are denoted by the 
different lines: n =  2 (black solid), 3 (blue dashed), 4 (red dotted) and 5 (green dot-dash), respectively. In 
(c,d), the parameters γ

ee
n1  and γ

oo
n1  are plotted versus U. The different transitions n are denoted by the different 

lines: n =  2 (black circle), 3 (blue square), 4 (red upper triangle) and 5 (green diamond), respectively. 
Parameters are used: N =  12, μ =  w and Δ  =  5w.
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Conclusion
In summary, we have studied the effect of dissipation and dephasing on the Majorana modes of a fermi-
onic chain in the presence of the nearest neighbor interactions between the fermions. The dissipation and 
dephasing noises can induce the parity- and non-parity preserving transitions. We have also investigated 
the low- and high-frequency noises to describe the different kinds of environment. We show the exam-
ples that the dissipation and dephasing rates can be reduced by increasing the interaction strength at the 
sufficiently low temperature. This means that the coherence time of Majorana fermions can be extended. 
It may be useful to the applications of QIP. In addition, we have studied the relationship between the 
decoherence rate and the system’s size.
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