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Infrared vibrational spectroscopy is an effective technique which enables the direct probe of
molecular fingerprints, and such detection can be further enhanced by the emerging engineered
plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and
characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial,
and quantitatively analyze the molecule detection sensitivity and molecule-structure interactions.
A sharp, non-radiative Fano resonance supported by the plasmonic metamaterial exhibits strongly
enhanced near-field, and the resonance frequency is tailored to match the vibrational fingerprint
of the target molecule. By utilizing the near-field nature of the plasmonic excitation, significantly
enhanced absorption signal of molecules in the infrared spectroscopy are obtained, enabling
ultrasensitive detection of only minute quantities of organic molecules. The enhancement of
molecular absorption up to 105 fold is obtained, and sensitive detection of molecules at zeptomole
levels (corresponding to a few tens of molecules within a unit cell) is achieved with high signal-to-
noise ratio in our experiment. The demonstrated infrared plasmonic metamaterial sensing platform
offers great potential for improving the specificity and sensitivity of label-free, biochemical detection.

Plasmonic metamaterials and metasurfaces have exhibited a variety of exotic optical properties that go
beyond those achievable using natural materials, such as negative refractive index'?, indefinite permit-
tivity’~ and nonlinear polarization rotation by chiral metadevices®. Such extraordinary optical proper-
ties have enabled many unprecedented applications, ranging from perfect lenses” to invisible cloaking®,
perfect absorbing”!? to lasing spaser'™2. Among all the promising applications, biochemical sensing
techniques such as surface-enhanced Raman scattering (SERS)'® and surface-enhanced infrared absorp-
tion (SEIRA)' have been making significant progresses in recent years. As compared to earlier SEIRA
studies'>'¢ involving uncontrolled, chemically prepared or roughened metal surfaces, the emerging del-
icately engineered plasmonic metamaterials serve as a more powerful biochemical sensing platform,
based on either collective excitation of periodic nanostructures’’~* or local resonances of single met-
amolecules'®?. Both kinds of plasmonic metamaterials are of special interest from the standpoint of
quantitative biosensing with good specificity because large local near-field enhancement can be provided
exactly at the vibrational fingerprints of biomolecules in the mid-infrared spectroscopy (typically in the
3-6 um wavelength range)?'. However, for quite a few plasmonic enhanced biosensing devices, achiev-
ing the desired hot spots exhibiting strongly enhanced near-field typically requires nanometer-sized air
gap (<10nm) between plasmonic resonators??. Although a gap size smaller than 5nm can be realized
by delicate microfabrication processes?**, the exquisite control of plasmonic nanostructures within the
sub-10nm regime is still very challenging, especially for traditional microfabrication methods such as
electron beam lithography (EBL) limited by the proximity effect or focused ion beams (FIB) milling
affected by the second deposition processes.

Recently, alternative strategies relying on the coupling of surface plasmon polaritons or localized
surface plasmons in metallic nanostructures are emerging, e.g., Fano resonances®>? and analogue of
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Figure 1. Infrared plasmonic metamaterials fabricated on gold films. (a) Schematic of a unit cell of the
designed infrared plasmonic metamaterial and the incident light polarization configuration. (b) SEM image
of a selected nanostructure fabricated on a glass substrate. L, = 1.3 um, L, =0.48 ym, w= 0.3 um and
periodicities along x and y directions are P, = 1.7 um, P, = 1.9 um, respectively. Scale bar: 1 m.

electromagnetically induced transparency (EIT)*-¢. Fano resonances originate from the plasmonic
hybridization®” between two electromagnetic eigenmodes within a nanostructure, which are often dis-
tinguished as bright and dark modes that possess intrinsically different radiative losses. Though the
dark mode cannot be directly excited by the incident radiation, the plasmonic hybridization transfers
optical activity to the dark mode and yields sharp asymmetric resonances with high quality factors®.
Another important reason why Fano resonances have been drawing more attentions recently is that
less-complicated fabrication processes are required compared to the delicate biosensing devices men-
tioned above. For example, a simple Fano-resonator has been proposed by Wu et al. recently for the
detection and characterization of ultrathin multiprotein layers®®, showing attractive advantage of asym-
metric metamaterials for biosensing applications over the symmetric delicate counterparts.

Here we experimentally demonstrate the ultrasensitive detection and quantitative characterization of
poly(methyl methacrylate) (PMMA) molecules utilizing specially designed asymmetric Babinet-inverted
Fano-resonant plasmonic metamaterials (FRPMs). As a complementary structure of nanoantennas
normally used for biodetection'”*®-*!, the cut-out nanostructures in a continuous metal film can be
readily realized by focused-ion-beam writing or nanoimprint lithography*', and the sensing medium
easily fills the voids in the film and thus facilitates the detection of the target biomolecules*. The
polarization-dependent spectroscopic properties of the asymmetric FRPMs enable the accurate exper-
imental determination of the spectral position of the Fano resonance. As a proof-of-concept demon-
stration for the FRPMs biosensing platform, the superior sensing capabilities are tested by loading
well-defined thin polymer layers on a series of fabricated FRPMs. The non-radiative Fano resonance is
designed to match the carbonyl bond absorption fingerprint at 1733 cm ™' (~52 THz). Large spectral and
spatial overlap between the strongly confined near-field of the plasmonic mode and molecular vibra-
tional absorption dramatically boosts transduction of molecular structural properties into detectable
infrared signals, enabling the detection of minute amount of molecules on the plasmonic platforms.

Results
Mid-infrared responses of FRPMs. Figure 1 illustrates the schematic and scanning electron micros-
copy (SEM) image of a typical asymmetric FRPM fabricated on a 25nm thick gold film by focused
ion beam (FIB, Helios Nanolab 600), revealing nanovoids with well-defined square corners and minute
amount of edge roughness. Each unit cell consists of two parallel cut-out slot antennas along the y axis,
in which the right one is end-connected to a perpendicular shorter slot antenna. By breaking the spatial
inversion symmetries of the unit cell in the structure plane, Fano interference is enabled for the x-po-
larized incident light for the Babinet-inverted FRPM****. The mid-infrared response of the FRPMs at
normal incidence is characterized by a Fourier-transform infrared (FTIR) spectrometer for both x- and
y-polarized incidence, as shown in Fig. 2(a). In the x-polarized reflection spectrum (red solid), the broad
symmetric Lorentzian resonance at 83 THz represents the slot dipole resonance (bright mode wp), and
the narrow asymmetric resonance around 53 THz corresponds to the Fano interferences between the slot
dipole and two-slot quadrupole resonance (dark mode). The resonant frequency (w,) of the latter mode
can be determined from y-polarized reflection spectrum (blue solid) where the dark mode is excited
alone without the interference with the bright mode®*4,

To get a better understanding of the underlying physics, numerical simulations using the finite-element
method (COMSOL Multiphysics) are carried out to obtain the reflection spectra, electromagnetic field
distributions and field enhancement spectra of the FRPMs. Here the permittivity of bulk gold in the
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Figure 2. Optical characterizations of a representative FRPM. (a) Measured (solid curves) and simulated
(dashed curves) polarized reflection spectra. (b) Field profiles and enhancement of |E| and |H| (color

bar) calculated on a plane 5nm above the metamaterial at the resonant frequencies marked in panel a. (c)
Calculated enhancement spectra of electric field intensity for the FRPM shown in panel b. Field intensities
are averaged within a 20-nm-thick layer above the metamaterial. (d) Reflectance spectrum from a typical
FRPM sample before (Ry,. black solid) and after (Ry,, red solid) the coating of PMMA molecule layer (from
solution with 2% solid content). The blue dashed curve shows the frequency-shifted spectrum considering
the red-shift effect of polymer with nondispersive refractive index. (e) Reflectance difference spectrum
(AR= Ryc — Rygy) with the defined signal strength (Dy) indicated.
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mid-infrared is described by the Drude model (detailed in Supplementary Information) and the permit-
tivity of glass substrate is taken from the refractive index database®. The calculated reflection spectra for
the FRPM shown in Fig. 1(b) are plotted as dashed curves in Fig. 2(a) for both polarizations, showing
good agreement with the experimental data. The small discrepancies between them are likely due to the
fabrication tolerances in the experiment such as the inhomogeneity in the corners of the slots. The cross
sectional views of the magnetic field distributions for both bright and dark modes under x- and
y-polarized excitations are shown in the top panel of Fig. 2(b). The magnetic quadrupole excitation at wy,
exhibits significant field concentration near the end and the gap of the slots with typical Fano interference
field pattern®. The well-confined, enhanced near-field profile and suppressed radiation damping of the
quadrupole mode are reflected as a narrowing of the far-field spectral response. No interference effects
are observed, however, for the slot dipole resonance at wp. On the other hand, the electric field distribu-
tions for both modes (bottom panel of Fig. 2(b)) show distinct differences from those observed in the
previously reported positive nanoantennas!”*. For the Babinet-inverted FRPMs, the electric field con-
fines mainly on edges perpendicular to the incident polarization. The field maximum locates at the inner
corner of the right slot with a local field intensity enhancement in the range of 10° ~ 10* (detailed in Fig.
S4(a)). The maximum field intensities are observed to be much weaker for the superradiant dipole and
y-polarized subradiant quadrupole mode. The calculated averaged intensity enhancement spectrum
(E/E,|* averaged over a hypothetical 20-nm-thick layer above the metamaterial) shown in Fig. 2(c)
illustrates clearly that a maximum intensity enhancement is obtained at the Fano resonance for x polar-
ization, which holds promise for the ultrahigh sensing sensitivity.
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In order to demonstrate the molecule sensing capability of the FRPMs, a thin layer of poly(methyl
methacrylate) (PMMA) molecules dissolved in anisole (950A-2, Microchem) is deposited by spin coating
on the fabricated metamaterials. The carbonyl bonds in PMMA molecules (~1733cm ™! or 52 THz, w,,)
possess large intrinsic dipole moment, and uniform PMMA layers can be formed with accurately con-
trolled thicknesses by varying the molecule concentrations in the anisole solvent. A series of FRPMs with
uniformly scaled dimensions are designed and fabricated to have tunable Fano resonance frequencies
sweeping across the stretching absorption band of PMMA. A good match of the plasmonic resonance to
the molecular absorption feature® is crucial for the detection of target molecules, and as demonstrated
below, strengthened infrared signal is observed when the plasmonic mode is tuned on-resonant with
the molecular vibrational absorption and the signal is gradually deceased as the plasmonic resonance is
detuned away from the absorption line. The measured reflection spectrum of a typical FRPM spin-coated
with a 100nm PMMA layer (red solid) is shown in Fig. 2(d), together with that of the bare structure
exposed in the air (black solid). The sharp spike feature observed around 52 THz is the result of the
enhanced infrared absorption signal due to the strong molecule-FRPM interaction, and the reflectance
difference spectrum (AR= Ry,,,.— Ry,,.) in Fig. 2(e) is used to better illustrate and analyze the spectral
response of FRPMs to PMMA molecules. Redshift of the reflection spectrum!®!” due to the surrounding
refractive index (npypa = 1.5) aside from any molecule-FRPM interaction effect has been taken into
account (detailed in Supplementary Information), and a shifted spectrum of uncoated structure (blue
dashed in Fig. 2(d)) is used for Ry, in the subtraction. The signal strength Dy indicated in Fig. 2(e)
is defined as the contrast between the maximum and minimum of the AR spectrum around the spike
feature®, where the AR spectrum exhibits an asymmetric lineshape rather than the typical symmet-
ric Lorentzian lineshape for the molecule absorption. Previous observations of asymmetric Fano-like
absorption signal in metal-island films* and nanoantenna systems!®!7**#7 originate from the coupling
between the dipole plasmonic resonance and the spectrally narrow molecule absorption. However, in this
work, the plasmonic resonance supported by the FRPMs is itself a quadrupole mode with Fano-like sharp
linewidth and possesses much larger near-field intensity enhancement as compared to the dipole reso-
nance. As a result, the molecule-FRPM interaction is significantly enhanced in the double-Fano system
and thus substantial signal strength Dy well above the noise level can be obtained. Control measurements
are also performed on bare gold film as shown in Fig. S3. Compared to the large signal strength D> 0.3
observed from the FRPM coated with 2% solid content PMMA (Fig. 2(e)), a much weaker strength
~0.01 is observed on bare gold film loaded with the same amount of molecules (signal strength <0.01 is
observed for 1% solid content PMMA), and spectrum features are even below the noise level for control
measurements on the silica substrate.

Quantitative analysis of FRPM enhanced molecular sensing. In order to quantitatively and sys-
tematically evaluate the sensing ability of FRPMs for detecting the PMMA molecules, three sets of met-
amaterials with different geometric dimensions are designed and fabricated, and the SEM images are
shown in Fig. 3(a—c). The measured and calculated reflection spectra of metamaterials loaded by a thin
PMMA layer with progressively decreasing molecules (spun-cast from the diluted PMMA solutions with
different concentrations ¢, from 2% to about 0.4% solid content in anisole solvent) are shown in
Fig. 3(d—a). The X-ray reflectivity measurement is carried out here to confirm the uniformity and film
thicknesses with different molecular concentrations (Fig. S1(a)). The PMMA layer is modeled by a
Lorentz oscillator material*® in calculation (detailed in Supplementary Information) and excellent agree-
ment between experimental and numerical results is obtained. The presence of PMMA layer changes the
dielectric environment of the FRPMs and leads to a frequency shift (Aw ,,,) of the plasmonic mode.
Here we assume that the permittivity tensor of PMMA molecules is isotropic at the specific absorption
frequency. When the polymer thickness /4 is smaller than the near-field decay length of the plasmonic
mode (detailed in Supplementary Information), the frequency shift scales linearly with h as
AW g X W e (Eppma — 1) h- As illustrated in Fig. S1(b), our experimental observation is in accordance
with this relationship, and the frequency shifts of all three samples increase linearly with polymer thick-
ness (h<40nm) with almost identical slopes. By comparing the measured reflection spectra of the
respective samples, we note that a distinct molecular absorption signature is observed around 52 THz
when the frequency of Fano resonance is tailored to match the frequency of the carbonyl bond of PMMA
molecules (on-resonance case, sample B in Fig. 3(e)). While when the geometries of unit cell are scaled
to tune the Fano resonance away from the molecular absorption (off-resonance cases, sample A and C
in Fig. 3(d,f), respectively), much weaker absorption signals are observed as compared to the on-resonance
case. Quantitative analyses of the measured signal strength Dy are presented in Fig. 4(a). Significantly
enhanced signal strength (Dy~0.31 at ¢=2%), corresponding to the strongest interaction between
PMMA molecules and FRPMs, is observed for sample B which combines the strengths of narrow
line-width of the Fano resonance (I';) and perfect spectral overlap with the molecule absorption
(|a;Q — w,| < FQ). However, when the Fano resonance is tuned away from the absorption line
(|wQ — Wy, > FQ), much smaller signal strength (Dy=20.12 (0.14) for sample A (C) at c=2%) is detected
due to the weak molecule-FRPM interaction at the off-resonance condition. As the solid content of
molecules is progressively diminished from 2% to 0.25%, the signal strength observed for sample A and
C decreases to less than 0.02 and approaches the noise level of our measurement. Contrastingly, signal
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Figure 3. Measured and calculated reflection spectra of three selected FRPM samples loaded with
PMMA molecules at different concentrations. (a-c) SEM images of three selected FRPM samples A, B and
C. Scale bar: 3 um. (d-f) Experimental and simulation reflectance spectra of the three selected samples in
(a-c) loaded with diluted PMMA molecules in anisole solution at different concentration ¢=2%, 1%, 0.67%,

0.5% and 0.4%.
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Figure 4. Comparison of the measured signal strengths from three FRPM samples for PMMA molecule
sensing. (a) Dependence of the measured signal strength on the solid content of PMMA solution obtained
from sample A-C in Fig. 3. The inset shows an amplified view of signal strength at extreme low solid
content. (b) Signal strength Dy as a function of molecule numbers within each unit cell for the three sets of
FRPMs. Dashed lines are guides to the eye.
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strength larger than 0.04 is observed for sample B. Especially, when the solid content of PMMA mole-
cules further decreases from 0.2% down to 0.125%, the detectable signal strength is only observable from
sample B (as shown in the inset of Fig. 4(a) and Fig. S2), which demonstrates the ultrahigh sensing
sensitivity of the on-resonance FRPMs.

The controllable PMMA film thickness ranging from hundreds of nanometers to a dozen nanom-
eters provides an opportunity to investigate the ultimate detection limit of molecule numbers using
the FRPMs. According to the X-ray reflectivity measurements, the thickness of a diluted PMMA layer
with 0.4% solid content is 12.8 nm (Fig. S1(a)), corresponding to about 100 molecules in each unit cell
(detailed in Supplementary Information). As a result, the measured signal strength (D~ 0.09 for sample
B) in the case of 0.4% solid content is obtained from about 77400 molecules or 130 zeptomoles for the
entire array (50 X 50 um?). Absorption signals from further diluted PMMA solution (molecule amount
down to tens of zeptomoles) have also been observed as shown in Fig. S2(b). Figure 4(b) shows the
measured signal strength as a function of the number of molecules within each unit cell for the three
FRPMs samples. Rapid initial increase of the signal strength follows an almost linear dependence of the
number of molecules when the solid content is smaller than 1% (~1 x 10° or less molecules within each
unit cell), but the signal strength subsequently appears to saturate at larger number of molecules when
the film thickness is more than 40 nm. The observed saturation behavior of the measured signal strengths
can be attributed to the evanescent plasmonic near-fields decaying away from the FRPMs surface, which
was also observed in nanorod arrays loaded with varying protein film thickness'. Confirmed by our
FEM simulations in Fig. S4(d), the near-field intensity of FRPMs (at position A) decays rapidly along
z axis to a value of 1/e? of the maximum within about 30 nm, which validates the near-field nature of
enhancement mechanism of the FRPM-based molecular detection. The demonstrated detection sensitiv-
ity (zeptomole level) is quite impressive as compared to previous works, and it is also important to note
that the estimation of detectable amount of molecules is conservative because only the portion of mole-
cules that experience the near-field interaction with the FRPM exhibit the enhanced infrared absorption
and contribute to the measured enhanced signals. According to the near-field intensity distribution of the
Fano resonance in Fig. S4, a higher sensitivity can be achieved if only the active sensing areas (around
point A in Fig. S4) are taken into account.

Furthermore, in order to provide more insights into the sensing mechanism, the absorption enhance-
ment factor of the FRPMs is estimated from the experimental and numerical results. At first, the meas-
ured signal strength from PMMA molecules on the FRPM structures (D~ 0.22 from sample B with
solid content ¢=1%) is compared to the signal strength from the same amount of molecules on a refer-
ence bare gold film (D~ 0.007). Then an enhancement by the mirror-dipole effect (a factor of 2) from
the gold film* and the screening factor 1/(1 + n,)**° from the sample substrate have to be considered
(detailed in Supplementary Information). In addition, the electric field intensity (|E|?) distribution of
the Fano resonance is plotted in Fig. S4. The field intensity concentrates at the inner corner (point
A) within the unit cell, and the field intensity attenuates drastically along the x and y directions with
spatial extents of 60nm (/,) and 90nm (/,) respectively. The active area can be estimated by (L + ,)-h,
where h,,, is the thickness of Au film. Taking into account all the above mentioned factors, the enhance-
ment factor of the infrared absorption of molecules that interact with the FRPM is estimated to be
Dr(FRPM)/Dp(Au)-2-(1 + ny)-Ao/ (L + I)-hy, = 163,000, where A, is the size of unit cell. Therefore, the
demonstrated FRPM provides an enhancement factor of the molecular absorption signal larger than 107,
which is remarkable compared to the reported SEIRA results!”.

Phenomenological model describing the molecule-FRPM interaction. To examine the enhanced
molecule-FRPM interaction strengths in the presence of the dipole resonant mode, a mechanical model
consisting of coupled damped harmonic oscillators®->* is developed to describe the spectral response of
the FRPMs. The radiative slot dipole is represented by one oscillator with resonance frequency w, and
damping rate 7, and the nonradiative two-slot quadrupole is represented by another oscillator with res-
onance frequency w, and damping rate -, The coupling coefficient between the two oscillators is o, and
the externally applied harmonic driving force is f-¢"’. Taking the absorption of molecules on the FRPMs
into account, a third harmonic oscillator with resonance frequency w,, and damping rate =, is intro-
duced to form a three-oscillator coupled system®>>*. The coupling coefficient between the molecule and
the dipole (quadrupole) mode is o, (0,,). The motion equations of three oscillators can be written as:

. . 2 iwt
g+ vaka + wiXg — g%y — OayXy = fe',
. . 2 _

Xyt VgXg T WyXg— OgXa = OguXy = 0,
. . 2
Xm + VimXm + WXy = OgmXaq — quxq = 0.

The displacements x,, x, and x,, of the oscillators are harmonic with x, , ,,= ¢, , .-¢"" where the
amplitudes c; , ,, can be calculated analytically. We obtain the reflection spectrum by summing the
square of three oscillation amplitudes and subtract them from unity, which represents light scattering
efficiency of the system. The reflection spectra of sample B obtained from the coupled-oscillator mode-
ling are shown in Fig. 5 (red dashed) for the bare and functionalized FRPMs (results of sample A and C
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Figure 5. Analysis of the molecule-FRPM interactions with the coupled harmonic oscillator model. (a)
Comparison between the measured reflection spectrum of bare sample B (black solid) and the calculated
reflection spectrum from the coupled harmonic oscillator model (red dashed). (b) Comparison between the
measured reflection spectrum of functionalized sample B coated by PMMA molecules (black solid) and the
calculated reflection spectrum from the modeling (red dashed). Extracted fitting parameters of the resonance
frequencies (in the unit of THz), the damping rates (in the unit of THz) and the coupling strengths (in the
unit of THz?) are presented in the insets.

are shown in Fig. S5), demonstrating a reasonable agreement with the experimental results (black solid).
The resonance frequencies of the plasmonic modes and molecule absorption are taken directly from the
experiment values. The damping rates and the coupling coeflicients can be extracted from the oscillator
model. We note that the damping rates of the Fano resonance and molecular absorption are relatively
smaller (y,=7THz, ,,= 0.7 THz) compared to that of the dipole resonance (v,= 28 THz), which cap-
ture our observations in the experiment well. The extracted coupling coeflicients from the measured
three samples (see inset of Fig. 5 and Table 1 in the Supplementary Information) reveal that a strong
interaction strength between the plasmonic resonance and molecular absorption band (well overlapped
with each other) play a key role in achieving an ultrahigh sensitivity, compared to that of a much weaker
molecule-plasmonic interaction with a negligible coupling coefficient.

Discussion

In conclusionwe have designed and demonstrated ultrasensitive molecule detection and characteriza-
tion based on non-radiative FRPMs exhibiting strongly confined near-field modes with sharp spectral
features. The plasmonic mode can be engineered to match the absorption fingerprint of the target mol-
ecules and up to 10°-fold enhancement of absorption signal is obtained. Detection of zeptomole levels
of molecules has been demonstrated in experiment with high signal to noise ratio, corresponding to
only few tens of molecules in each unit cell. A phenomenological model is also introduced to provide a
better understanding of the underlying mode interaction mechanism. This work opens a new route for
metamaterial applications toward biochemical sensing of minute mass concentrations as well as selective
detecting of biomolecules at a nanometer scale.

Methods

Metamaterial fabrication. In brief, the gold film is deposited onto a silica substrate using elec-
tron-beam evaporation method (evaporation rate 0.5A/s). The asymmetric Fano resonant plasmonic
metamaterials (FRPMs) are fabricated via focused ion beams, carried out in a FEI Helios Nanolab
600 DualBeam microscope system with the focused beam of gallium ions of the current of 9.7 pA
and the energy of 30eV. Each sample has a 50 x 50 ym? milled area sufficient for the optical reflection
measurements.

PMMA layer preparation. Different concentrations of poly(methyl methacrylate) (PMMA) mole-
cules, a commonly used positive electron-beam resist, are used as model analyte in our experiment. For
the largest concentration, a thin layer of PMMA (950-A2, 2% solid content in anisole, Michrochem)
is spin-coated on top of the metamaterials at 2000rpm. PMMA is chosen in the present work due to
the accurate control of the uniform thickness obtainable via control of the spin speed and molecule
concentration used. Then molecule concentration is diluted progressively in anisole and the diluted pol-
ymer solution is spun onto nanostructures. The dielectric function of the polymer can be modeled as
Editute =SEpmma T (1= Eanisole i NUMerical simulations, where epypa and €,,i01 are permittivity of readily
obtained PMMA (950-A2) and anisole and f is the filling ratio of the PMMA. The thicknesses of diluted
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polymers with different concentrations are determined through X-ray reflectivity (Philips X'Pert-MRD)
measurement and the respective thicknesses of different concentrations are shown in Fig. S1(a).

FTIR measurements. The reflection spectra of the FRPMs are recorded using a Fourier transform
infrared (FTIR) spectrometer (Thermo Scientific, Nicolet 4700). Reflected signals are collected with a 0.4
NA Compensation objective and recorded by a liquid-nitrogen-cooled mercury cadmiumtelluride (MCT)
detector. All the spectra are recorded with a resolution of 4cm™! and 512 scans. The measurements are
normalized with respect to a silver coated mirror (THORLABS). An IR polarizer (ZnSe, THORLABS)
is used to polarize the incident electromagnetic field perpendicular or parallel to the slot antennas. The
reflectance difference spectra displayed in Fig. 2(d) and Fig. S2 are calculated through AR= Rp,c — Ryper
where Ry, and R, are the reflectance spectra of PMMA-coated FRPMs and that of frequency-shifted
bare FRPMs, respectively. The frequency shift is performed via a transformation R,,.=R, (w,) — R,
(wy+ Aw) to coincide the maximum of two spectra as illustrated in Fig. 2(d), where R, (w,) is the original
reflectance of a bare structure and Aw is the frequency shift due to the presence of PMMA layers with
refractive index npypa & 1.5. The absorption signal strength is defined as difference between maximum
and minimum of the AR spectra around the absorption line of carbonyl bond stretching.

Numerical simulations. Finite element method (FEM) simulations are performed to obtain the opti-
cal reflection spectra and field distributions using the software (COMSOL Multiphysics). In the simula-
tions, periodic boundary conditions are employed along the x and y axes to account for the periodic
arrangement of the unit cells. Perfectly matched layers (PMLs) surrounded by scattering boundary con-
dition faces are utilized along the propagation direction (perpendicular to the planar metamaterial) to
avoid multiple reflections due to geometry truncation. The permittivity of bulk gold in the mid-infrared
is described by the Drude model ¢, = ¢ — wpz /(W — iwy »)» where the background dielectric con-
stant is €., = 1, the plasma frequency w, = 1.37 x 10'°rad/s and the damping constant v, = 4.08 x 10"’ rad/s.
Due to the surface scattering and grain boundary effects in thin films, the damping constant of gold film
in our simulation is taken to be three times that of bulk gold in order to match the experimental results.
Meanwhile, to take the molecular absorption effect into account; here the PMMA layer is modeled as a
. . . w,
Lorentz oscillator material described by ep\ i = €, + - _sz_oi%w
relative permittivity of PMMA, f,, is the reduced oscillator strength, w, = 3.269 x 10'rad/s is the Lorentz
resonance frequency of PMMA molecules and +, is the Lorentz damping rate. In our simulation, the
values of fand ~, are appropriately chosen to provide a close match with the experimental measurements.
The experimentally observed reflection spectra with the molecule vibrational absorption signals can be
numerically reproduced as shown in Fig. 3.

, where ¢,=2.2 is the background
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