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Quantum speed limit and a signal
of quantum criticality

Yong-Bo Wei?, Jian Zou?, Zhao-Ming Wang? & Bin Shao?

We study the quantum speed limit time (QSLT) of a coupled system consisting of a central spin and its

. surrounding environment, and the environment is described by a general XY spin-chain model. For
Accepted: 09 December 2015 - jnjtial pure state, we find that the local anomalous enhancement of the QSLT occurs near the critical
Published: 19 January 2016 : point.In addition, we investigate the QSLT for arbitrary time-evolution state in the whole dynamics

. process and find that the QSLT will decay monotonously and rapidly at a large size of environment

near the quantum critical point. These anomalous behaviors in the critical vicinity of XY spin-chain

environment can be used to indicate the quantum phase transition point. Especially for the XX spin-

chain environment, we find that the QSLT displays a sudden transition from discontinuous segmented

values to a steady value at the critical point. In this case, the non-Makovianity and the Loschmidt echo

are incapable of signaling the critical value of the transverse field, while the QSLT can still witness

the quantum phase transition. So, the QSLT provides a further insight and sharper identification of

quantum criticality.
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Classical phase transition occurs when a physical system reaches a state which is characterized by some mac-
roscopic order parameter, such as a critical temperature. It is driven by a competition between the energy of a
system and the entropy of its thermal fluctuations. In contrast, quantum systems have fluctuations driven by the
Heisenberg uncertainty principle even in the ground state, and these can drive interesting phase transitions at
absolute zero temperature. Such a quantum phase transition (QPT) can be accessed by varying external parame-
ters or coupling constant, and is certainly one of the major interests in condensed matter physics'.

Recently, the QPT has drawn considerable interest in fields of quantum information science?”’. Many quan-
tities have been found to capture the ground state singularities associated with a QPT, such as entanglement,
geometric Berry phase, and non-Markovianity*™!. Some investigations showed that the time-energy uncertainty
relation in quantum mechanics establishes a fundamental bound for the evolution time 7 between two states of
a given closed system, 7> max{mh/2AE, wh/2E}'*!?, This minimal time that a system needs to evolve from an
initial state to an orthogonal target state is defined as the quantum speed limit time (QSLT), which can be used
to characterize the maximal evolution speed!>!*. The manifold applications of these limits have been shown in
many fields, such as quantum communication', quantum metrology'®, the formulation of computational limits
of physical systems'$, as well as the quantum optimal control algorithms'”. Generalization of this fundamental
concept to the real-time evolution of an open system has been done recently'®-%.

As a quantum critical phenomenon, QPT happens at zero temperature. It is only driven by quantum fluctua-
tion, and the uncertainty relation lies at the heart of various QPT phenomena. The QSLT determines the theoret-
ical upper bound on the speed of evolution. It is a generalization of the Heisenberg uncertainty relation of energy
and time!>". In single qubit open systems, it was found that the QSLT is susceptive to the variation of environ-
ment parameter and entanglement of subsystem, and the memory effect of environment plays a decisive role in
its reduction??%, So it is very intriguing to investigate whether the QSLT in an open system can be extended to the
macroscopic regions to capture the QPT, as correlations and geometric Berry phase are?

Here, we connect the QSLT with quantum criticality by exploring the QSLT of an open system near its critical
point. The whole system constitutes of a central spin and spin environment modeled by an XY spin chain. We
find that the QSLT is anomalous at the critical point. Interestingly, with the increasing of driving time (i.e., the
actual evolution time) or the size of the chain, the critical characteristic of QSLT becomes more remarkable at
QPT point.

In addition, we investigate the QSLT for different magnetic field strength in the whole dynamics process of
central spin. We find that the decay of QSLT is dramatically accelerated in the vicinity of the quantum critical

School of Physics, Beijing Institute of Technology, Beijing 100081, China. 2Department of Physics, Ocean University
of China, Qingdao 266100, China. Correspondence and requests for materials should be addressed to B.S. (email:
sbin610@bit.edu.cn)

SCIENTIFICREPORTS | 6:19308| DOI: 10.1038/srep19308 1


mailto:sbin610@bit.edu.cn

www.nature.com/scientificreports/

point of spin environment. By utilizing the relationship between the Loschmidt echo (LE) and entanglement, we
elucidate the speed-up mechanism of entanglement. Our results show that the key ingredients of quantum criti-
cality are present in the QSLT of the central spin.

Results
The model. The system under consideration is a central spin coupled to a spin-1/2 XY chain, which consists
of N spins with nearest neighbor interactions and an external magnetic field®!®!!. The total Hamiltonian is
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where A 2 represents the self-Hamiltonian of the spin-chain environment and H; denotes the interaction between
the central spin and the environment, with g denoting their coupling strength. The spin operators S; and
g/ (1 = x, y, z) are used to describe the central spin and the surrounding chain, respectively. We assume peri-
odic boundary condition and take /=1 for simplicity. The parameter A characterizes the strength of the trans-
verse magnetic field applied in the z direction, and  is anisotropic parameter. y=1 corresponds with the Ising
model, whereas for y= 0 it is the XX model. For the quantum criticality in the XY model, there are two universal-
ity classes for the parameter . The critical features are characterized in terms of a critical exponent v defined by

~|A—= A7 and & represents the correlation length. For any value of v, quantum criticality occurs at the critical
magnetic field A\, = 1. For 0 < y< 1, the model belongs to the Ising universality class characterized by the critical
exponent v= 1, which is in the Ising-like phase; while for y= 0 the model belongs to the XX universality class
with v=1/2, corresponding to the spin-fluid phase'. The density matrix of central spin for arbitrary time ¢ can be
obtained analytically (see Methods).

Central system quantum speed limit and quantum critical phenomenon. In the following, we use

a unified lower bound for the minimal evolution time of an open quantum system. Using the Bures angle

L(p, p, ) = arccos [(¥o|p. \1/;0) the intrinsic speed has been derived for the evolution between the initial pure
k)

state p = |1),) (1| and the final state p. > here 7, is the driving time?. The quantum system is governed by the
master equation p,= L,(p,), and L, is the positive generator of the dynamical semigroup A, = exp(L,). A unified
expression for the QSLT of arbltrary initially pure states in open systems can be written as,

Tos = max{ry, 7y, 7o}, )
with

2

1 .
Tp=—p Sin [L(/% P, )|
7 b (3)

where 7 = <i> fTD dt||L,(p,) || . Different p correspond with the operator norm (p = ), the trace norm
1
1) and the Hilbert-Schmidt norm (p=2), respectively. ||A|| =(af +af +.. +af )P denotes the p-norm
&o operator A, and a,, ..., a, are the singular values of operator

Suppose that the initial state of the central spin is set to be p,_ = [¢h){¢y| with
[the) = cos( )\0) + e sm( )\1) € [0, 7], ¢ € [0, 27]), with the central spin up |1 )and down |0). For our
model, the QSLT of the central qubit can be described by Margoius-Levitin (ML) type bound based on the oper-
ator norm, which provides the sharpest bound®. For a driving time 7, the QSLT from pyto p_ can be expressed

™D
as

sin(%)cos( )(2 -F, - FT*D)

TQsL =

D ’
;fo ‘8tFt|dt (4)
where F is the decoherent factor of the central spin density matrix and its norm gives a quantity known as the LE
(or fidelity): L(t) = |[F()|~ F. = F(7p)is the decoherent factor at t= 77,. Note that 745, depends on the dephasing

rate of the environment and the driving time 7, In the following, we will show that the QSLT also relates to the
parameters of the environment, such as the magnetic field ), the anisotropy parameter +, the interaction strength
g and the environment size N, etc. Without loss of generality, we set the parameter = 7/2.

In order to reveal the relationship between the QSLT and the QPT, in Fig. 1 we plot the QSLT as a function of
magnetic field A in the weak coupling regime. For simplicity, we set y= 1, in this case the spin chain becomes the
Ising model. Two features are notable: (i) the local anomalous enhancement of the QSLT near the critical point
A.= 1. Figure 1 shows that when X approaches A, 7o has a local maximum at \.. (ii) two oscillating regions
divided by .. In Fig. 1, 7 oscillates strongly far from the critical point, especially for small values of the mag-
netic field. When A € (0, 1), 7og; oscillates drastically with the increasing of A, while for A € (1, 2) the oscillation
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Figure 1. The QSLT 7,5 and non-Markovianity .#"as functions of the external magnetic field strength .
The curves in (a-d) correspond to different environment sizes N = 200, 500, 800, 1000. Here we set weak couple

g=0.05, y=1 and the driving time 7, = 10. There are clear anomalies for the QSLT (blue solid line) and non-
Markovianity N (red dashed line) near the critical point A, = 1.

becomes weaker. This oscillatory behavior depends on the value of ), indicating that the system is susceptive to
the perturbation caused by the surrounding environment. Thus, the anomalous enhancement of QSLT near A,
can also be used as a witness of QPT. In addition, from Fig. 1(a-d), the evolution of central spin can be accelerated
with increasing N.

The critical behavior of QSLT can be explained by non-Markovianity. Recent investigations have shown that
the non-Markovianity and the associated information backflow from the reservoir can speed up quantum evo-
lution which corresponds to smaller QSLT?**. The definition of the non-Markovianility is shown in Methods.

In Fig. 1 we also plot the non-Markovianity A (red dashed line) as a function of external magnetic field \.
Obviously, the qubit dynamics exactly becomes Markovian at the critical point, while outside the critical point the
non-Markovian effects always exist. Since the environment is non-Markovian except for the critical point, the
QSLT near A, is longer. When 0 < A < 1, strong non-Markovianty exhibits while A > 1 corresponds to the weak
non-Markovianty. The non-Markovianty indicates that the information exchange between system and environ-
ment, particularly for small \°. Then stronger oscillation of QSLT in small A exhibits. The non-Markovianity is
also dependent on the size of environment. The larger number N is, the larger value of A will be.

From Eq. (4) and Fig. 1, we can see that the QSLT depends on the driving time 7, and the size N. We plot the
QSLT as a function A and 7, in Fig. 2(a) and N in Fig. 2(b), respectively. In Fig. 2(a) a highlighted critical charac-
teristic of spin environment demonstrates near the critical point A\, with increasing 7p. The longer of the driving
time 75, is, the larger value of QSLT at critical point will be. Similarly, for fixed driving time 75, Fig. 2(b) shows that
by increasing N, the QSLT is increased in the vicinity of QPT point. Critical singularity becomes more prominent
for bigger N and 7p. In a word, the above results show that the QSLT captures the characteristic of QPT, and can
be exploited as a tool to detect criticality even in small size of spin environment.

So far we only consider the Ising model (y= 1). For the XY model, there are two distinct critical regions in
the parameter space: the segment (7, A) = (0,(0, 1)) for the XX chain and the critical line A\, =1 for the whole
family of the XY model (including = 1)!". For the XX chain (7= 0), the LE equals to unity (|F(t)| = 1) during
the time evolution, regardless of the variation of A%, As a consequence, the off-diagonal terms can be expressed
as o1 (1) = [ps(0)]16™7, i.e., only the phase factor of p,, evolves from the initial state 6(0) to the final state 6(f).
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Figure 2. (a) The QSLT 7 as a function of driving time 71, and external magnetic field strength A, with the
environment size N= 1000. (b) The QSLT 7, as a function of environment size N and field strength ), with the
driving time 7, = 100. Here, we set g=0.05, 7= 1 in both (a,b). There are clear anomalies near the critical point
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Figure 3. The QSLT as a function of magnetic field strength X for a XX spin-chain environment (v=0),
with the size N=100,800, g=0.05 and the driving time 75, = 10. Inset shows that when v= 0, the Loschmidt
echo L is always unit and the non-Markovianity N is always zero, regardless of what N, A and g are.

In Fig. 3 we plot the QSLT as a function of magnetic field strength A for anisotropic parameter y=0. A
notable discontinuity of sudden transition from oscillatory value to a steady value occurs at ). Interestingly,
we find that there exist discontinuous platforms of QSLT especially for small size N (for example N= 100 in
Fig. 3). This behavior is similar to the critical property of the ground-state Berry phase for the central spin'.
After passing through the critical point A, = 1, the QSLT keeps a steady value which turns out to be determined
by the system-environment coupling parameter g and the size N, as well as the driving time 7p,. For bigger N (for
example N= 800 in Fig. 3), the oscillation becomes more drastic and the platforms become narrower. The seg-
mented behavior of QSLT for finite size is a unique feature of the XX model, and it will be completely washed out
by increasing 7.

As we have known, the Loschmidt echo L() and the non-Markovianity AV can indicate the critical point of XY
spin-chain environment with finite size N*°. For the XX chain (7= 0), | F(t)| is always equal to unity, regardless of
the variation of A and the size of the spin chain. In Eq. (13), the non-Markovianility depends on the rate of change
of the trace distance 0,D, based on the optimal state pairs, where 0,D,= 9,|F,|. Hence, as we see in inset of Fig. 3,
N is zero and L(¢) is unit always. In this case, both methods are incapable of signalling the QPT of spin environ-
ment, while the variation of QSLT with A can still reflect the quantum criticality.

Next we plot the QSLT as a function of parameters vy and A in Fig. 4. It shows that with the increasing of the
parameter 7, the local maximum of QSLT becomes more pronounced, and its critical property becomes more
noticeable.

The QSLT of the whole dynamical process and quantum criticality. In the following, we focus on
the inherent relation between the QSLT and QPT from the perspective of the whole dynamics process.
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Figure 4. The QSLT as a function of spin-chain parameters v and A, with N=1000, and the driving time
Tp=100. Here we set weak coupling g=0.05.

Egs. (2) and (3) describe the intrinsic speed for the evolution between a pure state p = [t (1,| and final
target state p_ . They are not suitable for mixed initial states. Fortunately, ref. 25 gives another unified expression
for the QSLTDOf arbitrary 1n1t1ally mixed states p, in open systems. By using the so-called relative purity
ft+71p) =trl Prir Pr 1/tr (p, ) another unified expression for the QSL time of arbitrary initial mixed state p,
in open systems has Blen derlved25

1 1 5
Tosp = MaX|{= , X |[f(t+T1p) — 1|tr(pt )s
' 0,0, 2
Zl_lot i \/27:101' (5)

where o, is the singular value of L,(p,) and 0 is the singular value of the mixed initial state p,. It can be used to
demonstrate the quantum evolution speed from a mixed initial state p(t) to another p(t+ 71p) for the driving time
Tp. Here, we consider the system evolution starting from initial state |¢),) = |0) + |1)) in our model. Under
the action of spin-chain environment, the system evolves to p, as time 1ncreases Hence, using Eq. (5) the QSLT
for an arbitrary time-evolution state p, can be calculated as

l[(Ft — F )F + h-C]

2
1 t+7p ’ )
- L 0uFdt (6)

TQsL =

It can be used to study the variation of quantum evolution speed in the whole dynamic process. In the follow-
ing, we will use this expression to investigate the relation between the QSLT and quantum criticality.

The QSLT for different A is plotted in Fig. 5(a) in the whole evolution process. One can see that at ¢ =0, the
longest 7, corresponds to the critical point A= 1. When A= 1, 7 decays monotonically to zero without any
revival while for other ), there exists oscillation behavior. Figure 5(b) demonstrates the influence of size N on
the decay behavior of QSLT at A= . At this critical point, the QSLT decays and revives as time increases. As
expected, the QSLT decays more rapidly by increasing the size N. The singular behavior of QPT at A= A exhibits
the hypersensitivity of the ground states of the surrounding system with respect to the perturbation coupling
imposed by the central system®. This quantum criticality can be reflected by the QSLT. The decays and revivals
may serve as a good witness of QPT in the case of finite size N.

The critical behavior can be physically explained as follows. The qubit dynamics becomes exactly Markovian
at the critical point. It leads to a longer QSLT at the initial time than that out of the critical point A= 1. It is well
known that entanglement is a resource that can enhance the evolution speed**~*. Recent research has shown that
the entanglement between subsystems in multiqubit open systems is able to reduce the QSLT, i.e., accelerates
quantum evolution?. In our model the entanglement between system and environment causes the speed-up
evolution of the central spin. In the whole dynamics process, the entanglement is enhanced with the continuous
decay of the LE®, and consequently results in the accelerating dynamical evolution of the system (or equivalently,
the decrease of QSLT). Especially, at QPT point the entanglement monotonously increases and the maximal
entanglement can be obtained in the thermodynamic limit. Thus, in the long time limit the speed-up effect of
entanglement leads to the monotonous decrease of QSLT and faster speed-up evolution process.

At last, we investigate the influence of the anisotropy parameter -y on the QSLT from the aspect of the whole
dynamical process. Figure 6 shows that the QSLT as a function of time ¢ for different values of y in the quantum
critical point A.= 1. Obviously, 7 plays a significant role in the QSLT at the initial time and causes subsequently
decay as time increases. When = 0, 74, always equals to a constant (black solid line) regardless of the time,
that is, the speed-up evolution does not exist. The reason is that when = 0 the LE remains unity during the time
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Figure 5. (a) The QSLT 7 as a function of the time ¢ with different magnetic field strength A, and N= 1000.
Inset: the oscillation behaviors exhibit for A= 0.5 (dashed line) and A = 1.5 (solid line). (b) The QSLT 7 as
a function of time ¢ with different N at critical point A= 1. Here we set weak coupling g=0.05, y= 1, and the
driving time 7= 10.
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Figure 6. For the whole dynamics process, the QSLT as a function of the time ¢ for different anisotropic
parameter -y at critical point A= 1, with N=800. Here we set weak coupling g= 0.05, and the driving time
7p=10.

evolution, indicating that there is no entanglement generation between the central spin and environment. With
~ away from zero, the QSLT at the initial time will be enhanced. Increasing the value of +y further will result in
the decreasing of the oscillations amplitude and a complete decay without prominent revivals. Note that there are
some time windows in which the QSLT equals zero (e.g., a time window from ¢=5 to t=12). The reason is that
the states of system reach completely mixed states during these time intervals. Hence the QSLT is zero during

the corresponding time window. Therefore, the QSLT at the initial time and its decay rate can be tuned by the
anisotropy parameter .

Discussion

We have analyzed the behavior of the QSLT in a system consisting of a central spin and its surrounding environ-
ment and established a connection between the QSLT and QPT in a general many-body system. The exact expres-
sions of the QSLT have been obtained. We find that the QSLT has some strong imprint of the QPT for the XY
model, even for a finite-sized environment. The QSLT shows some noticeable anomalous behaviors near the
critical point. These properties are attributed to the non-Markovian or Markovian nature of the environment.
With the increasing of the driving time, the size of chain or the anisotropy parameter, the critical characteristic of
the QSLT becomes more prominent at QPT critical point. By the heuristic analysis and the numerical calcula-

tions, we find that the QSLT provides a further insight and sharper identification of quantum criticality. Especially
for the XX spin-chain environment, the A" and the LE are incapable of signalling the critical value, while the

QSLT still can witness the QPT of spin environment.

Furthermore, we have investigated the QSLT for different magnetic field strength in the whole dynam-
ics process and find that the quantum critical behavior of spin-chain environment causes the monotonous
and rapid decay of QSLT at the large size of environment, while out of the critical point the QSLT displays
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oscillation behavior. At QPT point the entanglement between system and environment causes faster speed-up
evolution process. Then the QSLT can also be used to reveal the quantum criticality in the perspective of dynam-
ics process.

Indeed, our result shows that the QSLT has the highlight property of being able to signal the critical value of
the transverse field even away from the thermodynamic limit where the quantum phase transition truly takes
place. Generalizations of these results to a wide variety of critical phenomena and their relation to the critical
exponents are a promising and challenging question that deserves extensive investigation in the future.

Methods
The density matrix of central spin for arbitrary time t. Following refs 8 and 10, we can rewrite the
total Hamiltonian Eq. (1) as

A= |o)(o] ® HY + [1)(1] ® HY, (7)

where |0) and |1) denote the eigenstates of o* with eigenvalues of £1. H AJandH )(E/\*) are the corresponding effec-
tive Hamiltonians of the spin chain. We use parameters A\, = A+ gand A_= A — g to denote the intensity of the
magnetic field for two effective Hamiltonians H g* and Hy -, which are defined as Hj, in Eq.(1) by replacing A with
A, and A_, respectively. HW) (j=+, —) can be diagonalized by standard procedurel, i.e., by using the

Jordan-Wigner transform followed by a Fourier transform and finally a Bogoliubov rotation. The diagonalized
form can be expressed as:

M
ﬁgj) s qu@*)
k=1
M
i 1
- Q(W[b* by — —],
I; k%R0 T (8)
where the energy spectrum is given by
2
QE(W =2 |~* sin® 2mk + [cos 2mk )\4] .
N N ! 9)

Suppose the central system and the chain environment are initially uncorrelated. The initial density matrix of
the composite system can be described by the product state as p(0) = ps(0) ® px(0), where p (0) = [t);) (1), and
pg(0) = |¢p) (15| are the initial density matrix of the central system and the environment respectively. We sup-
pose that the spin chain is initially in the ground state. The evolved density matrix of the total system for ¢ > 0 is
p(5)=U(t)p(0)U'(¢), where U(¢) is the time evolution operator. It can be rewritten as

U () = [0){0] ® Ug*(t) + [1)(1] ® Up-(1) (10)

where Ugi(t) = exp[—iH, ](,:Ai) t]is the effective time evolution operator. The reduced density matrix of the central
system reads®!°

05O, Log(0)], E(0)

pslt) = X :
SO g1 F () [o4(0)], an
Eq. (11) reveals that the spin chain only modulates the off-diagonal terms of py(t) through the decoherence

factor F (t) = (¢g] Ug ) (1) Ué)‘” (t) 1) and its norm known as the LE has been found to capture the ground
state singularities associated with a QPT*™.

Measure of non-Markovianity. The measure of non-Markovianity we employ here has been defined by
Breuer et al., which is based on the information flow between a system and its environment. Considering a quan-
tum process, the measure is defined as the total backflow of information*

N = max fa>0 dta[t, p1,z(0)]

p1,(0) (12)

with the maximization over all initial state pairs (p,, p,). o[t, p; ,(0)] is the rate of change of the trace distance,

olt, p12(0)]=0,D[p,(t), po(t)], with positive value indicating information flowing back to the system. The trace
distance D measures the distinguishability between the two states, which is defined by
D(p,(t), p,(t)) = 21||p1(t) — p,(t) [ with[|A] = JATA and 0 < D < 1. Here, for the optimal state pairs, the trace
distance of the evolved states can be acquired by D,= |F,|°. Thus, following ref. 24, we deliberately calculate the
non-Markovianility as

[ 10Dyde + |F, | -1
2 ' (13)

N =
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