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Quantum coherence of steered 
states
Xueyuan Hu1, Antony Milne2, Boyang Zhang1 & Heng Fan3

Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource 
in quantum information theory. Quantum steering, a fundamental notion originally considered by 
Sch�dinger, has also recently received much attention. When Alice and Bob share a correlated quantum 
system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the 
maximal steered coherence as a measure describing the extent to which steering can remotely create 
coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis 
of his original reduced state, where maximization is performed over all positive-operator valued 
measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical 
states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant 
under local unitary operations, maximal steered coherence may be increased when Bob performs a 
channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and 
only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. 
Our results show that the power of steering for coherence generation, though related to discord, is 
distinct from existing measures of quantum correlation.

Quantum coherence, originating from the quantum pure state superposition principle, is one of the most funda-
mental properties of quantum mechanics. It is increasingly recognized as a vital resource in a range of scenarios, 
including quantum reference frames1–3, transport in biological systems4–6 and quantum thermodynamics7–9. How 
to measure coherence is an essential problem in both quantum theory and quantum information and has recently 
attracted much attention10–14. The quantification of coherence in a single quantum system depends on both the 
quantum state and a fixed basis for the density matrix of the system10,11. The fixed basis is usually chosen as the 
eigenbasis of the Hamiltonian or another observable. In either case, the quantified coherence is not an intrinsic 
property of the single-party quantum state itself. The dynamics of quantum coherence under certain noisy chan-
nels has also attracted a lot of research attention15,16 and is connected to the dynamics of quantum correlations17.

When Alice and Bob share a correlated quantum system, a measurement by Alice can ‘steer’ the quantum state 
of Bob. Quantum steering, especially Einstein-Podolsky-Rosen (EPR) steering, has long been noted as a distinct 
nonlocal quantum effect18 and has attracted recent research interest both theoretically and experimentally19–22. 
The quantum steering ellipsoid (QSE)23–27, defined as the whole set of Bloch vectors to which Bob’s qubit can be 
steered by a positive-operator valued measurement (POVM) on Alice’s qubit, provides a faithful geometric pres-
entation for two-qubit states. Using the QSE formalism we have studied a class of two-qubit states whose quantum 
discord can be increased by local operations28. Interestingly, arbitrarily small mutual information is sufficient 
for the QSE of a pure two-qubit state to be the whole Bloch ball. Since mutual information is an upper bound of 
quantum correlation measures such as entanglement and discord, the power that one qubit has to steer another 
cannot be fully characterized by the quantum correlation between the two qubits. A measure that quantifies the 
power of generating quantum coherence by steering is therefore necessary.

In this paper we consider a bipartite quantum state ρ with non-degenerate reduced state ρB and study the 
coherence of Bob’s steered state, which is obtained by Alice’s POVM. Here the eigenbasis of ρB is employed as the 
fixed basis in which to calculate the coherence of the steered state. The significance of this choice of basis is that 
Bob’s initial state is incoherent. When Alice performs a local measurement, she can steer Bob’s state to one that is 
coherent in the eigenbasis of ρB, i.e. Alice generates Bob’s coherence. By ρ( )C  we denote the maximum coherence 
that Alice can generate through local measurement and classical communication. In contrast to existing quanti-
fiers of coherence,  is an intrinsic property of the bipartite quantum state ρ, because the reference basis of coher-
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ence, chosen as the eigenbasis of ρB, is inherent to the bipartite state. Furthermore, we find that  gives a different 
ordering of states compared to quantum entanglement or discord; this indicates that  describes remote quantum 
properties distinct from these measures of quantum correlation. Properties of  are also studied. The maximal 
steered coherence is found to vanish only for classical states and can be created and increased by local quantum 
channels. Given that coherence plays a central role in a diverse range of quantum information processing tasks, 
we can also consider how steered coherence might be used as a resource. We close our discussion by presenting 
one such scenario.

We note that, shortly after this paper first appeared, Mondal et al. presented a study on the steerability of 
local quantum coherence29. We consider our works to be complementary: though examining a similar topic, our 
approaches are very different (Mondal et al. consider steering from the existence of a local hidden state model 
rather than from the perspective of the QSE formalism).

Results
Definition.  We consider a bipartite quantum state ρ, where the reduced state ρB is non-degenerate with eigen-
states ξΞ = | 〉{ }i . When Alice obtains the POVM element M as a measurement outcome, Bob’s state is steered to 
ρ ρ= ( ⊗ )/�M p: trB

M
A M with probability ρ= ( ⊗ )�p M: trM , where � denotes the single qubit identity operator. 

Baumgratz et al.10 gives the the quantum coherence C of ρB
M in the basis ξ| 〉{ }i  as the summation of the absolute 

values of off-diagonal elements:

∑ρ ξ ξ ρ ξ( , | 〉 ) = |〈 | ( ⊗ )| 〉|.
( )≠

�C
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M{ } 1 tr
1B
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Here we maximize the coherence ρ ξ( , | 〉 )C { }B
M

i  over all possible POVM operators M and define the maximal 
steered coherence as
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When ρB is degenerate, Ξ is not uniquely defined; however, we can take the infimum over all possible eigen-
bases for Bob and define the maximal steered coherence as
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It is worth noting that C is an intrinsic property of the bipartite quantum state ρ. When fixing the basis in 
which to calculate the coherence, we need not choose an observable that is independent of the state; the basis 
ξ| 〉{ }i  we choose here is inherent to the state ρ.

Properties.  We prove that the following important properties hold for maximal steered coherence.
(E1) C vanishes if and only if ρ is a classical state (zero discord for Bob), i.e. can be written as

∑ρ ρ ξ ξ= ⊗ | 〉〈 |.
( )=

p
4i

d

i i
A

i i
1

The proof of this is given in Methods.
(E2) C reaches a maximum for all pure entangled states with full Schmidt rank, i.e. states that can be written 

in as λ φ ξΨ = ∑ ⊗=i
d

i i
A

i
B

1
B  with λ ≠ ∀i0i . Here dB is the dimension of Bob’s state. For a single quantum 

system of dimension dB, the maximally coherent state is ψ = ∑ = xim
B

d i
d

i
B1

1
B

B 10; Bob is steered to this when Alice 

obtains the measurement outcome ψ ψ=M A A , where ψA  is the state φ∑ λ=i
d

i
A

1
1B

i
 after normalisation.

(E3) C is invariant under local unitary operations. When the unitary operator = ⊗U U UA B acts on a bipar-
tite state ρ, the eigenbasis of ρB is rotated by UB, so that the off-diagonal elements of ρB

M become

ξ ρ ξ ξ ρ ξ〈 | ⊗ ( ) | 〉 = 〈 | ⊗ | 〉. ( )
† † †� �U M U U U U MUtr [ ] tr [ ] 5i B A B j i A A A j

From Eq. (2) it is clear that ρ ρ( ) = ( )†C CU U .
(E4) C can be increased by Bob performing a local quantum channel prior to Alice’s steering.Property (E4) 

holds owing to the fact that a local channel Λ B, under certain conditions30, can transform a classical state with 
vanishing C into a discordant state with strictly positive C. Note, however, that a channel Λ A performed by Alice 
prior to steering cannot increase C. (This follows because Λ A can be performed by applying a unitary operation 
to A and an ancilla A′  and then discarding A′ ; the unitary operation does not affect the set of Bob’s steered states, 
while discarding A′  may limit Alice’s ability to steer Bob’s state. Thus Λ A performed by Alice does not alter Bob’s 
reduced state ρB but shrinks the set of his steered states; such a channel cannot increase C.)

Let us also note an important consequence of property (E2): C  is distinct from the entanglement E31  
and discord-type quantum correlations D32. In fact, C  gives a different ordering of states from E or D.  
We demonstrate this by considering states ρ = Ψ Ψ1 1 1  and ρ δ δ= ( − )|Ψ 〉〈Ψ | + ⊗� �1

d2 2 2
d d

2 , where 
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δ δΨ = − ( − ) + ∑ =
−d jj1 1 00 j

d
1 1

1  and Ψ = ∑ =
− jj

d j
d

2
1

0
1  are both pure entangled states with full 

Schmidt rank of dimension d, and δ< 0 1. According to (E2), ρ( )C 1  reaches the maximum; whereas for ρ2, 
Bob’s steered state is always mixed and hence not maximally coherent state in any given basis. We therefore have 
ρ ρ( ) > ( )C C1 2 . Meanwhile, ρ( )D 1  and E(ρ1) can be made arbitrarily small by taking δ to be small enough, whilst 
ρ( )D 2  and E(ρ2) approach 1 for small δ. Hence δ exists such that ρ ρ( ) < ( )D D1 2  and ρ ρ( ) < ( )E E1 2 .

General expression for two-qubit states.  We now derive the general form of C for two-qubit states. The 
state of a single qubit can be written as ρ σ= ∑ = bB i i i

1
2 0

3 , where σ = �0 , σi with i =  1, 2, 3 are Pauli matrices, 
ρ σ= ( )b tri B i , and = ( , , )b b b b1 2 3

T is Bob’s Bloch vector. The norm of the vector b is denoted by b. The quantum 
coherence of ρB in a given basis , −n n{ }, where =n 1, is

ρ( , ) = × . ( )n b nC 6B

Let B and N be the points associated with the vectors b and n respectively, and let O be the origin. Since 
×b n1

2
 is the area of Δ OBN and the line segment ON  is unit length, C(ρB, n) is simply the perpendicular dis-

tance between the point B and the line ON .
Similarly, we can write a two-qubit state in the Pauli basis as ρ σ σ= ∑ Θ ⊗, =i j ij i

A
j
B1

4 0
3 , where the coefficients 

ρσ σΘ = ( ⊗ )trij i
A

j
B  form a block matrix Θ =
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b
a T
1 T . Here a and b are Alice and Bob’s Bloch vectors respec-

tively, and T is a 3 ×  3 matrix. Note that when ρB is non-degenerate we have b ≠ 0. We ignore the trivial case that 
a =  1, when ρA is pure and hence ρ is a product state.

When the POVM operator σσ= ( + ⋅ )mM 1
2 0  is obtained on Alice’s qubit, Bob’s state becomes

=
+
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.
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Here σ σ σ σ= ( , , )1 2 3
T, and = ( , , )m m m m1 2 3

T can be any point on or inside the Bloch sphere. The set of bM 
forms the QSE EB. When ρB is non-degenerate, we have b≠0. According to Eq. (6), the coherence of bM in the  
basis ξ| 〉{ }i  is ρ( , ) = ×n b nC B

M
B M B , with nB =  b/b; this represents the perpendicular distance from  

the point BM to the line OB (Fig. 1a). Hence the maximal steered coherence ρ( )C , as defined in Eq. (2), is  
the maximal perpendicular distance between a point on the surface of EB and OB. Explicitly, we have 
ρ( , ) = ( ) × / + ⋅n m n a mC T 1B

M
B B

T  and


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×
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The maximization needs to be performed only over all projective measurements with m =  1 because steered 
states on the surface of B correspond to measurements m on the surface of the Bloch sphere.

When ρB is degenerate, b =  0 and nB is arbitrary; the infimum can then be taken over all nB to give the maximal 
steered coherence of a two-qubit state as

 
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Properties for two-qubit states.  We now study two-qubit states in more detail; this allows us to identify 
some important features of the maximal steered coherence, as well as giving a clear geometric interpretation of C 
using the steering ellipsoid formalism.

As demonstrated by property (E4), a trace-preserving channel Λ B performed by Bob may increase C; we now 
study an explicit example. Say that Alice and Bob share the classical two-qubit state

ρ = ++ ++ + ( − ) −− −− , ( )t t1 10c

with < <t 11
2

 and ± = ( ± )0 11
2

. When Bob applies the single-qubit amplitude damping channel, the 
state transforms as ρ ρ′ = ⊗ Λ ( )�c A B c

AD , where Λ (⋅) = ∑ (⋅) †E Ei i i
AD  with γ= + −E 0 0 1 1 10  and 

γ=E 0 11 . We then find that the maximal steered coherence of the transformed state is

ρ
γ γ

γ γ
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( − ) ( − ) +
.

( )
C
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t

2 1

1 2 1 11
c 2 2

ρ( ′ )C c  vanishes when γ =  0, becomes positive for 0 <  γ <  1, and then vanishes again at γ =  1.
Maximal steered coherence can be increased by Bob’s local amplitude damping channel even when Alice and 

Bob share a non-classical state. Consider the two-qubit state

ρ σ σ= Ψ Ψ +
−

⊗ , ( )p p1
4 12p 0 0
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where 0 <  p <  1 and Ψ = ++ + −−θ θcos sin
2 2

. The QSE for such a state is an ellipsoid centered at 


 , ,
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axes (EB is in fact a prolate spheroid as c1 >  c2 =  c3). Bob’s Bloch vector is θ= ( , , )b p cos 0 0 , which lies on the x 
axis. The maximal steered coherence is therefore

ρ θ

θ
( ) =

− ( )
.

( )
C

p

p

sin

1 cos 13
p 2

For <
θ+

p 1
2sin 1

, the state ρp has zero entanglement but nonzero C. Note also that ρ( ′)C p  is related to both the 
fraction of Ψ  and the entanglement associated with Ψ .

Figure 2 shows the evolution of C under the channel ABΛB , i.e. ρ( ′ )C p , where ρ ρ′ = ⊗ Λ ( )�p A B p
AD . By altering 

p and θ we alter the ratio of the axes c3/c1. The results indicate that the potential for increasing C under Bob’s local 
amplitude damping is related to the ratio c3/c1: the smaller the ratio, the stronger the local increase of C. In other 
words the effect is strongest when the QSE B  is highly prolate (‘baguette-shaped’).

In fact, it is possible to formulate a necessary and sufficient condition for the increase of maximal steered 
coherence for two-qubit states.

Theorem 1. Bob’s local qubit channel Λ B can increase maximal steered coherence for some input two-qubit state 
if and only if Λ B is neither unital nor semi-classical.

The proof is given in Methods. We therefore see that the behavior of maximal steered coherence C under local 
operations is similar to that of quantum discord D. The set of local channels that can increase C  for some 
two-qubit state is the same as the set of local channels that can increase D. Moreover, C can be increased when the 
QSE EB is very prolate; we showed in Reference28 that the quantum discord of Bell-diagonal states with such 

Figure 1.  An illustration of the geometric interpretation of maximal steered coherence ρ( )CC  for two-qubit 
states ρ using the QSE EEB. For simplicity we take a =  0. The point B representing Bob’s Bloch vector is indicated 
by a green blob, and the line OB is also shown in green; states lying along this line are incoherent in the basis ρB. 
ρ( )C  is given by the maximal perpendicular distance between a point on EB and OB; this is shown by the red arrow. 

(a) Theorem 2 shows that for any canonical state, ρ( )C  is bounded by the longest semiaxis of the QSE. (b) A state 
of the form (15), which achieves maximal ρ( )C  for a given b. The QSE is a chord perpendicular to OB. (c) When  
ρ is an X state, OB lies along an axis of the QSE, and ρ( )C  is the length of the longest of the other two semiaxes.  
(d) When ρ is a Werner state, EB is a ball centred on the origin. In this case, even though ρB is degenerate, ρ( )C  is 
well-defined as the radius of the ball.
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baguette-shaped EB can be increased by the local amplitude damping channel. We therefore conjecture the local 
increase in quantum correlations originates from the increase in steered coherence.

We now investigate the set of so-called canonical states, which have particular significance in the steering 
ellipsoid formalism24,25,33. Here, a canonical state ρcan corresponds to one for which Alice’s marginal is maximally 
mixed (a =  0). This implies that the QSE EB is centered at B (Fig. 1a). Let c1, c2 and c3 be the lengths of the semiaxes 
of EB ordered such that c1 ≥  c2 ≥  c3.

Theorem 2. For any canonical state ρcan the maximal steered coherence is bounded by the longest semiaxis. This 
in turn is bounded by the length of Bob’s Bloch vector as

ρ( ) ≤ ≤ − . ( )C c b1 14can 1
2

The bound is saturated if and only if EB is a chord perpendicular to b meeting the surface of the Bloch sphere at  χ  
and χ′ . This represents a canonical state of the form

ρ ψ ψ χ χ ψ ψ χ χ= ⊗ + ⊗ ′ ′ , ( )
1
2

1
2 15can

where ψ ψ = 0.
The proof is given in Methods, and an example QSE for an optimal state of the form (15) is shown in Fig. 1b). 

Note that this bound is remarkably simple and geometrically intuitive: it depends only on the longest semiaxis of 
EB and not on the orientation or position of the QSE. Theorem 2 is in the same vein as bounds presented in 
Reference33 that relate several other measures of quantum correlation to geometric features of QSEs.

We also note that optimal states of the form (15) have the highest quantum discord among discordant states 
with a given b that are obtained from classical states by a local trace-preserving channel. As shown in Reference34, 
when we take a two-qubit B-side classical (zero discord) state and apply a channel Λ B to Bob’s qubit, in order to 
create maximal B-side quantum discord in the output state, the optimal input state is of the form 
ψ ψ φ φ ψ ψ φ φ⊗ + ⊗1

2
1
2

, and the channel Λ B should have Kraus operators χ φ=E0 , 
χ φ= ′E1 , where χ  and χ′  are determined by b.

Examples.  Let us now examine some interesting classes of two-qubit states for which maximal steered coher-
ence is easy both to find analytically and to interpret geometrically using QSEs.

X states.  When nB lies along an axis of the QSE B it is straightforward to see that ρ( )C  is simply the length of the 
longest of the other two semiaxes (Fig. 1c). All ρ which are X states, i.e. have non-zero entries only in the charac-
teristic X shape in the computational basis35, will have such QSEs26.

Werner states.  As a special case of the above, when EB is a ball of radius r centered on O′  and nB is collinear with 
′OO , we have ρ( ) =C r . Furthermore, when EB is an origin-centered ball, we have ρ( ) =C r  regardless of  

the value of b. This allows us to evaluate C for Werner states36, which do not in fact satisfy the non-degenerate 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

γ

C

Figure 2.  The evolution of maximal steered coherence under Bob’s local amplitude damping channel: 
ρ⊗ Λ( ( ))C 1A B p

AD , with ρp given by Eq. (12). The parameters for the four curves are p =  0.9, θ =  0.2π for the 
cyan dashed line; p =  0.9, θ =  0.1π for the red dotted line; p =  0.7, θ =  0.1π for the green solid line; and p =  0.5, 
θ =  0.1π for the blue dash-dotted line. The corresponding semiaxes ratios, which give a measure of the 
prolateness of EB, are c3/c1 =  0.980, 0.859, 0.629 and 0.496 respectively. The effect of locally increasing C is 
stronger for more prolate EB.
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condition b≠0. For a Werner state ρ σ σ= Ψ Ψ + ⊗− − −pW
p1

4 0 0 with Ψ = ( − )− 01 101
2

, EB is an origin- 
centered ball of radius p and hence ρ( ) =C pW  (Fig. 1d).

Discordant states locally created from a classical state.  We know from property (E1) that C vanishes for classical 
states; for a classical two-qubit state, all steered states must have the same orientation, and the QSE EB is therefore 
a radial line segment. For a state obtained locally from a classical state, ρdlc, the QSE is a nonradial line segment25. 
b can be any point on this segment except for the two ends of EB, which we call b1 and b2, where b1 ≥  b2. By defini-
tion ρ( )C dlc  varies for different b; in general, we find that

θ ρ
θ θ π

θ π≤ ( )










< , ≤ ,

≤ , > ,
( )

Cb
b

b
sin

sin for
2

for
2 16

1 1 dlc

1

1

where θ is the angle between b1 and b2 and θ1 is determined by θ θ θ= ( − )b bsin sin1 1 2 1 . From Eq. (16), we see 
that ρ( )C dlc  is strictly larger than zero. In fact, ρ( )C dlc  can reach unity when b1 =  1 and θ > π

2
.

Maximally obese states.  The general form of a maximally obese state is given by33

ρ =



−


 Ψ Ψ + ,

( )
b b1
2 2

00 00
17b bmo

where |Ψ 〉 = ( − | 〉 + | 〉)
−

b1 01 10b b
1

2
. This is a canonical state (a =  0) with EB centered at (0, 0, b) and semiaxes 

of length = = −c c b11 2 , = −c b13  aligned with the coordinate axes. We therefore have ρ( ) = −C b1mo . 
It should be noted that maximally obese states maximize several measures of quantum correlation (CHSH non-
locality, singlet fraction, concurrence and negativity) over the set of all canonical states with a given marginal for 
Bob33. Interestingly, however, they do not achieve the maximum possible = −C b1 2 .

Discussion
We have studied the maximal steered coherence ρ( )C  for a bipartite state ρ. When Alice obtains a POVM out-
come M, Bob’s state is steered to ρB

M; ρ( )C  is defined as the coherence of the steered state in Bob’s original basis, 
maximized over all possible M. The general form of C is derived for two-qubit states. By calculating the maximal 
steered coherence for some important classes of two-qubit state, we find that C gives a different ordering of states 
from quantum entanglement or discord-like correlations. This means that C is a distinct and new measure for 
characterizing the remote quantum properties of bipartite states.

The maximal steered coherence vanishes only when ρ is a classical state, and ρ( )C  can be increased by local 
trace-preserving channels. For a two-qubit state ρ we derive a necessary and sufficient condition for a local qubit 
channel to be capable of increasing ρ( )C . This is in fact identical to the condition for increasing quantum discord, 
suggesting that local increase of quantum discord might be used in a protocol for increasing steered coherence.

Finally, we consider the relevance of C from a more physical perspective by presenting a concrete example in 
which steered coherence can be exploited. Say that Alice and Bob share a two-qubit state of the form (15) with 
ψ = 0 , ψ = 1  and b =  (0, 0, b) (which, as illustrated in Fig. 1b, will lie at the midpoint of the chord EB joining 
χ  and χ′ ). Suppose also that Alice’s and Bob’s systems are described by the local Hamiltonian ωσ= −H 3 . Let 
us restrict Alice’s and Bob’s local operations to those which are covariant with respect to time-translation symme-
try37. For Alice, these operations are the ones for which ρ ρΦ( ) = Φ( )− −e e e eiHt

A
iHt iHt

A
iHt; and similarly for Bob. 

Physically, this restriction corresponds to local energy-conserving unitaries with the assistance of incoherent 
environmental ancil las38:  Alice’s operation is covariant if  and only if  it  can be written as 
ρ ρ ξΦ( ) = ( ⊗ ) ,†U Utr [ ]A E A E  where U is a unitary, HE is the Hamiltonian of the ancilla, , + =U H H[ ] 0E  and 
ξ , =H[ ] 0E E ; and similarly for Bob. The set of covariant operations is a strict subset of incoherent operations10 
and a strict superset of thermal operations39.

Bob’s reduced state ρ σ= ( + )� bB
1
2 3  is incoherent in his energy eigenbasis | 〉, | 〉{ 0 1 }, and his local covariant 

operations alone cannot generate any coherence. However, by performing a σ3 measurement, which is a covariant 
operation, and classically communicating the result to Bob, Alice steers him to either χ  or χ′ , states that are 
manifestly coherent in the energy eigenbasis. ρ( )C  gives a measure of the maximal coherence that Alice can 
induce on Bob’s system by steering. In this way, Alice remotely ‘activates’ a coherent state for Bob that he was 
unable to produce himself. Bob may now use this coherence as a resource for quantum information processing 
tasks, e.g. work extraction by a thermal machine, which is known to be enhanced in the presence of a coherent 
reference system40. Given the ever-increasing number of applications for coherence found throughout quantum 
information science, one can envisage a range of such scenarios in which steered coherence could be used as a 
resource.

Methods
Proof of property (E1).  The ‘if ’ part is obvious: Bob’s reduced state is ρ ξ ξ= ∑ pB i i i i , and the steered 
state is ρ ρ ξ ξ= ∑ ( )p MtrB

M
i i i

A
i i . These are both diagonal in the basis ξ| 〉{ }i , and hence ρ( ) =C 0.

For the ‘only if ’ part, first consider a separable state ρ ρ ρ= ∑ ⊗ps i i i
A

i
B. When ρ( ) =C 0s , the steered states 

ρ ρ ρ= ∑ ( )p MtrB
M

i i i
A

i
B for different POVM operators M should commute with each other, which is equivalent 
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to all ρi
B commuting with each other. So ρ( )C s  vanishes only if it is in the form (4). For an entangled state ρe, we 

express ρe in the optimal pure state decomposition form as ρ = ∑ Φ Φpe i i i i , so that the entanglement of for-
mation is ρ( ) = ∑ ( Φ Φ )E p EF e i i F i i . Since ρe is entangled, at least one of the Φi  is entangled. Hence, for ρe, it 
is not possible for all of Bob’s steered states to share the same eigenbasis; this means that ρ( ) ≠C 0e  for any entan-
gled ρe.

Proof of Theorem 1.  A channel Λ B that is neither unital nor semi-classical can increase C, because such 
channels can transform a classical state with vanishing C into a discordant state with nonzero C30,41. We now 
focus on the ‘only if ’ part, and prove that a local unital channel or a local semi-classical channel cannot increase 
C for any two-qubit input state.

A semi-classical channel Λ sc 41, which maps any input state ρ to a state with zero coherence in a given basis 
ρ ρΛ ( ) = ∑ ( )p k ksc

k k , yields =C 0 for any input state. As proved by King and Ruskai42, any unital channel is 
equivalent to σ σΛ (⋅) = ∑ (⋅)= eu

i i i i0
3 , where 0 ≤  ei ≤  1 and ∑ =e 1i i . The effect of this channel on a qubit state is 

to shrink the Bloch vector as Λ → ′ = ( , , )b b p b p b p b:u T
1 1 2 2 3 3 , where = + − −p e e e e1 0 1 2 3, and p2,3 are related 

to ei in a similar way. Let bM be a steered state for the input state ρ. Then the coherence of bM is 
( , ) = × /b b b bC bM M . Under the action of Λ u, the steered state and Bob’s reduced state become b′ M and b′  

respectively, and the coherence of b′ M in the eigenbasis of b′  is

( ′ , ′) =
( − )

( ) + ( ) + ( )
+ ( → → ) + ( → → ).

( )
b bC

b b b b p p
b p b p b p

1 2 3 1 3 2
18

M
M M2 1 3 3 1

2
1
2

3
2

1 1
2

2 2
2

3 3
2

If the inequality

( ′ , ′) ≤ ( , ) ( )b b b bC C 19M M

holds then the maximal steered coherence for the output state ρ( ⊗ Λ ( )) = ( ′ , ′) ≤ ( , )C C Cb b b b1A B
u

M Mopt opt
ρ≤ ( )C , where Mopt is the optimal POVM operator to maximize (2) for the output state and bMopt

 is the corre-
sponding input state for ′b Mopt

. Hence it is sufficient to prove that (19) holds for some bM and b. Note that 

≤
) )( (

( − )

+

( − )

+

b b b b p p

b p b p

b b b b

b b
M M M M1 3 3 1

2
1
2

3
2

1 1
2

3 3
2

1 3 3 1
2

1
2

3
2

. By using the fact that <+
+

′ +
′ +

A B
C D

A B
C D

 for 0 <  B <  D, 0 <  A <  C, 0 <  A′  <  C′  

and > ′
′

A
C

A
C

, we arrive at ( ′ , ′) ≤ ( , )C b b b bCM M
2 2 , which is equivalent to (19).

Proof of Theorem 2.  The steered state bM which achieves the maximum in Eq. (8) corresponds to a point BM 
on the surface of EB. We have ρ( ) = ( , ) = ( , ) ≤ ≤C b nC D B OB BB cM B M Mcan 1, where ( , )D B OBM  is the per-
pendicular distance between BM and OB. To ensure that EB lies inside the Bloch sphere we require that 
≤ −c b11

2 .
To saturate the bound we take = −c b11

2 , but we must also demonstrate that c2 =  c3 =  0, i.e. that EB cannot 
be an ellipsoid or an ellipse. We know that EB must meet the Bloch sphere at two points, corresponding to the pure 
states χ  and χ′ . Firstly suppose that EB is a three-dimensional ellipsoid. Elementary geometry tells us that the 
surface of an ellipsoid at the end of any axis must be perpendicular to that axis. The points at the ends of the c1 axis 
on EB lie on the surface of the Bloch sphere. Since the surface of EB must lie perpendicular to the c1 axis at these 
points, EB must puncture the surface of the Bloch sphere. Such EB cannot represent a physical two-qubit state and 
so EB cannot be an ellipsoid. Now consider the case that EB is an ellipse. The nested tetrahedron condition tells us 
that any degenerate EB describing a physical state must fit inside a triangle inside the Bloch sphere25,26. 
Geometrically, no ellipse that touches the Bloch sphere at two points can satisfy this, and so EB cannot be an 
ellipse. EB must therefore be a line, i.e. the chord going between χ  and χ′ ; this corresponds to the state (15).
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