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Quantum coherence of steered
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Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource

. in quantum information theory. Quantum steering, a fundamental notion originally considered by

Accepted: 11 December 2015 : Schddinger, has also recently received much attention. When Alice and Bob share a correlated quantum

Published: 19 January 2016 : system, Alice can perform alocal measurement to ‘steer’ Bob’s reduced state. We introduce the
: maximal steered coherence as a measure describing the extent to which steering can remotely create

coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis
of his original reduced state, where maximization is performed over all positive-operator valued
measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical
states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant
under local unitary operations, maximal steered coherence may be increased when Bob performs a
channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and
only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord.
Our results show that the power of steering for coherence generation, though related to discord, is
distinct from existing measures of quantum correlation.
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Quantum coherence, originating from the quantum pure state superposition principle, is one of the most funda-
mental properties of quantum mechanics. It is increasingly recognized as a vital resource in a range of scenarios,
including quantum reference frames!~>, transport in biological systems** and quantum thermodynamics’. How
to measure coherence is an essential problem in both quantum theory and quantum information and has recently
attracted much attention'*-'%. The quantification of coherence in a single quantum system depends on both the
quantum state and a fixed basis for the density matrix of the system!®!!. The fixed basis is usually chosen as the
eigenbasis of the Hamiltonian or another observable. In either case, the quantified coherence is not an intrinsic
property of the single-party quantum state itself. The dynamics of quantum coherence under certain noisy chan-
nels has also attracted a lot of research attention'>!® and is connected to the dynamics of quantum correlations!’.

When Alice and Bob share a correlated quantum system, a measurement by Alice can ‘steer’ the quantum state
of Bob. Quantum steering, especially Einstein-Podolsky-Rosen (EPR) steering, has long been noted as a distinct
nonlocal quantum effect'® and has attracted recent research interest both theoretically and experimentally!®-22.
The quantum steering ellipsoid (QSE)*-%, defined as the whole set of Bloch vectors to which Bob’s qubit can be
steered by a positive-operator valued measurement (POVM) on Alice’s qubit, provides a faithful geometric pres-
entation for two-qubit states. Using the QSE formalism we have studied a class of two-qubit states whose quantum
discord can be increased by local operations®. Interestingly, arbitrarily small mutual information is sufficient
for the QSE of a pure two-qubit state to be the whole Bloch ball. Since mutual information is an upper bound of
quantum correlation measures such as entanglement and discord, the power that one qubit has to steer another
cannot be fully characterized by the quantum correlation between the two qubits. A measure that quantifies the
power of generating quantum coherence by steering is therefore necessary.

In this paper we consider a bipartite quantum state p with non-degenerate reduced state pp and study the
coherence of Bobs steered state, which is obtained by Alice’s POVM. Here the eigenbasis of pp is employed as the
fixed basis in which to calculate the coherence of the steered state. The significance of this choice of basis is that
Bobss initial state is incoherent. When Alice performs a local measurement, she can steer Bob’s state to one that is
coherent in the eigenbasis of py, i.e. Alice generates Bob’s coherence. By %(p) we denote the maximum coherence
that Alice can generate through local measurement and classical communication. In contrast to existing quanti-
fiers of coherence, C is an intrinsic property of the bipartite quantum state p, because the reference basis of coher-
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ence, chosen as the eigenbasis of p, is inherent to the bipartite state. Furthermore, we find that C gives a different
ordering of states compared to quantum entanglement or discord; this indicates that C describes remote quantum
properties distinct from these measures of quantum correlation. Properties of C are also studied. The maximal
steered coherence is found to vanish only for classical states and can be created and increased by local quantum
channels. Given that coherence plays a central role in a diverse range of quantum information processing tasks,
we can also consider how steered coherence might be used as a resource. We close our discussion by presenting
one such scenario.

We note that, shortly after this paper first appeared, Mondal et al. presented a study on the steerability of
local quantum coherence®. We consider our works to be complementary: though examining a similar topic, our
approaches are very different (Mondal et al. consider steering from the existence of a local hidden state model
rather than from the perspective of the QSE formalism).

Results
Definition. We consider a bipartite quantum state p, where the reduced state py is non-degenerate with eigen-
states = = {[¢,)}. When Alice obtains the POVM element M as a measurement outcome, Bobss state is steered to

pB i= trA (M ® 1p)/p,, with probability p, : = tr(M ® ]lp) where 1 denotes the single qubit identity operator.
Baumgratz et al.!” gives the the quantum coherence C of pB in the basis {|¢,)} as the summation of the absolute
values of off-diagonal elements:

c(pM, - = tr, (M @ 1
(a1} PM;lfer PIE- (1)

Here we maximize the coherence C ( pB , {|€;)}) over all possible POVM operators M and define the maximal
steered coherence as

%(p): = max
MePOVM

15K §l (M lp)|§) ]|

thz]

(2)

When py is degenerate, = is not uniquely defined; however, we can take the infimum over all possible eigen-
bases for Bob and define the maximal steered coherence as

MePOVM

€(p): = 1nf max
th¢]

L5 (& ra,(M @ Ip)[E; >|”
(3)

It is worth noting that % is an intrinsic property of the bipartite quantum state p. When fixing the basis in
which to calculate the coherence, we need not choose an observable that is independent of the state; the basis
{|¢,)} we choose here is inherent to the state p.

Properties. We prove that the following important properties hold for maximal steered coherence.
(E1) % vanishes if and only if p is a classical state (zero discord for Bob), i.e. can be written as

d
p= ZpipiA ® ‘§,> <€,|
i=1 (4)
The proof of this is given in Methods.
(E2)% reaches a maximum for all pure entangled states with full Schmidt rank, i.e. states that can be written
inas|0) = 39 A 1oty ® \f )y with \; = 0 Vi. Here dj is the dimension of Bob's state. For a single quantum
system of dlmensmn dg, the max1mally coherent state is |'¢v ) = —E | xiB )1°° Bob is steered to this when Alice

obtains the measurement outcome M = \1/1 ) (w |, where |’(/J )is the state ng ~ ¢ ) after normalisation.

(E3) % is invariant under local unitary operations. When the unitary operator U= U, ® Ugacts on abipar-
tite state p, the eigenbasis of pj is rotated by Uy, so that the off-diagonal elements of pBM become

(€U 5 [M @ (UpUNGE) = (€] ty [UZMU, © 1p]|€). (5)

From Eq. (2) it is clear that %'( UpUT) =% (p).
(E4) % can be increased by Bob performing a local quantum channel prior to Alice’s steering.Property (E4)
holds owing to the fact that a local channel A, under certain conditions®, can transform a classical state with
vanishing % into a discordant state with strictly positive %. Note, however, that a channel A, performed by Alice
prior to steering cannot increase 4. (This follows because A , can be performed by applying a unitary operation
to A and an ancilla A’ and then discarding A’; the unitary operation does not affect the set of Bob’s steered states,
while discarding A’ may limit Alice’s ability to steer Bob’s state. Thus A 4 performed by Alice does not alter Bob’s

reduced state pg but shrinks the set of his steered states; such a channel cannot increase %)
Let us also note an important consequence of property (E2): % is distinct from the entanglement E*!
and discord-type quantum correlations 22 In fact, % gives a different ordering of states {ror}h Eor 2.
g ®1g

We demonstrate this by considering states p, = [¥,)(¥,| and p, = (1 — 6)|T,) (| + & o where
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|\111) =J1-— (d - 1)6|00) + ﬁz?;ll\jj) and |\Ilz) = %Zj;(ﬂjj) are both pure entangled states with full
Schmidt rank of dimension d, and 0<§ < 1. According to (E2), % (p,) reaches the maximum; whereas for p,,
Bob’s steered state is always mixed and hence not maximally coherent state in any given basis. We therefore have
%(p,) > (p,) Meanwhile, 7 (p ) and E(p,) can be made arbitrarily small by taking 6 to be small enough, whilst
9 (p,) and E(p,) approach 1 for small 6. Hence § exists such that 7 (p,) < Z(p,)and E (p,) < E(p,)-

General expression for two-qubit states. We now derive the general form of % for two-qubit states. The
state of a single qubit can be written as p, = lZ?:O bo; where o, = 1, 0; with i= 1,2, 3 are Pauli matrices,
b, = tr(p,y0;), andb = (by, b,, b,)" is Bobs Bloch vector. The norm of the vector b is denoted by b. The quantum
coherence of p, in a given basis {n, —n}, where|n| = 1,is

Clpy m) = b x n. (6)

Let B and N be the points associated with the vectors b and n respectively, and let O be the origin. Since
%\b x n|is the area of AOBN and the line segment ON is unit length, C(p, 1) is simply the perpendicular dis-
tance between the point B and the line ON.

Similarly, we can write a two-qubit state in the Pauli basis as p = i szo

©; = tr(p ot ® ajB ) form a block matrix@ = |1 b" | Here a and b are Alice and Bobs Bloch vectors respec-

@ij o,-A ® ojB , where the coeflicients

a
tively, and T'is a 3 x 3 matrix. Note that when pj is non-degenerate we have b+ 0. We ignore the trivial case that
a=1, when p, is pure and hence p is a product state.

When the POVM operator M = %(00 + m - o)is obtained on Alice’s qubit, Bob’s state becomes

b+ T'm

M_1+a~m. (7)

Hereo = (0, 0,, 05)",andm = (m,, m,, m;)" can be any point on or inside the Bloch sphere. The set of by,
forms the QSE &5. When pj is non-degenerate, we have b#0. According to Eq. (6), the coherence of b, in the
basis {|¢;)} is C(pBM7 ng) = |by X ng|, with ny= b/b; this represents the perpendicular distance from
the point B, to the line OB (Fig. 1a). Hence the maximal steered coherence %(p), as defined in Eq. (2), is
the maximal perpendicular distance between a point on the surface of &, and OB. Explicitly, we have
C(pBM, ng) = |(T"m) x ny|/|1 + a - m|and

T
T'm X ng

4 = max
(p) e m

meRs,m:l

(®)

The maximization needs to be performed only over all projective measurements with m =1 because steered
states on the surface of £ correspond to measurements m on the surface of the Bloch sphere.
When pj is degenerate, b= 0 and n; is arbitrary; the infimum can then be taken over all n to give the maximal
steered coherence of a two-qubit state as
] ©)

Properties for two-qubit states. We now study two-qubit states in more detail; this allows us to identify
some important features of the maximal steered coherence, as well as giving a clear geometric interpretation of 4
using the steering ellipsoid formalism.

As demonstrated by property (E4), a trace-preserving channel A ; performed by Bob may increase %’; we now
study an explicit example. Say that Alice and Bob share the classical two-qubit state

T
T'm X ng

%(p) = inf max
(p) [ l4+a-m

npeR’ np=1{ meR> m=1

pe=tFH) (] + (1 = ) [==) (], (10)

withzl <t<land|t) = % (|0} £ |1))- When Bob applies the single-qubit amplitude damping channel, the
state transforms as p/, =1, ® AQD(pC), where A*P(.) = Y, E,(-)E; with E, = [0)(0] + /T — ~|1)(1| and
E, = ./7/0)(1]. We then find that the maximal steered coherence of the transformed state is

Gp) = L
Ja =271 =)+ (11)

% (p',) vanishes when y= 0, becomes positive for 0 < y< 1, and then vanishes again at y= 1.
Maximal steered coherence can be increased by Bob’s local amplitude damping channel even when Alice and
Bob share a non-classical state. Consider the two-qubit state

1-p
® 0y,
g 00 (12)

=PI (] +

SCIENTIFICREPORTS | 6:19365 | DOI: 10.1038/srep19365 3



www.nature.com/scientificreports/

a. X state b. Werner state

c. General state d. Optimal state

Figure 1. Anillustration of the geometric interpretation of maximal steered coherence % (p) for two-qubit
states p using the QSE £3. For simplicity we take a = 0. The point B representing Bob’s Bloch vector is indicated
by a green blob, and the line OB is also shown in green; states lying along this line are incoherent in the basis ps.

% (p) is given by the maximal perpendicular distance between a point on &, and OB; this is shown by the red arrow.
(a) Theorem 2 shows that for any canonical state, % ( p) is bounded by the longest semiaxis of the QSE. (b) A state
of the form (15), which achieves maximal % (p) for a given b. The QSE is a chord perpendicular to OB. (c) When
pis an X state, OB lies along an axis of the QSE, and % (p) is the length of the longest of the other two semiaxes.

(d) When p is a Werner state, & is a ball centred on the origin. In this case, even though p; is degenerate, % (p) is
well-defined as the radius of the ball.

where 0< p<1and|¥) = cos §|++) + sin g\——). The QSE for such a state is an ellipsoid centered at

2 .
[P(l — p)cosf 070] with semiaxes of length ¢, = pU—peost) —_ _ _ psind aligned with the coordinate

1— (pcosh)?’ 1 — (pcosh)? » 62 €= 1— (pcos)?
axes (& is in fact a prolate spheroid as ¢, > ¢, = c3). Bobs Bloch vectorisb = (pcos6, 0, 0), which lies on the x
axis. The maximal steered coherence is therefore

C(p) = Lﬂg.
P J1 — (pcos)’ (13)

, the state p, has zero entanglement but nonzero %'. Note also that % ( pp’ )is related to both the

Forp < —
fraction of| ) and the entanglement associated with [¥).

Figure 2 shows the evolution of 4 under the channel A%, i.e. %(p’ o) wherep' =1, ® AP ( pp). By altering
pand 0 we alter the ratio of the axes c¢;/c,. The results indicate that the potential for increasing % under Bob’s local
amplitude damping is related to the ratio ¢;/c,: the smaller the ratio, the stronger the local increase of 4. In other
words the effect is strongest when the QSE &} is highly prolate (‘baguette-shaped’).

In fact, it is possible to formulate a necessary and sufficient condition for the increase of maximal steered
coherence for two-qubit states.

Theorem 1. Bob’ local qubit channel Ay can increase maximal steered coherence for some input two-qubit state
ifand only if Ay is neither unital nor semi-classical.

The proof is given in Methods. We therefore see that the behavior of maximal steered coherence % under local
operations is similar to that of quantum discord 2. The set of local channels that can increase % for some
two-qubit state is the same as the set of local channels that can increase 2. Moreover, % can be increased when the
QSE & is very prolate; we showed in Reference? that the quantum discord of Bell-diagonal states with such
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Figure 2. The evolution of maximal steered coherence under Bob’s local amplitude damping channel:
F(1, @ AP (p,))> with p, given by Eq. (12). The parameters for the four curves are p=0.9, ¢ = 0.2 for the
cyan dashed line; p=0.9, = 0.17 for the red dotted line; p= 0.7, = 0.17 for the green solid line; and p=0.5,
0= 0.17 for the blue dash-dotted line. The corresponding semiaxes ratios, which give a measure of the
prolateness of &, are c/c, = 0.980,0.859,0.629 and 0.496 respectively. The effect of locally increasing % is
stronger for more prolate &j.

baguette-shaped & can be increased by the local amplitude damping channel. We therefore conjecture the local
increase in quantum correlations originates from the increase in steered coherence.

We now investigate the set of so-called canonical states, which have particular significance in the steering
ellipsoid formalism?%?>3. Here, a canonical state p,, corresponds to one for which Alice’s marginal is maximally
mixed (a= 0). This implies that the QSE &} is centered at B (Fig. 1a). Let ¢}, ¢, and ¢; be the lengths of the semiaxes
of & ordered such that ¢, > ¢, > ;.

Theorem 2. For any canonical state p,, the maximal steered coherence is bounded by the longest semiaxis. This
in turn is bounded by the length of Bob’s Bloch vector as

Cp,) < <A1 - (14)

The bound is saturated if and only if & is a chord perpendicular to b meeting the surface of the Bloch sphere at | )
and |x'). This represents a canonical state of the form

e = 1) (01 © (X)X + LT © ) (- s

where (y|)) = 0.
The proof is given in Methods, and an example QSE for an optimal state of the form (15) is shown in Fig. 1b).

Note that this bound is remarkably simple and geometrically intuitive: it depends only on the longest semiaxis of
6y and not on the orientation or position of the QSE. Theorem 2 is in the same vein as bounds presented in
Reference™® that relate several other measures of quantum correlation to geometric features of QSEs.

We also note that optimal states of the form (15) have the highest quantum discord among discordant states
with a given b that are obtained from classical states by a local trace-preserving channel. As shown in Reference™,
when we take a two-qubit B-side classical (zero discord) state and apply a channel A to Bob’s qubit, in order to
create maximal B-side quantum discord in the output state, the optimal input state is of the form
21\1/;) (Y] ® o) (o] + %\E} (Y| ® |§) (¢} and the channel A, should have Kraus operators E; = |x){(4),
E, = |x') (], where|x) and|x’) are determined by b.

Examples. Let us now examine some interesting classes of two-qubit states for which maximal steered coher-
ence is easy both to find analytically and to interpret geometrically using QSEs.

X states. ' When ny lies along an axis of the QSE &y it is straightforward to see that % (p) is simply the length of the
longest of the other two semiaxes (Fig. 1c). All p which are X states, i.e. have non-zero entries only in the charac-
teristic X shape in the computational basis*, will have such QSEs*.

Werner states.  As a special case of the above, when &y is a ball of radius r centered on O’ and n; is collinear with
OO0, we have % (p) = r. Furthermore, when & is an origin-centered ball, we have #(p) = r regardless of
the value of b. This allows us to evaluate % for Werner states®, which do not in fact satisfy the non-degenerate
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condition b#0. For a Werner state p, - = p[¥") (V7] + TPO'O ® o, with|I7) = %(\01) — |10)), &z is an origin-
centered ball of radius p and hence ¥(p,,,) = p (Fig. 1d).

Discordant states locally created from a classical state. ~'We know from property (E1) that % vanishes for classical
states; for a classical two-qubit state, all steered states must have the same orientation, and the QSE & is therefore
aradial line segment. For a state obtained locally from a classical state, pg,, the QSE is a nonradial line segment?.
b can be any point on this segment except for the two ends of &, which we call b, and b,, where b, > b,. By defini-
tion @ (p, ) varies for different b; in general, we find that

< b;sing, forf <
bysind, < € (py.)
(16)
where  is the angle between b, and b, and 0, is determined by b, sinf, = b,sin(¢ — 6,). From Eq. (16), we see
that % (p, ) is strictly larger than zero. In fact, € (p,, ) can reach unity when b;=1and g > %

Maximally obese states. 'The general form of a maximally obese state is given by

o=t~ %]l%) (] + ZJ00) 0ol (17)

where|¥,) = Jlib (/1 — b]01) + |10)). This is a canonical state (a = 0) with &; centered at (0,0, b) and semiaxes
oflengthc; = ¢, = +/1 — b,c; = 1 — baligned with the coordinate axes. We therefore have 4 (p_ ) = /1 — b.
It should be noted that maximally obese states maximize several measures of quantum correlation (CHSH non-
locality, singlet fraction, concurrence and negativity) over the set of all canonical states with a given marginal for

Bob?®. Interestingly, however, they do not achieve the maximum possible 6 = +/1 — b*.

Discussion

We have studied the maximal steered coherence % (p) for a bipartite state p. When Alice obtains a POVM out-
come M, Bob’s state is steered to pBM ; @ (p) is defined as the coherence of the steered state in Bob’s original basis,
maximized over all possible M. The general form of 4 is derived for two-qubit states. By calculating the maximal
steered coherence for some important classes of two-qubit state, we find that % gives a different ordering of states
from quantum entanglement or discord-like correlations. This means that % is a distinct and new measure for
characterizing the remote quantum properties of bipartite states.

The maximal steered coherence vanishes only when p is a classical state, and % (p) can be increased by local
trace-preserving channels. For a two-qubit state p we derive a necessary and sufficient condition for a local qubit
channel to be capable of increasing % (p). This is in fact identical to the condition for increasing quantum discord,
suggesting that local increase of quantum discord might be used in a protocol for increasing steered coherence.

Finally, we consider the relevance of 4 from a more physical perspective by presenting a concrete example in
which steered coherence can be exploited. Say that Alice and Bob share a two-qubit state of the form (15) with
[1) = |0), \E) = |1)and b= (0,0, b) (which, as illustrated in Fig. 1b, will lie at the midpoint of the chord &} joining
|x)and|x’}). Suppose also that Alice’s and Bob’s systems are described by the local Hamiltonian H = — hwo ;. Let
us restrict Alice’s and Bob's local operations to those which are covariant with respect to time-translation symme-
try””. For Alice, these operations are the ones for which ® (e ey e’Ht) = e (p e #t; and similarly for Bob.
Physically, this restriction corresponds to local energy-conserving unrtarres with the assistance of incoherent
environmental ancillas®®: Alice’s operation is covariant if and only if it can be written as
D(p,) = trglU(p, ® &) UT where U is a unitary, H is the Hamiltonian of the ancilla, [U, H + Hy] = 0and
[€,, Hgl = 0; and similarly for Bob. The set of covariant operations is a strict subset of incoherent operations'
and a strict superset of thermal operations®.

Bob’s reduced state p, = (Jl + bo,) is incoherent in his energy eigenbasis {|0), |1)}, and his local covariant
operations alone cannot generate any coherence. However, by performing a o; measurement, which is a covariant
operation, and classically communicating the result to Bob, Alice steers him to either ‘X) or |y’ ), states that are
manifestly coherent in the energy eigenbasis. %' (p) gives a measure of the maximal coherence that Alice can
induce on Bob’s system by steering. In this way, Alice remotely ‘activates’ a coherent state for Bob that he was
unable to produce himself. Bob may now use this coherence as a resource for quantum information processing
tasks, e.g. work extraction by a thermal machine, which is known to be enhanced in the presence of a coherent
reference system*’. Given the ever-increasing number of applications for coherence found throughout quantum
information science, one can envisage a range of such scenarios in which steered coherence could be used as a
resource.

Methods
Proof of property (E1). The ‘i’ part is obvious: Bob’s reduced state is p, = 3, p, | ) (¢, and the steered
state is p =2p; tr( AM )[€,) (€,]- These are both diagonal in the ba51s {|§) and hence (g(p) =
For the ‘only if” part ﬁrst consider a separable state p_ = 3, p, p ® p, B 'When %(p,) = 0, the steered states
=2p; tr(p, pAM ), B for different POVM operators M should commute with each other, which is equivalent
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to all piB commuting with each other. So %(p_) vanishes only if it is in the form (4). For an entangled state p,, we
express p, in the optimal pure state decomposition form as p, = >_; p.|®;) (®;}, so that the entanglement of for-
mation is Ep(p,) = X p,Ex(|®;)(®;|). Since p, is entangled, at least one of the |®;) is entangled. Hence, for p,, it
is not possible for all of Bob’ steered states to share the same eigenbasis; this means that ¢ (p ) = 0 for any entan-
gled p,.

Proof of Theorem 1. A channel A, that is neither unital nor semi-classical can increase %, because such
channels can transform a classical state with vanishing % into a discordant state with nonzero %>%*'. We now
focus on the ‘only if” part, and prove that a local unital channel or a local semi-classical channel cannot increase
% for any two-qubit input state.

A semi-classical channel A**!, which maps any input state p to a state with zero coherence in a given basis
A (p) = Xip, (p) |k) (k|, yields € = 0 for any input state. As proved by King and Ruskai*, any unital channel is
equivalent to ' (-) = 323 e;0,(-) o, where 0 < ¢;< 1and Z = 1. The effect of this channel on a qubit state is
to shrink the Bloch vectoras A*: b — b’ = (pl " Pz s p3 3) ,wherep = e, + e, — e, — ey, and p,;are related
to e; in a similar way. Let by be a steered state for the input state p. Then the coherence of by, is
C (bM, b) = |b,; x b|/b. Under the action of A%, the steered state and Bob’s reduced state become b’,; and b’
respectively, and the coherence of b’ in the eigenbasis of b’ is

banbs — busb) o] Py
(0anbs — bassb)) P p; (1223 +(1—3—2).

C2 (blM7 b/) = 2 2 2
(bip)” + (bapy)” + (b3py) (18)

If the inequality
C(b'y, b) < Cby, ) (19)
holds then the maximal steered coherence for the output state 4(1, ® Aj(p)) = €(b'y, , b)) < €(by ,b)
S%( ) OP(
sponding input state for b/,, . Hence it is sufficient to prove that (19) holds for some by, and b. Note that

(banbs ~ bansbr i py < by = bty ByusmgthefactthatA+B <A +B for0O<B<D,0<A<CO0<A <C
(hlpl >2 + (b3P3)2 B b12+b3 P o

and% > 2_:, we arrive at 62(b’,,, b') < C*(b,,, b), which is equivalent to (19).

where M, is the optimal POVM operator to maximize (2) for the output state and b,, is the corre-

Proof of Theorem 2.  The steered state by, which achieves the maximum in Eq. (8) corresponds to a point B,

on the surface of &. We have % (p_ ) = C(by, ny) = D(B,;, OB) < BBy, < c,, where D(B,;, OB) s the per-

pendicular distance between B, and OB. To ensure that &, lies inside the Bloch sphere we require that
<.

To saturate the bound we take ¢, = /1 — b, but we must also demonstrate that ¢, = c; =0, i.e. that ; cannot
be an ellipsoid or an ellipse. We know that & must meet the Bloch sphere at two points, corresponding to the pure
states|x) and | x’). Firstly suppose that & is a three-dimensional ellipsoid. Elementary geometry tells us that the
surface of an ellipsoid at the end of any axis must be perpendicular to that axis. The points at the ends of the ¢, axis
on & lie on the surface of the Bloch sphere. Since the surface of &; must lie perpendicular to the ¢, axis at these
points, 6z must puncture the surface of the Bloch sphere. Such & cannot represent a physical two-qubit state and
so &5 cannot be an ellipsoid. Now consider the case that &; is an ellipse. The nested tetrahedron condition tells us
that any degenerate &, describing a physical state must fit inside a triangle inside the Bloch sphere>2.
Geometrically, no ellipse that touches the Bloch sphere at two points can satisfy this, and so &; cannot be an
ellipse. &; must therefore be a line, i.e. the chord going between | x) and|x’); this corresponds to the state (15).
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