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Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of
patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet
been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a
novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic
biomarkers of action. We integrated structural proteome-scale drug target identification with network
biology analysis by combining structural genomic, functional genomic, and interactomic data. Through
searching the human structural proteome, we identified twenty putative metformin binding targets and
their interaction models. We experimentally verified the interactions between metformin and our top-

. ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular

. targets of metformin. Subsequently, we linked these putative binding targets to genes that do not
directly bind to metformin but whose expressions are altered by metformin through protein-protein
interactions, and identified network biomarkers of phenotypic response of metformin. The molecular
targets and the key nodes in genetic networks are largely consistent with the existing experimental
evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new
light into repurposing metformin for safe, effective, personalized therapies.

Metformin, a drug frequently prescribed for type 2 diabetes, has been shown to decrease the incidence of can-
cer in diabetic patients by 37% relative to the diabetic patients not taking this drug, making it an important
candidate for drug repurposing!. In breast cancer, as well as other cancers, metformin is believed to activate the
AMPXK signaling pathway, which elicits its anti-cancer effect by inhibiting the mTOR pathway*?. In addition
to the AMPK pathway, several AMPK independent pathways such as RAS*, AKT?, and HIF-1a® may contrib-
ute to the anti-cancer effect of metformin. Metformin has also been proposed to act directly on mitochondria,
decreasing mitochondrial respiration and lowering overall energetic efficiency; in cancer cells, this metabolic
stress results in a greater increase in aerobic glycolysis than in normal cells, due to the former’s greater metabolic
© vulnerability®. More recently, Sun et al. attempted to construct a signaling pathway network of the genes through
. which metformin elicits its effect’. They proposed that seven genes (CDKNIA, ESR1, MAX, MYC, PPARGCIA,
SPI1, and STK11) and one MYC-centered pathway with CDKNIA, SP1, and STK11 might play important roles in
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Figure 1. A conceptual framework of structural systems pharmacology used in this study. Dark blue
lines represent direct molecular interactions between drug and its targets. Green arrows are protein-protein
interactions through which the information of drug-target interaction is transmitted.

metformin’s therapeutic effect. Larsson et al. examined the differential influence of metformin on the transcrip-
tome and translatome of cancer cells. Their findings indicate that metformin’s primary effect is of inhibition of
translation of a subset of mRNAs®. Previously, we proposed that metformin may weakly bind to the AMPKS3 sub-
unit, as well as four other proteins which have very similar binding sites (MAP2K2, PDK2, EGFR, and TIAM1)°.
In spite of these efforts, the molecular and genetic mechanisms of metformin’s anti-cancer effect have not yet
been fully understood. First, the direct molecular targets of metformin and their molecular details of interaction,
which lead to its pleiotropic effect, are largely unknown. Such information is critical to understand the personal-
ized therapeutic effect of metformin, as it will allow us to predict the direct impact of amino acid mutations on the
drug-target interaction. Second, it is not clear what other molecular and genetic factors that modulate the drug
action are responsible for the anti-cancer sensitivity of metformin on a patient-specific basis. It is speculated that
genetic modifications in the drug modulation pathway will alter the drug response!?. The answers to these ques-
tions will facilitate identifying pharmacogenetic biomarkers for the efficacy and side effects of metformin for indi-
vidual patients, a critical step towards repurposing metformin as a safe and effective precision anti-cancer therapy.

There is evidence that polypharmacology is a common phenomenon. Weak interactions with many targets
make a significant contribution to a drug’s effect!!. Moreover, cryptic genetic factors may collectively affect drug
actions under drug treatments'? It is challenging to determine genome-wide drug-target interactions and their
correlations with clinical responses under diverse genetic backgrounds both experimentally and computationally.
To address this problem, our innovation here is to extract the key proteomic and genomic factors which explain
the drug’s empirically-observed activity on a multi-scale, from molecular details of drug-target interactions to
the emergent properties of biological networks. Our strategy creates a start-to-finish picture of the drug’s overall
effects, from its directly-binding upstream protein targets to the key down-stream proteins which control the
body’s anti-cancer machinery. The strategy also takes instances of congruence as suggestions of polypharma-
cology, producing multiple binding partners and their modulated pathways of metformin’s interaction network.
Using only publically available datasets, our methodology has produced a more complete image of metformin’s
biological activity. While we have experimentally verified the interaction between metformin and the majority of
the targets we have tested, our results have yielded many additional direct and indirect targets ready for further
investigation. Our approach is generalizable to any compound with at least one documented protein receptor for
which a crystal structure is available and for which a genome-wide gene expression analysis has been performed,
and is particularly suited for identification of polypharmacology.

Specifically, we have developed a structure-based method to identify the targets of a drug molecule on a
structural proteome scale, and successfully applied it to drug repurposing'?, side effect prediction'?, and polyp-
harmacology'*. Here, a similar strategy will be applied to identify proteome-wide molecular targets of metformin.
Among the top ranked targets, several are kinases. Subsequently, we commissioned a KINOMEscan binding assay
between these putative kinase targets and metformin, and validated 5 out of 6 our predictions being correct. After
identifying putative interacting proteins, we for the first time developed a novel method to predict the down-
stream genes and drug modulation pathways by integrating drug targets, protein-protein interaction network,
and gene expression using a Prize-Collecting Steiner Tree (PCST) algorithm'®. Finally, we analyzed these pre-
dicted networks for biological relevance to anti-cancer activity and to determine hidden genetic factors that will
impact the drug modulation pathways. In this way, we can correlate drug-target interactions with drug response
phenotypes under diverse genetic backgrounds.

Using the multi-scale modeling approach, we have identified twenty putative targets of metformin. Although
using different structural templates as a starting point, the two studies resulted in consistent results. Five kinases
that we have shown bind directly to metformin (SGK1, EGFR, CDK7, MAPK14, and MAP2K2). Furthermore, we
identified genetic factors (TP53, AKT1, and PCNA genes) that do not directly bind to metformin, but are respon-
sible for the anti-cancer effect of metformin. Our predictions are largely consistent with the existing experimental
and computational results. They generated abundant testable hypotheses for further in vitro and in vivo valida-
tion, and may shed new light into repurposing metformin for safe, effective, personalized anti-cancer therapies.
This study also lays the groundwork for high-throughput prediction of pleiotropic drug/target/gene relationships.
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Figure 2. Methodology Flow Chart. Bulleted line segments represent datasets and software used; arrows
represent the flow of information and the transition from one step to another.

Results

Our structural systems pharmacology approach is based on a simplified model of drug action as shown in Fig. 1.
We assume that a drug like metformin may bind to multiple proteins (drug targets)'?. Functional modifications
of targets resulting from the drug binding (inhibition or activation) will propagate to other genes through a
protein-protein functional association network, and manifest in the transcriptional, translational, and other
observable genome-wide changes. The observed differentially expressed genes upon drug binding can be used
as a surrogate of drug response phenotype. Genes without observable changes (cryptic genetic factors) may exist
to mediate the information transmission from drug targets to differential genes. A genetic alteration in either a
drug target or a cryptic genetic factor will impact the drug’s action. Following this concept, our structural systems
pharmacology approach consists of three major steps. First, we apply a previously-proven successful method to
identify drug binding targets on a structural genome scale. Then we map the drug targets and differential genes to
a protein-protein interaction (PPI) network and identify the drug modulation pathway, a sub-network on the PPI
network, which links the drug targets to differentially expressed genes. Subsequently, we detect the critical gene
nodes in the drug modulation pathway whose deletion will have significant impacts on information transmission,
thereby altering the drug response phenotype. Finally, we map the observed cancer mutations to the binding
pockets of experimentally validated molecular targets and identified genetic biomarkers. These analyses provide
clues to the alternation of drug-target interaction and network rewiring that may impact the personalized drug
response. The method is summarized in Fig. 2, and details are presented in the Supplemental Methods section.

Putative targets of metformin. We proposed that metformin might weakly bind to the AMPK@ subunit’.
DPP4 was identified as another direct molecular target of metformin by querying the ChEMBL relational data-
base using SQL!® (Supplemental Methods, Figure S1), and supported by recent studies!”!8. Using AMPK@ sub-
unit and DPP4 as templates, we profiled protein structures from the Protein Data Bank (PDB) to identify those
with evolutionarily related and similarly shaped binding pockets to that of AMPK( and DPP4. We identified 19
structures with a binding-site similarity (multiple testing corrected p-value < 0.05) which were not homologs
of AMPKQ and DPP4. This set was termed the “putative targets”. Our top-ranked structure, associated with the
Fibroblast Activation Protein (FAP), is a member of the prolyl peptidase protein family - the same family as
DPP4, explaining its near-identical binding site!>. Among the putative targets, six of them are protein kinases.

Binding mode of metformin in putative targets. Docking model experiments between metformin and
each of these proteins predicted exothermic binding interactions to take place in all cases, as shown in Table 1.
Figure 3A shows an example of the binding pose of metformin on kinase SGK1. Similar to other kinases, the
binding site of metformin is adjacent to the ATP binding site®. It implies that metformin may act differently from
the common ATP inhibitors of kinases. We further mapped somatic cancer mutations observed in COSMIC
(cancer.sanger.ac.uk)? onto the structures of putative kinase targets. A number of these mutations surround the
metformin binding site. Five examples are shown in Fig. 3B-F. These amino acid mutations observed in COSMIC
are listed in supplementary Table S1. It is speculated that the mutations of these amino acids, will impact the
therapeutic effect of metformin. This finding is potentially important in the context of personalized medicine, as
metformin may have increased or decreased drug sensitivity in patients with such mutations.
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SMAP Vina binding
PDB code Gene symbol P-value score Kcal/mol
1Z0M PRKABI1 0.0 —4.7
1268 FAP 1.0E-10 -5.0
3A8N TIAM1 9.22E-04 —4.8
18X] RFC1 4.79E-03 —=5.1
3B2V EGFR 6.79E-03 —5.1
1891 MAP2K2 6.92E-03 —5.1
2BU7 PDK2 9.85E-03 —4.9
3DDU PREP 1.05E-02 —4.5
3NVQ SEMA7A 1.63E-02 —4.6
1F45 IL12B 1.71E-02 —57
1CJY PLA2G4A 1.85E-02 —4.7
20NL MAPK14 1.96E-02 —-57
3096 AKT1 2.49E-02 —55
1K8Q LIPF 2.81E-02 —4.5
3KY9 VAV1 3.01E-02 —6.4
1UA2 CDK7 3.21E-02 —55
3HDN SGK1 3.37E-02 —4.1
20CI BPHL 3.50E-02 —5.4
2WWw MMAA 3.71E-02 —4.6
3EAH NOS3 3.77E-02 —57
1TG6 CLPP 4.05E-02 —2.6

Table 1. Putative targets of metformin identified from ligand binding site comparison. Binding between
underlined entries and metformin was experimentally tested by KINOMEscan assay. Four putative targets
were identified (PDK2, MAP2K2, EGFR and TIAM1) using AMPK@ as a template, and AMPKJ itself was also
included (PRKABI gene; no p-value is available due to its use as a template).

Binding assay for putative kinase targets. Among our putative targets, six of them are kinases: AKT1,
EGFR, MAPK14, MAP2K2, CDK7 and SGK1. We tested the direct binding between metformin and these kinases
using

DiscoveRX KINOMEscan™ binding assay. KINOMEscan™ is an active site-directed competition binding
assay to quantitatively measure interactions between chemical compounds and kinases. The binding strength is
reported by ‘%Control, which is calculated as shown in equation (1).

(metformin signal — positive control signal) 100

(negative control signal — positive control signal) (1)

DMSO and a pico-molar kinase inhibitor were used as negative and positive controls, respectively. The lower
%Control is, the stronger the interaction. As shown in Table 2, our results showed binding between metformin
and all the tested six kinases except AKT1. Of the tested kinases, Metformin showed its strongest binding with
SGK1 and EGFR. Thus, our predictions are strongly supported by the experimental evidence.

Analysis of drug modulated sub-networks. Here, we, for the first time, developed a novel method to
predict the drug modulation pathways as protein-protein interaction (PPI) sub-networks, which could lead to
experimentally-determined changes in gene expression®, using a Prize-Collecting Steiner Tree (PCST) algo-
rithm?®. In this conceptualization, metformin-interacting proteins form the root of a branching tree network,
differentially-expressed genes form the leaves of the tree, and confidence-weighted interactions between other
proteins connect the root to the leaves. The PCST algorithm attempts to link the root to as many leaves as
possible while minimizing edge cost (maximizing confidence), thus predicting the most linked nodes that take
part in the network without apparent alteration of expression. Compared with the conventional shortest path
method, the PCST will provide a parsimonious solution that jointly optimizes the paths from the root to all
the leaf nodes, thus potentially reducing the occurrence of false positives, especially when applied to the noisy
PPI network!'’. In our implementation, protein-protein interactions were obtained from the STRING-DB?!
and assigned a cost which was calculated as 1 minus the confidence of the interaction. Figure 4 shows an
example of the resulting sub-network structure when MAPK14 is chosen as the root. The leaf nodes of our
sub-networks were obtained from a set of genes which are translationally-suppressed in MCF?7 cells by met-
formin - as reported by Larsson et al.’ (see Supplemental Methods). Metformin had been previously demon-
strated to inhibit proliferation of MCF7 cells?.

We note that the protein-protein interaction scores documented in STRING-DB are noisy. We calculated
the distribution of edges both within the STRING-DB human PPI and within our predicted sub-networks. Our
results show that the interactions within our networks are consistently of high relative confidence, in contrast to
the mainly low relative confidence STRING-DB PPI (Figure S2). This suggests that the PCST algorithm effectively
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Figure 3. The predicted binding pose of metformin in the binding pocket of putative kinase targets.

(A) The binding site of metformin (right) is adjacent to the binding site of ATP (left) in SGK1. The interaction
patterns of metformin with SGK1 (B), MAP2K2 (C), CDK7 (D), MAPK14 (E), and EGFR (F). The green,
labeled residues are those which are known to be involved in carcinogenic mutations.

selects high-confidence paths through the STRING-DB PPI and that our predicted sub-networks contain inter-
actions which are likely to occur in vivo.
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SGK1 59
EGFR 60
CDK7 79
MAP2K2 80
MAPK14 88
AKTI1 100

Table 2. Results of KINOMEscan binding assay between metformin and top-ranked kinase targets.

‘% control’ is a measure of binding strength. A higher value indicates a weaker interaction; ‘100% control’
indicates no interaction was observed. The results indicate that metformin binds weakly with a large number of
kinases.

Figure 4. Visualized sub-networks for MAPK14. Blue nodes indicate leaf (differentially-expressed genes); for
intermediate nodes (cryptic genetic factors) red indicates critical node; yellow indicates root node; all others
are white. Node size correlates with betweenness-centrality score. Edge-width correlates with confidence of the
interaction. Note that most interactions are of high relative confidence (>0.9 on a scale from 0.0 to 1.0). The
arrangement of nodes in space is for ease of comprehension only. Visualized using CytoScape 3.2.1%%.

As a control, we generated three additional sets of sub-networks. The first set consisted of sub-networks with
randomly chosen genes at the root (the “R-control” set, n = 16). The second set was generated using a random
selection of genes from the leaf nodes (“L-control’, n = 20). Noting that our predicted binding targets and binding
assay demonstrate the interaction between metformin and several kinases, our third set of control sub-networks
were constructed using a random selection of genes coding for kinases (“K-control” set, n=19).

We used the GeneTrail tool to identify biological pathways that were enriched in the non-terminal nodes of
the experimental and control sub-networks. The experimental sub-networks were enriched for a greater number
of overall KEGG pathways than the L-control and R-control sub-networks but not the K-control group (average
of 40.4, 33.9, 32.8, and 39.4 KEGG pathways respectively; exp vs. L-control < 0.05; exp vs. R-control p < 0.05;
exp vs. K-control p=0.741). The same pattern was seen when comparing enrichment of cancer-related KEGG
pathways (average of 22.7, 20.0, 19.5, and 22.8 KEGG pathways respectively; exp vs. L-control p < 0.01; exp vs.
R-control p < 0.01; exp vs. K-control p = 0.944). Cancer-related KEGG pathways were defined as pathways related
to specific cancer types, e.g. ‘Melanoma’ or ‘Small cell lung cancer; as well as pathways known to be involved in the
development or maintenance of cancer, e.g. ‘VEGF signaling pathway’ or ‘Apoptosis. A full list of KEGG enriched
pathways defined as cancer-related can be found in the Supplemental Methods.

The results yielded enrichment of multiple relevant KEGG pathways?. ‘Apoptosis, ‘Cell cycle, ‘Pathways in
cancer, ‘Chronic myeloid leukemia;, ‘Pancreatic cancer, ‘Glioma, ‘Non-small cell lung cancer) ‘Prostate cancer’,
and ‘Bladder cancer’ were all enriched in at least 85% of the sub-networks in each set (at least 18 of 21 experi-
mental sub-networks, 17 of 20 L-control sub-networks, 14 of 16 R-control sub-networks, and 17 of 19 K-control
sub-networks, FDR corrected p values < 0.05). Other relevant pathways, including ‘MAPK signaling pathway’,
‘ErbB signaling pathway’, ‘Nucleotide excision repair, ‘DNA replication] ‘B cell receptor signaling pathway,
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Root Z-score
AKT1 2.777
IL12B 2.585
EGFR 2.521
MAPK14 2.265
TIAM1 2.073
SGK1 1.498
REC1 1.434
SEMA7A 1.306
NOS3 1.115
VAV1 1.051
PLA2G4A 0.923
CLPP 0.859
MMAA 0.795
CDK7 0.667
LIPF 0.411
MAP2K2 0.220
PREP 0.156
FAP —0.164
PDK2 —0.867
PRKABI1 —1.442
BPHL —1.570

Table 3. Z-score for participation within key pathways. Calculated by normalizing participation score
against the mean of the R-control set. Higher participation indicates that the intermediate nodes of the network
are involved in key pathways to a greater extent.

‘mTOR signaling pathway’, and “‘VEGF signaling pathway’ as well as pathways for several more cancers, were
enriched in at least 10 experimental sub-networks and control sub-networks.

As the enrichment of relevant pathways was high in experimental and control sub-networks, we sought a finer
method to distinguish between the identified sub-networks.

Based on our KEGG results, as well as our knowledge of metformin’s relevance to cancer, insulin, and AMPK
signaling, we assembled a set of ‘key pathways’ which represent a profile of metformin’s documented and puta-
tive activity (see Supplemental Methods)?*2. We calculated the number of instances in which nodes of each
sub-network were found in a key pathway, and each sub-network was assigned a “participation” score for each key
pathway. Although most networks in both the experimental and control groups were enriched for the same path-
ways, the nodes of the control sub-networks participated less in key pathways. Analysis of participation within
key pathways for the sub-networks between the experimental and control groups showed significant differences.
On average, the participation of intermediate nodes in key pathways was 117.3 for the L-control, 117.6 for the
R-control, 133.7 for the K-control group, and 131.4 for the experimental group. With approximately equal stand-
ard deviations of 12.9, 15.6, 13.3, and 18.8, respectively, the difference between experimental and both L-control
and R-control is significant (Welch’s T-test for unequal variance, p < 0.01 and p < 0.05 respectively) but the differ-
ence between experimental and K-control is not (p = 0.669). Noting that 6 out of 20 of our putative targets were
themselves kinases, we calculated that the average participation score for that sub-group (140.8) exceeded that of
the K-control, although the difference was not significant (p=0.416).

The participation scores for experimental sub-networks were normalized against the mean participation the
R-control group. This Z-score represents the extent to which the sub-network in question participated in key
networks beyond what which we would expect by random chance (Table 3).

In summary, sub-networks generated from randomly-selected genes are not different from sub-networks gen-
erated from a random sub-set of the differentially-expressed genes in terms of pharmaceutically relevant path-
ways. Sub-networks based on the putative targets are significantly more closely related to pathways than either
of these sub-network sets. However, there is no observed difference between the putative targets and kinases.
Considering the fact that a large number of kinases were experimentally validated targets and that kinases share
similar ATP binding pockets, it is likely that many other kinases could be potential targets of metformin.

Critical components that may impact drug actions.  We further determine hidden genetic factors that
would impact the drug modulation pathways. Our working hypothesis is that the node in the network would
have a greater impact on the drug’s activity if its deletion significantly reduced the flow of information. Table 4
shows genes which appeared as critical nodes (betweenness-centrality in the 95 percentile, see Supplemental
Methods?***) in at least 20% of experimental sub-networks. We note that several genes were found amongst the
critical nodes in at least 50% of sub-networks, in both the set of putative targets and the three control groups.
These genes (TP53, PCNA, AKT1, SRC, and INS-IGF2) were apparently selected because of their functional link
to significant sub-sets of the genes which were differentially expressed under metformin treatment®, which over-
whelmed the choice of root node in the sub-network.
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Critical genes Number of sub-networks where critical
TP53* 20

AKT1* 20

PCNA* 17

SRC* 15

INS-IGF2 12

SF3A2 10

BIRC5
DKC1
ESR1*
BUBI
BRCAL
RPL11
YBXT1*
RPS16*
GRB2*
POLR2H
HNRNPK
MDM2
CASP3
POLR2A*
CDK35
SP1

—_
f=]

il |lu|lulula|A| N[NNI o

Table 4. Genes that were critical nodes in the sub-network. A node is included if the gene appears in at
least 20% of experimental sub-networks (5 out of 21). These nodes have a critical role in several sub-networks
and may be key cryptic genetic factors in metformin’s signaling network. *indicates genes which have known
carcinogenic mutations that could significantly alter the networks.

We proposed that because sub-networks with higher Z-scores could better reflect the documented and pro-
posed activity of metformin, they might be closer to metformin’s true biological activity. Because of this, we sug-
gested that nodes showing a higher degree of betweenness-centrality in networks with higher Z-scores in contrast
to networks with lower Z-scores should be more likely to be important factors. We segregated the experimental
sub-networks based on Z-score into several overlapping sets: all sub-networks, those with a Z-score greater than
1, and those with a Z-score greater than 2. In Table 5 we recorded the genes that have an especially large discrep-
ancy in their betweenness-centrality in different groups of sub-network. For example, ESRI is considered critical
in 25.0% of R-control sub-networks, 38.10% of all experimental sub-networks, 50.0% of sub-networks with Z > 1,
and 80% of sub-networks with a Z > 2. Genes were included in the table if the discrepancy was at least 25 percent-
age points between highest and lowest percentage.

Cross-validation of critical components. Garnett et al. carried out an elastic-net regression to identify
genomic features linked to sensitivity to metformin®. Their analysis identified copy number variation in BRCA1
and BLM, two genes found to be critical nodes in our sub-networks, as factors related to sensitivity to metformin
in cancer tissue. Expression levels in several other genes were identified through elastic-net regression whose
familial counterparts were predicted in at least one sub-network. These include the IL2RG/IL2, RBM15/RBMS5,
RPS6KC1/RPS6/RPS16 and UBE2G1/UBEZ2I sets, as well as MAP4K3 which is related to several predicted MAP
and MAPK nodes and direct targets. Finally, the AKT3 gene was identified, pairing with the predicted AKT1 tar-
get. Garnett’s results provide a partial cross-validation of our predictions, as shown in Table 6.

The ‘drug-specific signaling pathway network’ (DSpathnet)” for metformin generated recently by Sun et al.
produced results which we reinforce here, although the two studies used different data sets and methodology.
The genes that we identified as critical components in our predicted sub-networks overlapped significantly
with important components of metformin’s DSpathnet. We compared sub-network nodes which were critical
(betweenness-centrality in the 95% percentile for a given sub-network) in a given portion of the sub-networks
and were also hubs within the DSpathnet (connectivity >14, n= 38). Seven genes were found to be both
critical in at least 25% of sub-networks with a Z-score >1 and were also DSpathnet hubs; they were BRCA1,
TP53, ESRI, STAT1, JUN, SP1, and AKT1. Their work identified seven critical genes (CDKN1A, ESR1, MAX,
MYC, PPARGCIA, STK11, and SP1). All of these genes were identified as critical within at least one predicted
sub-network except for STK11 and MYC, which still appeared as nodes within at least one sub-network.

It is interesting to note that the mutations in several genetic biomarkers may lead to the rewiring of the cancer
network, as supported by a recent study®®. We have marked genes on Tables 4 and 5 which were proposed to be
involved in this process.
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SF3A2 37.5% 47.6% 60.0% 100.0%
ESR1* 25.0% 38.1% 50.0% 80.0%
BIRC5 37.5% 47.6% 70.0% 80.0%
MDM2 6.3% 23.8% 30.0% 60.0%
STAT1* 0.0% 14.3% 30.0% 60.0%
POLR2H 18.8% 28.6% 50.0% 60.0%
CTNNBI1 6.3% 9.5% 20.0% 40.0%
CREBBP 0.0% 14.3% 30.0% 40.0%
RAC1 0.0% 14.3% 30.0% 40.0%
JUN 6.3% 19.0% 40.0% 40.0%
FOS 6.3% 14.3% 20.0% 40.0%
STAT3 6.3% 19.0% 20.0% 40.0%
IL8 0.0% 9.5% 20.0% 40.0%
NFKBIA* 0.0% 9.5% 20.0% 40.0%
BRCA1 50.0% 33.3% 40.0% 20.0%
HDAC1 37.5% 14.3% 10.0% 0.0%
CDK5 0.0% 23.8% 30.0% 0.0%
SDC2* 18.8% 19.0% 30.0% 0.0%

Table 5. Genes where betweenness-centrality was enriched among one sub-group relative to another.

For example, SF3A2 was considered critical in 37.50% of sub-networks in the control group, but 100% of
experimental networks with Z > 2. Shown here are genes where the disparity was at least 25 percentage points
between most-enriched and least-enriched. Many of these nodes are enriched in the highest-scoring networks
and may be critical nodes specific to metformin’s anti-cancer activity. *indicates genes which have known
carcinogenic mutations that could significantly alter the networks

BRCAI Copy number BRCAI

BLM Copy number BLM

AKT3 Expression AKTI1

IL2RG Expression IL2
MAP2K2, MAP2K6,

MAP4K3 Expression MAPKAPK2, MAPK14,
MAP3K5, MAPK1

RBM15 Expression RBM5

RPS6KCI Expression RPS6, RPS16

UBE2GI Expression UBE2I

Table 6. Genes on the left were independently identified as factors in metformin sensitivity in cancer via
the attribute indicated in the central column. These genes are associated with the factors included on the right,
which were part of our set of putative targets or sub-networks.

Discussion

The putative targets of metformin are largely consistent with existing experimental evidence,
suggesting that metformin is a polypharmacological agent with multiple weak binding part-
ners. Our results provide evidence for the direct interaction between metformin and several protein targets
whose activities contribute directly to the observed pharmacological effects of the drug. These may be considered
the upstream nodes of metformin’s predicted network, and were identified independent of context. Several of
these predicted targets and functionally-important network nodes have been previously characterized as related
to metformin’s effects because of their presence in pathways which are related to AMPK signaling, such as MAPK
signaling and RAS signaling, but here for the first time, we have predicted direct interactions between metformin
and these proteins using binding site analysis.

There is strong evidence to suggest that many of our putative targets are both directly and functionally linked
to metformin. EGFR is a well-known anti-cancer drug target””. Of the kinases we tested for binding with met-
formin, the strongest direct binding was observed with SGK1. SGK1 participates in many cellular pathways but
has gained significant attention in the field of molecular oncology due to its role in several cancer cell pathways?®.
SGK1 is activated by insulin, growth factors, and steroids — this may explain the increased cancer risk for patients
with obesity and insulin resistance?, as well as explain the dual activity of metformin (which we hypothesize
to act as an inhibitor of SGK1) in diabetics as well as cancer patients. Earlier, we mentioned that metformin
directly acts on the mitochondria®; this result is consistent with our results because SGK1 has been shown to
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localize in mitochondria in response to cellular stress®. It is possible that interaction with SGK1 allows for met-
formin’s action on mitochondrial respiration. Other studies?®?’ on SGK1 provide evidence of its active role in
cancer-related pathways. D’Antona et al. using a specific inhibitor of SGK1 kinase (Si113) tested the proliferation
and sensitivity to the antineoplastic agent, Paclitaxel, of colon carcinoma cells. Their results indicate that inhi-
bition of SGK1 enhances apoptotic processes and responsiveness to the Paclitaxel drug and also decreases cell
viability?, which in turn, results in a decrease in the proliferation of the carcinoma. They also claim that, given
the success of their inhibitor in affecting colon carcinoma, SGK1 inhibitors are excellent candidates for selectively
hitting cancer cell pathways without (or with minimal) interference to normal cell pathways. This is because of the
reported over-expression of SGK1 in carcinoma cells relative to normal cells?®. Wu ef al. have elucidated some of
the purported pathways and mechanisms by which SGK1 may act in the cancer cell lines. The study by Wu et al.
shows that SGK1 expression inhibits chemotherapy induced apoptosis®®.

We confirmed binding between metformin and CDK?7, a protein involved both in cell cycle control and the
activation of RNA-polymerase 2 for transcription. CDK7 phosphorylates many proteins, including p53, a critical
regulator of apoptosis and DNA repair®'. Our putative sub-networks re-constructed the strong functional rela-
tionship between CDK7 and both P53 and RNA polymerase-2.

We also demonstrated the binding of metformin and MAPK14. The precise role of MAPK14 depends upon
the tumor subtype and there are cases where inhibition, rather than activation, of MAPK14, has anti-cancer
effects®*-. For example, in one study, inhibition of MAPK14 phosphorylation (accomplished by using the drug
Sorafenib), was shown to suppress non-hodgkins lymphoma®2. A different study on Metformin’s effect on human
epidermoid carcinoma, shows a similar decrease in the activation of MAPK14* with a suppressive effect on
cancer cell proliferation; another study, shows that Metformin directly decreases the phosphorylation levels of
MAPK14 in bovine granulosa cells®, a third study shows that Metformin, used in conjunction with gefitinib,
decreased levels of MSH2 protein in human lung squamous cell carcinoma, again, through down regulation
of MAPK 1434, Finally, a study on metastatic melanomas shows that activation of MAPK14 by urokinase plas-
minogen activator receptor (uPAR) clustering on cell surfaces (promoted by d-GM3, a ganglioside) results in
the activation of matrix metalloproteinase-2 (MMP-2)* which contributes to cell migration and metastasis in
cancer cells. This supports our findings with regards to MAPK14 as a putative target of Metformin, and pro-
vides some justification for Metformin’s purported anti-cancer activity. Furthermore, inhibition of MAP2K2
(MEK2), an important signaler in the MAPK signaling pathway, dramatically decreases semaphorin-7a expres-
sion in oncogenic Ras cells”. We confirmed the binding of MAP2K2 and metformin and predicted the binding
of Semaphorin-7a and metformin. Reynolds described the pathway through which our predicted-target Vavl
activates MEK/ERK signaling via Ras®®.

The NOS3 protein, another one of our predicted targets, catalyzes the synthesis of nitric acid, which facilitates
the activation of Ras proteins. Knockdown of NOS3 showed that active NOS3 is necessary both for initiation and
maintenance of human pancreatic cancer cells. A study by Reynolds et al. suggests that NOS3 acts a link between
the different varieties of Ras (HRas, NRas, Kras). It appears that NOS3 activation is increased by the signaling of
oncogenic Ras, but the effect of NOS3 comes from subsequent activation of wild-type Ras — for example, onco-
genic KRas will lead NOS3 to activate wild-type HRas and NRas™.

Allegra demonstrated the role of Semaphorin-7a (SEMA7A) in epithelial to mesenchymal transition (EMT)%,
an important step in tumorigenesis. The researchers showed that EMT could be prevented by mutating the gene
ERF so that it could not be phosphorylated. Semaphorin-7a is normally induced by TGF-b, but when ERF was
mutated Semaphorin-7a was expressed at decreased levels and could not be induced by TGF-b. They next demon-
strated that Semaphorin-7a is required for TGF-beta-induced EMT.

The identification of several proteins known to be closely related to metformin’s known activity as direct
targets lends credence to the idea that the other identified proteins may also directly interact with metformin,
although these interactions may less directly lead to metformin’s anti-cancer activity. We have demonstrated
the direct binding between metformin and five out of six candidate proteins, and our predictions and evidence
strongly support the notion that metformin is a polypharmacological and pleiotropic drug. Where possible, addi-
tional ligand binding assays should be performed between metformin and other predicted targets in order to
complete the picture of metformin’s biological activity. Our predictions and experimental results suggest that
metformin elicits its strong effects by binding weakly with many targets that act in concert to produce a powerful
polypharmacological effect. Similar mechanisms have been proposed for the anti-cancer effect of HIV protease
inhibitor Nelfinavir®.

Non-metformin-binding genes could be responsible for the therapeutic effect of met-
formin. Inaddition to the direct upstream binders of metformin, the predicted protein sub-networks recapit-
ulate many of the pathways we expected to produce metformin’s anti-cancer activity. We note that our network
analysis is only based on one single sample, and is context-specific.

Ouchi et al. postulated an “adiponectin-AMPK-PI3-kinase-Akt-eNOS signaling axis” in type 2 diabetes*'. Our
results are consistent with this model, with our predicted binding between metformin and NOS3, and the inclu-
sion of several genes involved in adipocytokine signaling within predicted interaction sub-networks, including
the adipokine Leptin and the transcription factors STAT1 and STAT3.

Our predicted sub-networks have several hub genes (Table 4) which may play critical roles in eliciting met-
formin’s effects. Several hub genes are enriched in higher-scoring sub-networks (Table 5). Many of them have
been previously documented to play a role in cancer, and others may be novel cryptic factors specific to metform-
in’s modulation pathway. They include the TP53, PCNA, and AKT1I genes, which code for the tumor-suppressor
p53, the DNA-repairing PCNA protein®, and the apoptosis-inhibitor AKT1. We see several cancer-relevant genes
which are critical specifically within the most participatory sub-networks. Overexpression of RACI has been
noted as a marker for aggressive breast cancer®. STATI expression levels have been used as part of a five-gene
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signature for non-small-cell lung cancer survival®. These also include the BIRC5 inhibitor of apoptosis, as well
as the JUN and FOS genes, coding for c-Jun and c-Fos, which together form the AP-1 transcription factor, and
NFKBIA, an inhibitor of the survival-promoting NF-k B complex. Huang et al. showed that down regulation of
c¢-Jun and NF-x B inhibits the invasion of melanoma cells through suppression of MMP-9* None of our predicted
networks included the MMP9 gene, however the interactions annotated in the STRING-DB are not all direct, and
further investigation may identify a role for MMP-9 in metformin’s anti-cancer activity. The growth-promoting
INS-IGF2 gene, and the SRC oncogene were both found to be critical in a large percentage of networks, however
their critical role appears to be approximately the same in the experimental and control networks. They also are
not critical in two of the most highly-participatory networks, based on MAPKI4 and IL12B. These genes may still
play a critical role in the overall protein-protein interaction network.

Although our networks identified many critical factors which appear promising for experimental validation,
it is important to consider the potentially-large portion of false-negatives within our results. For example, our
sub-networks were generated with a maximum depth of 5, limiting the resolution of the final network. This
allowed us to perform our analyses computationally-efficiently and revealed many strong functional connections.
However, it appears that sub-networks generated using randomly-chosen kinase genes as the root (K-control) are
enriched for cancer-related nodes at roughly the same rate as sub-networks based on our putative-targets. This
suggest that potentially many of these kinases play significant roles in eliciting metformin’s effect beyond what is
apparent in the predicted sub-networks.

Network constraints must also be considered when interpreting the significance of peripheral network nodes.
A detail from the publication by Sun et al. illustrates this point” Their ‘Drug-specific signaling pathway net-
work’ was also applied to metformin. Their methodology attempted to create a complete network of the genes
through which metformin elicits its effect, and our work partially recapitulates their results. Their predicted net-
work shares significant overlap with ours; however, they do not speculate on metformin’s direct binding tar-
gets. In addition, their network was built using gene expression in response to the metformin treatment from
ConnectivityMap (cMAP). While the data is informative, there is also limitation on the direct evidence of those
differentially expressed genes in metformin response. Our efforts our distinguished by the fact that our predicted
networks are rooted in putative binding targets, some of which we have tested and confirmed.

In metformin’s DSPathNet, the PPARGCIA gene serves as a linker node connecting distinct modules of sig-
naling pathways. Variants of this gene have been linked to breast cancer risk*> and the gene’s product has been
shown to play a key role in the metabolism of ERBB2 + breast cancer cells in vivo®. The common location for
PPARGCIA within our sub-networks is as a peripheral node downstream of TP53. The motif shows TP53 as a
hub node linked to many genes, including SIRT1. SIRT1 is linked to PPARGCI1A which connects to MUMILI, a
leaf node. The connection between PPARGCIA and MUMILI is notably weak, suggesting that the PCST algo-
rithm connects it to our sub-networks with difficulty. It is plausible that PPARGCIA may play a larger role in
eliciting metformin’s anti-cancer effects than our predictions suggest, owing to the constraining set of differ-
entially expressed genes we used when generating the sub-networks. Future applications of the methodology
demonstrated here, may wish to limit the number of false negatives by choosing larger sets of network leaf nodes
obtained from multiple sources.

Many of the genes in our predicted sub-networks may play an important role in motivating metformin’s
anti-cancer activity. We have identified both upstream direct binding targets for metformin, as well as down-
stream network nodes which transduce its effects to the level of gene expression. We expect that disruption of the
putative targets, network hubs, or nodes which play key roles in high-scoring networks (Tables 3, 4, and 5) is likely
to inhibit the effects of metformin or cause adverse side effects.

However, as metformin appears to inhibit cancer broadly and through weak binding with several targets, the
specific role played by individual network components in a patient is expected to vary based on the individual
genetic and homeostatic context. Further experiments, including gene knock-down experiments, may narrow
down the predicted biological role for these proteins, paving the way for their adoption as biomarkers for met-
formin’s efficacy or adverse drug effects.

Towards precision medicine using structural systems pharmacology. Data-driven, network-based
association studies provide a promising avenue to realize precision medicine*”. However, the power of data-driven
approach remains limited if sample sizes are small. Rare mutations may have unexpected consequences on drug
response?s. To predict drug response de novo under diverse genetic backgrounds, a mechanistic understand-
ing of drug action is required. A drug commonly interacts with multiple targets. Each drug-target interaction
modifies the conformational dynamics of the target structure and leads to the change of the functional states.
Consequently, the changing conformational and functional states of drug-target interactions affect other molecu-
lar components and their interactions through the interplay of complex signal transduction, gene regulation, and
metabolic networks that collectively mediate the system-level response to the drug, leading to either therapeutic
or adverse effect. A variety of genetic/epigenetic alternations, if involved in the drug interaction and modulation,
could impact the drug response. Thus, to associate individual genotype to drug response phenotype, it is essen-
tial to model drug actions on multiple scales, from the conformational dynamics of genome-wide drug-target
interactions to the emergent property of cellular networks, using a structural systems pharmacology approach®.

Using metformin as a proof-of-concept study, we demonstrate that structural systems pharmacology is able
to provide mechanism-based predictive models using a limited number of samples. The power of structural sys-
tems pharmacology depends on the quality and coverage of protein structure, molecular interaction, and gene
regulatory network, and molecular phenotypic data. In this study, only AMPKQ and DPP4 are used as templates
and ~7000 human protein structures are searched through for the potential targets of metformin. It is likely
that many targets of metformin remain to be elucidated. With the exponential increase in experimentally solved
structures, it is possible for us to construct high-quality 3D drug-target interaction models on a proteome scale.
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The molecular details of protein-ligand information will allow us to predict the impact of amino acid muta-
tions on the drug action de novo. Moreover, the interaction network applied in this study is incomplete, noisy
and is not tissue specific. It may limit the capability to detect novel genetic biomarkers. Recent advance in the
proteome-scale mapping of the human interactome network has produced homogenous coverage of the human
interactome, significantly expanding the cancer landscape®. The ENCODE project has generated genome-wide
gene regulatory networks®!. Coupled with molecular phenomics®?, we may construct less biased and more com-
plete individual-specific interaction networks®*>%. It is expected that the accuracy in the current network analysis
will be significantly increased. Putting these together, structural systems pharmacology could be a powerful tool
for precision medicine.

Materials and Methods

Overview: a structural systems pharmacology approach to predictive modeling of drug actions
under diverse genetic background. Asshown in Fig. 2, our methodology begins at the level of molecu-
lar structure. We start by ranking the proteins annotated within the PDB by the similarity of their binding sites
to that of AMPK@ and dipeptidyl peptidase-IV (DPP4) - two proteins which have been observed to interact
directly with metformin®®. We considered the top hits from this comparison to be our “putative molecular tar-
gets”, and simulated the binding between metformin and each putative molecular target to assess the binding
pose and interactions between ligand and target. Next, we moved to the larger and more abstract scale of the
protein-protein interaction network. We obtained a dataset which represents genes whose expression is perturbed
by metformin treatment. Then, for each putative molecular target, we computationally predicted a tree-shaped
path (TSP) which functionally linked that putative molecular target to all genes whose expression is perturbed
by metformin. We then analyzed the intermediary nodes of each TSP in terms of their association with bio-
logical pathways linked to cancer or AMPK signaling, and identified the most critical nodes of each network.
Finally, we experimentally validated the binding between metformin and several putative molecular targets. See
Supplemental Methods for further details.
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