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e Predicting OncotypeDX Risk Scores
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. Toidentify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers
on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX
risk categories. We collected 96 ER-positivebreast lesions with low (<18, N=55) and high (>30,
. N=41)OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape
. features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5
. dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features.
. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of
. their ability to distinguish low and high OncotypeDX risk categories. Classification performance was
. evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved
* Azvalues of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were
. subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed
. that DHoG (p=0.85, P < 0.001) and DLBP (p =0.83, P < 0.01) were significantly associated with the low
. and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted
. texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories
. for ER-positive cancers.

In the United States, approximately 70% of all breast cancer patients are diagnosed with estrogen receptor
. (ER)-positive primary tumors, and many of these women will receive hormonal therapy and adjuvant chemo-
: therapy"?. Identifying patients who can be treated with hormonal therapy alone would limit toxicity to those most
* likely to benefit®. Currently, the selection of individualized therapy for patients with ER-positive, human epider-
. mal growth factor receptor type 2 (HER2)-negative early stage breast cancers is guided by the OncotypeDX gene
. expression assay (Genomic Health Inc., Redwood City, CA)*, which produces a recurrence score between 0-100
© to predict the likelihood of disease recurrence with tamoxifen and improves the oncologist’s ability to estimate
. benefit from adjuvant hormonal and chemotherapy>®. However, the OncotypeDX assay is performed on tissue
- biopsy specimens and involves additional tumor handling and shipping of tissue, and delays in time to treatment,
© all of which add costs and anxiety for patients®”.

Computer-aided diagnosis (CAD) systems have been previously used with dynamic contrast enhanced mag-
netic resonance imaging (DCE-MRI) of the breast to predict the presence or absence of cancer®. These CAD tools
aim to increase the accuracy of diagnosis of breast cancer on MRI while also aiming to reduce inter-observer

. variability. However, more recently a number of groups have begun to focus on identifying computer extracted
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DHAG 4bins 0.84(0.74,0.94) | 0.81(0.76,0.86) | 0.87(0.81,0.93) 0.85 (0.83,0.87) 0006 | 476 | 0.157

6 bins 0.82(0.71,0.93) | 0.78(0.70,0.86) | 0.85(0.78,0.92) 0.82(0.79, 0.85) 0008 | 609 | 0174

DLEP 256 bins 0.80(0.70,0.90) | 0.74(0.68,0.80) | 0.85(0.80,0.90) 0.83 (0.80, 0.86) 0.008 | 501 0.141

128 bins 0.79 (0.67,0.91) | 0.74(0.66,0.82) | 0.83(0.76,0.90) 0.83 (0.81,0.85) 0013 | 759 | 0.184

- Krans 0.74(0.60,0.88) | 0.70(0.63,0.77) | 0.78(0.70,0.86) 0.79 (0.73,0.85) 0.021 8.11 0.202

K, 0.70 (0.55,0.85) | 0.71(0.61,0.81) | 0.66(0.61,0.71) 0.71 (0.67,0.75) 0032 | 857 | 0245

- Uptake rate 0.72(0.59,0.85) | 0.63(0.59,0.67) | 0.74(0.67,0.81) 0.65 (0.61, 0.69) 0064 | 764 | 0211

Time to peak 0.63(0.52,0.74) | 0.56(0.51,0.60) | 0.65(0.57,0.73) | —0.52(—0.47,—0.57) | 0212 | 7.94 | 0298

x Haralick (Energy) | 0.70(0.57,0.83) | 0.64(0.59,0.69) | 0.71(0.63,0.79) 0.73 (0.70,0.76) 0017 | 786 | 0257

Kirsch (Magnitude) | 0.68 (0.52,0.84) | 0.60(0.54,0.66) | 0.72(0.65,0.79) 0.72 (0.67,0.77) 0052 | 882 | 0319

K 1* fitting coefficient | 0.64(0.52,0.76) | 0.60(0.53,0.67) | 0.64(0.58,0.70) | —0.43(—0.37,—0.49) | 0286 | 10.16 | 0326

4™ fitting coefficient | 0.63 (0.52,0.74) | 0.58 (0.51,0.65) | 0.64(0.54,0.74) | —0.39(—0.32,—0.46) | 0483 | 873 | 0293

Compactness 0.64(0.53,0.75) | 0.58(0.51,0.65) | 0.66(0.60,0.72) | —0.57 (—0.52,—0.62) | 0.338 | 7.81 0.334

Shape Normalized average | 60 (55 0.72) | 0.53(0.48,0.58) | 0.67(0.59,0.75) 0.53 (0.48, 0.58) 0.502 8.33 0.377
radial distance ratio

Table 1. The best two identified features in each feature class associated with their performance
measures in distinguishing low and high risk estrogen receptor (ER)-positive breast cancers. Note.
-Numbers in parentheses are 95% confidence intervals. Az = area under the receiver operating characteristic
curve; PPV = positive predictive value; NPV = negative predictive value; DHoG = dynamic histogram

of oriented gradient; DLBP = dynamic local binary pattern; PK = pharmacokinetics; EK = enhancement
kinetics; TK = textural kinetics; IK = intensity kinetics; RSD = relative standard deviation; err = error rate of
classification. p denotes correlation coefficient.

No. of Patients (N = 96) 12 (12%) 5(5%) 43 (45%) 36 (38%)
Age (y) 52 (37-68) 47 (36-55) 55 (40-77) 54 (29-70) 0.27
Lesion Size (mm)” 13 (12-30) 21 (7-33) 18 (5-50) 17 (9-40) 0.18
Patient ethnicity
White 7 (7%) 2(2%) 36 (38%) 29 (31%) 0.24
African American 3 (3%) 0 7 (7%) 7 (7%) 0.12
Unknown 2(2%) 3(3%) 0 0 0.08
PR status
Positive 12 (12%) 3 (3%) 42 (44%) 26 (27%) 0.43
Negative 0 2 (2%) 1(1%) 10 (11%) 0.21
HER? status
Positive 7 (7%) 4 (4%) 18 (19%) 29 (31%) 0.48
Negative 5 (5%) 1(1%) 25 (26%) 7 (7%) 0.37
Histologic Tumor Grade
Low 4 (4%) 1(1%) 10 (11%) 8 (8%) 0.15
Moderate 8(8%) 2(2%) 29 (31%) 21 (22%) 0.57
High 0 2(2%) 4 (4%) 7 (7%) 0.19
Tumor type
IDC 8 (8%) 3 (3%) 33 (35%) 22 (23%) 0.32
ILC 3 (3%) 0 6 (6%) 11 (12%) 0.16
Mixed 1(1%) 2 (2%) 4 (4%) 3(3%) 0.09

Table 2. Characteristics of patients with estrogen receptor (ER)-positive breast cancers. Note. -Unless
otherwise indicated, data are numbers of patients, with percentages in parentheses. IDC = invasive ductal
carcinoma; ILC = invasive lobular carcinoma. ‘Data are means, with ranges in parentheses.

features on MRI that might be associated with underlying biology molecular subtype and risk of recurrence of
the tumor®!l. A radiogenomic approach presented by Yamamoto et al.!? found a significant correlation between
breast MRI (1.5 Tesla) features and a number of important breast cancer related gene sets. Correlation studies by
Vassiou et al.'® and Chang et al.'* showed that DCE-MRI (1.5 Tesla) based imaging features, such as tumor mar-
gin, enhancement pattern, and kinetic characteristics, were associated with pathological prognostic factors for
the prediction of clinical outcome during treatment of breast cancer. A recent study conducted by Sutton et al.'®
showed that two MRI (1.5 or 3.0 Tesla) derived statistical image features were significantly correlated with the
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median OncotypeDX recurrence scores with a range of 0-45. Ashraf et al.® presented a method for identifying
correlation between computer-extracted morphologic and kinetic features from DCE-MRI sequences obtained
ata 1.5T magnet with validated prognostic gene expression profiles of breast cancers. In addition, Agner et al.?
presented an approach called textural kinetics (TK), which involved measuring dynamic changes in breast lesion
texture during contrast uptake. These TK features were able to separate different molecular subtypes of breast
cancers (triple negative, ER-positive, HER2-positive, fibroadenoma) on DCE-MRI obtained at either 1.5T or 3T,

In this work, we investigate the ability of TK features on DCE-MRI to distinguish ER-positive breast cancers
between low and high OncotypeDX risk categories (i.e., OncotypeDX recurrence score <18 and OncotypeDX
recurrence score >30). Our approach is different from the work presented by Ashraf et al.®, in which dynamic
features were computed based on the estimation of parameters on time-intensity curve, e.g., peak enhancement,
wash-in and wash-out slop. Our approach is also different from the work published by Sutton et al.'®, in which the
image features (i.e., morphological, static first-order, and Haralick texture features) were extracted from breast
lesions on pre- and three post-contrast MR images. In this study, we focus on TK features that allow for charac-
terization of dynamic texture changes, specifically texture involving dynamic histograms in tumors on 1.5 Tesla
DCE-MRI. Also our TK features are different from the approach by Agner et al.*'%, in that it involves quantifica-
tion of kinetic texture in a new way - dynamic histogram of oriented gradients (DHoG) and dynamic local binary
patterns (DLBP).

The histogram of oriented gradients (HoG)", local binary patterns (LBP)'%, and their spatio-temporal rep-
resentations'®?’ are image texture features that have been previously employed for detecting breast masses on
mammographic images*"?2. Unlike the approach in Agner et al.*!¢ which attempted to fit a single parametric
curve to explain the changes in lesion texture during the contrast wash-in and wash-out, the DHoG and DLBP
approaches allow for construction of a unique lesion signature that captures the frequency of occurrence of dif-
ferent spatio-temporal textural patterns.

In this study, we evaluate the ability of the DHoG and DLBP features extracted from DCE-MRI at 1.5 Tesla,
via a linear discriminant analysis (LDA) classifier to distinguish low and high risk ER-positive breast cancers, risk
having been established via the OncotypeDX assay.

)18

Results

Table 1 shows the best two identified features in each feature class (shape, PK, EK, IK, TK, DHoG, DLBP) associ-
ated with Az, PPV, NPV, p (correlation coeflicient), RSD, and err (error rate of classification). The numbers of bins
used in the DHoG and DLBP features were {2, 4, 6, 8, 10} and {8, 16, 33, 64, 128, 256}, respectively. Higher p value
indicates a stronger relationship between risk stratification via the features and OncotypeDX. The post-hoc power
analysis revealed no significant difference between features identified from imaging data acquired at Sites I and
II which were found to discriminate high versus low OncotypeDX risk categories. The heat map (Fig. 1) shows
the values of all the features listed in Table 1 for all the patient studies. The values of best two identified features in
each feature class and the six top performing features obtained from the LDA based feature selection method are
listed in Supplementary Table S1 online.

Shape Features for Discriminating ER-positive Breast Cancers. The feature compactness used to
measure the speculation of tumor margin yielded the best discriminability among the computerized shape fea-
tures. The lower values of compactness for the high OncotypeDX breast cancers (—20.76 &= 7.32) compared with
the low OncotypeDX cancers (—19.05 & 9.14) appears to suggest that higher OncotypeDX score cancers tend
to be associated with more speculation compared to cancers with low OncotypeDX risk scores. Table 1 appears
to suggest that shape features are less useful for differentiating between low and high OncotypeDX risk score
ER-positive lesions compared to pharmacokinetic and textural kinetic features (i.e., PK, EK, IK, TK, DHoG, and
DLBP).

PK Features for Discriminating ER-positive Breast Cancers. Among the PK parameters, K" was
found to be the most effective in distinguishing low and high OncotypeDX risk score ER-positive breast lesions
(Fig. 2). While compared to K., K" appeared to have a stronger correlation with the OncotypeDX risk scores.
K., appeared to be more predictive in identifying lesions on DCE-MRI that had a high OncotypeDX risk score.

EK Features for Discriminating ER-positive Breast Cancers. The EK features were extracted to quan-
titatively characterize the contrast enhancement patterns within ROIs in the lesion. Although the uptake rate
achieved the best classification performance among all the EK features, these features generally had weaker cor-
relation with the OncotypeDX risk scores compared to the TK features.

IK and TK Features for Discriminating ER-positive Breast Cancers. The TK features outperformed
the IK features by up to 10% in terms of Az and NPV (Table 1). Further, the TK features had a higher degree of
positive correlation with the OncotypeDX risk categories compared to the IK features which had a lower degree
of negative correlation. These trends are consistent with the performance of the classifier (Table 1).

DHoG and DLBP Features for Discriminating ER-positive Breast Cancers. Both DHoG and DLBP
yielded good discrimination for separating lesions corresponding to the low and high OncotypeDX risk catego-
ries, achieving the highest values of Az, PPV, and NPV among all computer extracted MRI features. The DHoG
and DLBP features were significantly correlated with the OncotypeDX risk categories.

Figures 3 and 4 illustrate the textural kinetic curves corresponding to contrast uptake and enhancement
appearance of the DHoG and DLBP features for representative low and high OncotypeDX risk breast lesions.
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Feature Class Lesion Feature Definition

Area overlap ratio

; Variance of distance ratio, Compactness, Smoothness o . . .
Shape (k' =6) Quantitative measures on lesion shape and lesion margin
Normalized average radial distance ratio

Standard deviation of normalized distance ratio

Krans Transfer constant between plasma and tissue compartments
PK (k=3) V. The extracellular extravascular volume fraction
Kep The ratio of K™"/v,

Maximal uptake, Time to peak
EK (k=4) Transfer constant between plasma and tissue compartments
Uptake rate, Washout rate

IK (k=4) Third polynomial fitting on intensity curve Intensity kinetic descriptors
Mean, Median
TK - first order Range Region intensity statistics derived from lesion area Window
statistics (k= 48) 8 size, we3,5,7
Standard deviation
TK - Sobel filter x-direction gradient, y-direction gradient Edge detectors
(k=12) Magnitude of gradient Window size is 3 x 3
X Directions: 0, 7/4, 7/2, 37/4, w, 57/4, 37/2, 77/4
T]‘(Ki Kirsch filter Non-linear edge detector through eight compass directions
(k=36) Magnitude of the Kirsch operator

Contrast energy, Contrast inverse moment

Contrast average, Contrast variance

Contrast entropy
TK - Haralick (k=52) Features derived from grey-level co-occurrence matrices
Intensity average, intensity variance, intensity entropy

Entropy, Energy, Correlation

Information Measure 1, Information Measure 2

Histogram based descriptor for gradient orientation on

DHoG (k=5) The number of bins: 2, 4, 6, 8, 10 DCE-MRI
DLEP (k—6) The number of bins: 8, 16, 32,64, 128, 256 33;12?;2; local binary pattern features based on texture

Table 3. Description of all features used to distinguish low and high risk estrogen receptor (ER)-positive
breast cancers. PK = pharmacokinetics; EK = enhancement kinetics; IK = intensity kinetics; TK = textural
kinetics; DHoG = dynamic histogram of oriented gradient; DLBP = dynamic local binary pattern. 'k denotes
the number of features.

The average features values of the top DHoG and DLBP features obtained across all patient studies are shown in
Fig. 5(a,b) in comparison with the PK features (Fig. 5(c)).

Performance of the Feature Combination for Discriminating ER-positive Breast Cancers. The
top performing features from each of the 4 classes, including PK (K"**), TK (Energy, Sobel x-direction gradient),
DHoG (4-bin, 6-bin), and DLBP (256-bin), were combined using a linear discriminant classifier. The combined
LDA classifier was able to differentiate between low and high OncotypeDX ER-positive breast cancers with an Az
0f 0.87 (95% confidence interval: 0.78, 0.96), PPV of 0.76 (95% confidence interval: 0.68, 0.84), NPV of 0.89 (95%
confidence interval: 0.83, 0.95), RSD of 5.75, and err of 0.147.

Stability and Predictive Performance. The stability and error of LDA classification were measured by the
relative standard deviation and the inverse power law model. It can be observed that DHoG and DLBP outper-
formed the other feature classes (i.e., shape, PK, EK, TK, IK) and achieved the smallest RSD values and error rates.
The IK feature (1* fitting coeflicient) has the highest RSD values indicating the lowest stability in classification.
The shape features produced the largest error rates among all the feature classes.

Discussion

We presented a computerized image analysis framework for identification of breast MR imaging markers to dis-
tinguish between low and high risk ER-positive breast cancers via a correlation of computer extracted DCE-MRI
attributes and the OncotypeDX assay. Although tumor margin, tumor size, rim enhancement on DCE-MRI have
been previously correlated with pathological factors and have been reported to be associated with disease out-
come!"142 o the best of our knowledge, this is the first attempt to investigate the association between textural
kinetic features on DCE-MRI with OncotypeDX recurrence scores for ER-positive breast cancers. This is impor-
tant because the OncotypeDX is an assay with proven clinical utility that has been shown to be both prognostic
and predictive in ER-positive breast cancers?. Hence by demonstrating computer extracted imaging features on
DCE-MRI can predict the OncotypeDX risk category of the lesion, we might be able to non-invasively identify
which patients would benefit from adjuvant therapy. This could pave the way for non-invasive risk assessment of
the lesion even prior to biopsy. Furthermore, this is the first systematic comparison of various kinetic (PK, EK, IK,
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TK, DHoG and DLBP) and shape features, to discriminate high and low OncotypeDX categories of ER-positive
breast lesions.

There has been recent interest in identifying radiogenomic correlates of breast lesions on MRI. In'®, Agner
et al. showed that textural kinetic features extracted from routine clinical DCE-MRI appeared to be associated
with the biologic heterogeneity and molecular subtype of breast cancers. Giger et al.>>?** computed enhancement
kinetic features, such as time to peak, uptake rate, maximal uptake, from a characteristic time curse curve to dis-
tinguish benign and malignant breast masses. Ashraf et al.” also utilized curve-based kinetic features to construct
breast DCE-MRI phenotypes and showed their correlation with the OncotypeDX assay.

In this study, we attempted to identify whether there was an association between textural kinetic features
extracted from ER-positive breast lesions on 1.5 Tesla DCE-MRI and their corresponding OncotypeDX risk cate-
gories. While Ashraf ef al.® focused on the association between lesion shape, contrast kinetic features and spatial
heterogeneity features and the continuous OncotypeDX recurrence scores, our approach was focused on eval-
uating the ability of quantitative image features and spatio-temporal patterns within the lesion to distinguish
between the low (< 18 risk score) and high (> 30 risk score) OncotypeDX risk categories. Additionally in con-
junction with a LDA classifier, the textural kinetic features yielded an Az=0.84 in distinguishing low and high
OncotypeDX risk category lesions, compared to Ashraf et al.® where the Az was 0.77.

Our approach was also different from that of Agner et al.® in that we employed two new textural kinetic fea-
tures, DHoG and DLBP, which unlike EK, IK and TK features, seek to capture contextual textural changes during
contrast uptake by considering changes in spatial intensity patterns within divided grid cells in the lesion ROL
Unlike the approach in Agner et al.'® which attempted to fit a single parametric curve to characterize the tempo-
ral changes in lesion texture, the DHoG and DLBP approaches capture the frequency of occurrence of different
spatio-temporal textural patterns within the lesion.

A systematic and quantitative analysis of different computer extracted features demonstrated that curve-based
kinetic features (i.e., EK, TK, IK) were less discriminating compared to the other three feature classes (i.e.,
DHoG, DLBP, PK) in distinguishing high and low OncotypeDX risk score ER-positive cancers. Consistently,
the feature combination identified through the feature selection process contained the important features from
4 feature classes (DHoG, DLBP, PK, and TK). While the PK features showed moderate correlation, lesion shape
features were even less correlated with the OncotypeDX risk categories for the lesions evaluated. The DHoG
and DLBP appeared to be the most discriminative features in differentiating low and high OncotypeDX risk
score ER-positive breast lesions on DCE-MRI. Figures 3 and 4 which show the normalized mean DHoG and
DLBP curves plotted as a function of contrast uptake, appear to illustrate a high degree of heterogeneity in high
OncotypeDX risk score cancers compared to low OncotypeDX risk score cancers. The corresponding color-coded
DHoG and DLBP feature maps at peak enhancement (Figs 3 and 4) also suggest that high OncotypeDX risk score
breast cancers may appear to be more heterogeneous at peak contrast compared to low OncotypeDX risk score
cancers. The Spearmen’s rank correlation test showed that DHoG and DLBP are significantly correlated (DHoG:
p=0.85, P<0.01; DLBP: p=0.83, P < 0.01) with the high and low OncotypeDX risk score categories. These
results are consistent with the findings of Ashraf et al.?, who showed that DCE-MRI based heterogeneity kinetic
features were correlated with OncotypeDX recurrence scores (p=0.71, P < 0.001). However unlike Ashraf et
al. where image data from only a single institute was considered, our approach included image data from two
different clinical sites.

Our study did have its limitations, and as such, it is important to acknowledge that this is a preliminary study
with need for additional independent validation of our initial findings. Additionally, we only included those
patients having low (< 18) and high (>30) OncotypeDX recurrence scores and excluded intermediate risk scores
(>18 and < 30) as the contrast was greatest between these categories and further work is needed to evaluate
the intermediate category. Further, the extracted features were computed based on the automated segmentation
method due to lack of precise lesion boundary for the data from Site II. Owing to the limited size of the dataset
considered in this study, we did not conduct multiple statistical tests of comparisons on the features. We also did
not explicitly quantify the inter-observer variability in segmentation of the dominant masses between multiple
readers. One problem was the fact that we were identifying imaging markers correlated with a surrogate of out-
come (OncotypeDX) instead of actual outcome itself- unfortunately this information was not available for the
patients considered in this study.

Concluding Remarks. We identified a set of computer extracted image texture features on DCE-MRI that
appear to be able to segregate high and low OncotypeDX risk scores in ER-positive breast cancers. The texture
features so identified may allow for non-invasively predicting which ER-positive patients might benefit from
adjuvant hormonal and chemotherapy.

Materials and Methods

This study was approved by the institutional review board and compliant with Health Insurance Portability and
Accountability Act. Written informed consent was obtained from all subjects. The experimental protocols were
approved by the Case Western Reserve University Faculty of Biomedical Engineering Ethics Committee. The
methods were carried out in accordance with the approved guidelines and regulations.

Patients. The breast DCE-MRI data were retrospectively collected from two institutions (Site I: Boston
Medical Center; Site II: UH MacDonald Women’s Hospital) between 2006 and 2012. All the cases were
anonymised. In Site I, women patients who presented with a suspicious breast lesion on screening mammogram,
then had diagnostic MRI, were recruited to a large study of MRI in the staging, diagnosis, and screening of
breast cancer. In Site IT, women whose pathology revealed node-negative, ER-positive invasive breast cancer who
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participated in a large breast cancer case-control study were utilized for this study®”. All the DCE-MRI images at
1.5T were obtained within 3-7 days after diagnostic biopsy. The lesion diagnosis for both cohorts was confirmed
by ultrasound guided core needle biopsies or MRI guided biopsies, followed by the histopathologic examination
of 3-10 specimens obtained by core biopsy sampling. A total of 89 patient studies were collected from the Site I,
and only 17 patients with both pathology reports and available low or high OncotypeDX scores were included
in this study. From the Site II, we acquired 101 ER-positive stage I-III female breast cancer patients. Of those,
79 patients had both associated pathology reports and available low and high OncotypeDX recurrence scores.
Patients with intermediate OncotypeDX recurrence scores (18-30) were deemed to not be informative of cancer
risk and hence excluded from the analysis. Three patient studies and one patient study from the Site I had two and
three separate lesions respectively. All other patients only had a single lesion. For each patient, the OncotypeDX
test was performed for the dominant mass (index lesion), hence only the index lesion in the case of the patient
with multiple masses was considered. The patient selection criteria for our study are summarized in Fig. 6.

DCE-MRI. Of the 96 patients for whom pathology reports and OncotypeDX results were available, 17 breast
MRIs were acquired from the Site I as multiplanar T1- and T2-weighted images on a 1.5T magnet with an
8-channel breast coil (Achieva; Philips, Best, The Netherlands). The imaging parameters for DCE-MRI were:
matrix size, 252 x 286; in-plane resolution, 0.20C0.70 mm per pixel; number of temporal positions: 5-10; echo
train length: 50/60; section thickness, 1.5 mmC4 mm; 4.9C7.8/2.3C4.9 [repetition time msec/echo time msec];
flip angle, 10°C30°. The remaining 79 patient studies were acquired from Site II with T1-weighted images using a
1.5T unit (MAGNETOM Avanto; Siemens, Berlin, Germany), and the imaging parameters for DCE-MRI were:
matrix size, 230 x 320 C 269 x 384; in-plane resolution, 0.40C0.80 mm per pixel; number of temporal positions:
6C8; echo train length: 50; section thickness, 1.0 mmC2.5 mm; 4.7C8.1/1.5C4.5 [repetition time msec/echo time
msec]; flip angle, 10°C25°. Both DCE-MRI data sets were obtained prior to, during, and after administration
of 0.1 mmol/kg body weighted of gadolinium-DTPA at a flow of 4cc/second, for a total imaging duration of
5-10 minutes. Each patient study was accompanied by: i) private health information free clinical metadata con-
taining clinical history, age range, and radiology report; ii) pathological reports containing ER-positive scale
values denoting low (17-34%), moderate (34-50%), or high (50-100%); and iii) recurrence score denoting lower
relapse rate and improved overall survival with adjuvant tamoxifen (< 18), or the converse (>30) outcome. Table
2 summarizes the patient characteristics.

Lesion Segmentation and Feature Extraction. For each patient study, a representative section of the
DCE-MRI volume, containing the largest diameter of the dominant mass, was chosen by a radiologist (B.N.B
or D.P, both with more than 10 years of experience in the interpretation of breast MRIs) who was blinded to
pathologic diagnosis. The lesion boundary was automatically delineated via an automated lesion segmentation
method specifically developed and evaluated on breast DCE-MRI?. The computer derived features, including
shape features, pharmacokinetics (PK), enhancement kinetics (EK), intensity kinetics (IK), TK, DHoG, and
DLBP, were calculated based on the pixels enclosed by the delineated regions of interest (ROI) containing breast
masses. A flowchart demonstrating the use of computerized features for lesion class discrimination is shown in
Supplementary Figure S1 online. Table 3 describes the extracted features. All feature calculations were performed
by using software developed in-house and was implemented using the MATLAB® programming platform (ver-
sion R2013a, MathWorks, Natick, MA).

Shape features.  Six shape features® were included: (a) area overlap ratio, (b) variance of distance ratio, (c) com-
pactness, (d) smoothness, (¢) normalized average radial distance ratio, and (f) standard deviation of normalized
distance ratio. These attributes were used to measure the roundness, smoothness, spiculation, and regularity of
the lesion margin.

Pharmacokinetics. Toft’s PK model®~ is most commonly used in DCE-MRI to provide a physiologic interpre-
tation of the breast MRI images via three parameters’., i.e., K" (the transfer constant between the plasma and
tissue compartments), v, (the extracellular extravascular volume fraction), and K., (the ratio of K”***/v,). The PK
parameters were estimated on the MRI dynamic signal enhancement curves plotted as a function of time after a
bolus injection of Gd-DTPA.

Enhancement Kinetics. Breast lesion enhancement can be qualitatively characterized by assessing the enhance-
ment curve obtained by plotting the signal intensity values over time after contrast injection. The mean signal
intensity at each time point was calculated on the entire lesion ROI. A total of four intensity kinetic features
(maximal uptake, time to peak, uptake rate, and washout rate) were computed to measure the amount and rate
of contrast uptake?>2.

Intensity Kinetics and Textural Kinetics. A third-order polynomial was fitted to the enhancement curve to char-
acterize its shape via a set of four model coefficients'®. For each lesion, we computed five types of textural features,
including Kirsch, Sobel, Haralick, and first-order textural features. Table 3 summarizes all the textural features
considered in this study. The mean textural feature of lesion ROI was plotted as a function of time during the
period of contrast administration. These polynomial coefficients represent the corresponding intensity and tex-
tural kinetic behavior of the lesion and represent the corresponding IK and TK features.
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Figure 1. Heat map showing the values of best two identified features in each feature class (DHoG, DLBP,
PK, EK, TK, IK, shape). The columns represent breast tumors and rows represent features. DHoG = dynamic
histogram of oriented gradient; DLBP = dynamic local binary pattern; PK = pharmacokinetics;

EK = enhancement kinetics; TK = textural kinetics; IK = intensity kinetics.

1<}

(a) (®)
Figure 2. Comparison of pharmacokinetic feature (K") of estrogen receptor (ER)-positive breast lesions
with low and high OncotypeDX recurrence scores. (a) K" in 47-year-old women with low OncotypeDX
(=8), low grade ER-positive breast lesion, and (b) K" in 54-year-old women with high OncotypeDX (=58),
high grade ER-positive breast lesion. The K"** values are encoded in a color scale, where large values are
represented in dark red and small values are represented in yellow. Note a greater heterogeneity within the high
risk ER-positive breast cancers compared to low risk breast cancers.

Dynamic Histogram of Oriented Gradient Features. ~'We computed a multi-grid based DHoG at each phase or
time point during the DCE-MRI exam. First, a gradient image at each phase was obtained via a gradient fil-
ter applied to both horizontal and vertical directions of the ROI containing the lesion. The gradient image was
divided into a sequence of increasingly finer spatial grids by repeatedly doubling the number of divisions in
each direction. For each grid cell, we calculated the cell histograms by counting the number of occurrences of
gradient values in the histogram channels that were evenly distributed from 0 to 360 degrees. An orientation his-
togram was obtained by aggregating all the cell histograms. The DHoG features for the MRI time series were then
obtained by averaging the orientation histograms over the course of different phases. More details on the DHoG
features are described in Supplementary-A (online).

Dynamic Local Binary Pattern Features. Similar to the computation of the DHoG features, the lesion ROI was
divided into multiple grid cells. For each pixel in the cell, we compared the pixel value to that of each of its 8
neighbors. This yielded an 8-digit binary number for the pixel under consideration. A cell histogram based on the
binary numbers was then computed and normalized. An average cell histogram was calculated across phases. The
DLBP features were then extracted by combining all the average cell histograms via a process of matrix concate-
nation. More details on the DLBP features can be obtained from Supplementary-A (online).

Linear Discriminant Analysis based Classification via Cross-validation. To determine computer
extracted imaging features on DCE-MRI that best discriminated the low from high OncotypeDX risk categories,
the LDA based classification was performed on the individual feature of each feature class (i.e., shape, PK, EK,
IK, TK, DHoG, DLBP) and entire feature set containing all the feature classes (176 features in total). A LDA clas-
sifier® was trained using the extracted features to classify images with low or high OncotypeDX via an iterative
2-fold cross-validation scheme. To reduce overfitting, feature selection was performed on the entire feature set
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Figure 3. Comparison of contrast enhancement pattern and dynamic histogram of oriented gradient
(DHoG) features (4 bins) of estrogen receptor (ER)-positive breast lesions between low OncotypeDX
recurrence score (=15), moderate grade in 49-year-old woman and high OncotypeDX recurrence score
(=40), high grade in 64-year-old woman. (a) Normalized mean DHoG values versus time points. (b) DHoG
feature map of low OncotypeDX at peak enhancement (7th phase, 1.5T). (c) DHoG feature map of high
OncotypeDX at peak enhancement (6th phase, 1.5T). The green contour indicates tumor boundary. Note that
the two curves have distinct enhancement patterns. Feature maps associated at peak enhancement reflect great
intensity variance between two tumors.
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Figure 4. Comparison of contrast enhancement pattern and dynamic local binary pattern (DLBP) features
(256 bins) of estrogen receptor (ER)-positive breast lesions between low OncotypeDX recurrence score
(=11), low grade in 53-year-old woman and high OncotypeDX recurrence score (=41), high grade in
48-year-old woman. (a) Normalized mean DLBP values versus time points, and the color-coded DLBP image
of (b) low OncotypeDX at peak enhancement (6th phase, 1.5T), and (c) high OncotypeDX at peak enhancement
(6th phase, 1.5T). Note that the enhancement patterns vary widely in contrast uptake from time point to time
point between two tumors.

via a sequential floating forward based LDA selection method®. Further description regarding the theoretical
formulation of feature selection problem and LDA classification can be obtained from Supplementary-B online.
The important features were identified during the feature selection process were combined with equal weighting
and used in conjunction with the LDA classifier. We assume that the condition probability density function with
respect to the low and high OncotypeDX classes is normally distributed with equal class covariance.

Analysis.  Statistical Analysis. The Student ¢ test was used to verify that there was no tumor size-related bias
or age-related bias between low and high OncotypeDX risk categories (Table 2). To confirm that our classifiers
and features were robust to the choice of MRI scanners and clinical sites, we used a paired ¢ test to test the null
hypothesis that there were no difference in feature values between data acquired from the two sites. A post-hoc
power analysis of the 95% confidence interval was performed. The Spearman’s rank correlation tests measured by
correlation coefficient (p) were performed to determine the relationship between the computer extracted features
and the low/high OncotypeDX risk categories. All analyses were performed by using the IBM SPSS software (ver-
sion 21.0; IBM, Chicago, IL). A value of P < 0.05 was considered to indicate a statistically significant difference.
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Figure 5. Box-and-whisker plots for mean feature values of three best features corresponding to (a) dynamic
histogram of oriented gradient (DHoG), (b) dynamic local binary pattern (DLBP), and (¢) pharmacokinetic
(PK) feature across all patient studies. The plots suggest that DHoG and DLBP have improved separability
between low versus high OncotypeDX estrogen receptor (ER)-positive breast tumors compared to the PK

features.
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Figure 6. Flowchart of our study population with the patient inclusion and exclusion criteria.

Stability of Classification Performance. Inthe LDA classification, area under the receiver operating characteristic
curve (Az), positive predictive value (PPV), negative predictive value (NPV) were used as performance measures
for evaluating the discriminability of each of the individual computer extracted features. In order to assess the
stability of LDA classifier, the classification was performed via a 2-fold cross validation strategy. We computed the
performance measures 100 times and reported the mean values with 95% confidence interval in the results. We
employed a stability measure that Parmar et al. used to evaluate the performance of classification methods in their
recent radiomic work®. The classifier stability was empirically quantified using the relative standard deviation
(RSD %), which can be defined as:
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rRsD = 242100
'u'Az (1)

where y1, and 04, are the mean and standard deviation of the Az values, respectively. The higher RSD values
indicate the lower stability in the classification.

Stability and Predictive Performance. In order to identify most accurate and highly reliable image features, we
used mean values of Az and RSD as feature ranking measures. According to Parmar et al.’s selection criterion®,
the features ranked in the top half of both measures are considered as highly accurate and reliable ones. For each
feature class (i.e., shape, PK, EK, IK, TK, DHoG, DLBP), the best identified features have Az greater than the
mean Az of all classifiers and RSD less than the mean RSD of all classifiers.

Further, we utilized an inverse power law model® of statistical learning to estimate the error rate associated
with the classification performance on the currently available data samples. The estimation procedure comprised
the following steps: (i) The dataset was divided into a training pool and a testing set via a random sampling;
(ii) Ensured that the number of training samples in each set was statistically significant for calculating the power
law parameters; (iii) The power law model was applied to describe the relationship between error rate and training
set size:

err(n) =an “ + ¢ (2)

where err(n) is the error rate for training set size #, a is the learning rate, « is the decay rate, and ¢ is the Bayes
error. The model parameters [4, o, €] can be estimated via a constrained non-linear minimization™®.
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