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Published: 11 April 2016 The network control problem has recently attracted an increasing amount of attention, owing
to concerns including the avoidance of cascading failures of power-grids and the management of
ecological networks. It has been proven that numerical control can be achieved if the number of control
inputs exceeds a certain transition point. In the present study, we investigate the effect of degree
correlation on the numerical controllability in networks whose topological structures are reconstructed
from both real and modeling systems, and we find that the transition point of the number of control
inputs depends strongly on the degree correlation in both undirected and directed networks with
moderately sparse links. More interestingly, the effect of the degree correlation on the transition

point cannot be observed in dense networks for numerical controllability, which contrasts with the
corresponding result for structural controllability. In particular, for directed random networks and scale-
free networks, the influence of the degree correlation is determined by the types of correlations. Our
approach provides an understanding of control problems in complex sparse networks.

One fundamental issue in traditional control theory is controllability, which is defined as the ability for a com-
plex system to be driven from any initial state to any desired state within a finite time by inputting a certain
number of control signals'. However, it is difficult to determine the minimal number of driver nodes required
to achieve full control of a network using traditional control theory. Motivated by this, Liu et al. simplified the
problem and explored the structural controllability of directed networks, in order to circumvent the need for link
weights for applying Kalman's controllability rank condition® They discovered that the minimal number of driver
nodes for a network can be obtained by calculating the maximum matching of the network. Recently, with the
development of complex network research, the focus is increasing on problems concerning the controllability of
complex dynamical networks*™. In particular, the exact controllability theory offers a more universal approach
to the controllability of complex networks with arbitrary structures and link weights, by employing the PBH rank
condition®~’. It has been proven that the controllability of a network is determined by the maximum geometric
multiplicity of the eigenvalues of the adjacent matrix®. Recent studies have also focused on control profiles?, struc-
tural perturbation®, control energy'’, and other important applications relating to controllability!!-?’. In addition,
the controlling of some networks with nonlinear dynamics has also been investigated, such as realistic control in
ecological®! and biological networks?%.

Degree correlation is a significant statistical property of complex networks, and characterizes the tendencies
of nodes to connect to other nodes with similar in- or out- degrees as themselves. High degree nodes in social
networks tend to be connected with other nodes of high degree, while in technological networks and biological
networks, nodes of high degree tend to be connected with others of low degree?. It has been demonstrated that
degree correlation plays an important role in the dynamics of networks?*?. In particular, degree correlation can
produce linear and quadratic dependences on the density of minimal driver nodes in structural controllability!!.
Although structural controllability provides a basis framework for determining the controllability of complex
networks, in practice it cannot inform us about the length of the control trajectory, which makes numerical
calculations difficult. Considering these problems, the controllability Gramian matrix is an essential tool for
numerical calculations. Nevertheless, a system with a well-conditioned Kalman’s controllability matrix may have
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an ill-conditioned controllability Gramian?®, which will result in both the control trajectory and control time
being too long. Additionally, in practice, the energy consumption cost is also high for controlling a system?>2728,
However, the length of the control trajectory can be reduced and the numerical calculation of the controllability
Gramian can be made easier by increasing the number of driver nodes®. In analogy with the structural controlla-
bility, it is expected that correlation has a significant effect on the length of the control trajectory and the difficulty
of achieving successful control in reality. Because the Gramian condition involves the precision of numerical
calculations and the success rate of control, we call the controllability calculated using the method of the Gramian
condition “numerical controllability”?, in order to make the distinction from idealized (structural and exact)
notions of controllability (See Methods).

In this study, we investigate the influence of degree correlation on the controllability transition point for top-
ological structures reconstructed from some real and model networks, which is defined as the minimum number
of driver nodes required for the success rate of numerical controllability to exceed zero®. Our results demonstrate
that the transition point displays a non-monotonic dependence on the degree correlation in undirected networks
with moderately dense links. For the neutral undirected Erdds-Rényi (ER) and scale-free (SF) networks, it is
easier to achieve full control. Meanwhile, all types of degree correlations strongly affect the transition point for
directed SF networks. In particular, the transition point depends linearly on the network size in networks with
moderately sparse links. All of above results differ greatly from the corresponding results relating to structural
controllability''.

Results
Transition of success control rate for different correlation coefficients. We consider an
N-dimensional linear time-invariant dynamical system:

x(t) = Ax(t) + Bu(1), (1)

where x (t) = (x,(t), x,(£), - - -, x5 (8) Y is the state of system at time f. A is the adjacent matrix which captures
the interaction strength between nodes, and B is the input matrix which defines how the input signals are con-
nected to the nodes of networks. To eliminate any effect of self-loops on the controllability, we have refrained
from using self-loops in our research. Therefore, the diagonal elements of the matrix A are all zero, and the driver
nodes are defined as nodes controlled by external signals, which are selected randomly in our approach. Because
the input vector is written as u (t) = (u,(t), uy(t), - - -, u M(t))T, the corresponding minimal energy control
inputatt € [t,, t,]is given by'":

u(t) = B'®" (t,, HW 2y, 1) [P (tg, t)x) — x], )

By combining Egs 1 and 2 with the minimization of the energy ft g ||l (£) | dt, the control trajectory is given
1 0

by':
x(t) = Dt to)|x + My, (Bt 1) — X)) 3)

where M, , , = W (ty, ) Wt t W (tg, 1) = JI “ ®(t,, t)BB'® (t,, t)dt is the controllability Gramian, and

D(t, ty) = elhi=fo) A2 Usually, if the controllability r;latrix K = [B, AB, A’B, ---, AN ~!B] has full rank, then sys-
tem (A, B) is considered controllable according to the Kalman’s rank condition?, and vice versa. However, with
less number of driver nodes, the final state of control x(t,) given by Eq. 3 can not reach the target state x") in time
window (¢, ¢,]. That is, the numerical control fails due to ill-conditioned controllability Gramian. However, the
success rate of numerical control depicts transition between zero and one according to an increasing number of
driver nodes, as shown in Fig. 1. We denote the minimum rate of driver nodes that corresponds to a success rate
firstly greater than zero as the transition point #n,= N,/N, where N, and N are the minimum number of driver
nodes and the size of nodes in the system respectively. Figure 1 presents, the success control rate for some undi-
rected and directed empirical networks for different correlation coefficients as a function of the number of driver
nodes®*31. We observe that for both undirected and directed networks, the transition points of networked systems
with different correlation coefficients are distinct, which demonstrates that numerical control can be influenced
by correlation.

Effect of correlation on numerical controllability and structural controllability. To distinguish
the effects of correlation on structural controllability and numerical controllability, we explore the minimal num-
ber of driver nodes as a function of correlation for some empirical networks®-*2, as illustrated in Fig. 2. We can
find that, on the one hand, the number of driver nodes of numerical controllability is always larger than that of
structural controllability. On the other hand, for numerical controllability the correlation can produce a mono-
tone linear dependence on n, for undirected Karate and Dolphins networks, while the n, only takes maximum
and minimum values for different correlations in the directed Little Rock network.

Numerical transition point for the model network. Now, we investigate how degree correlation affects
the controllability transition point in undirected ER and SF networks. Simulated annealing is used to vary the
degree correlation by link rewiring, while keeping the degree distribution unchanged (for further details, refer
to the Methods). Figure 3 illustrates the density of the transition point #, as a function of degree correlation for
undirected networks. Clearly, the curves for the ER networks in Fig. 3(a) can be divided into two categories. The
first case is networks with moderately sparse links. n, displays a quadratic dependence on degree correlation
and attains a local minimum at r= 0. In this sense, neutral undirected ER networks are the easiest to control.
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Figure 1. Success rate as a function of the number of driver nodes on topological structures reconstructed
from a real network with different degree correlations. (a) Karate network; (b) Little Rock network. Each data
point is an average of 300 independent realizations.
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Figure 2. Comparison between the methods of Kalman’s rank condition and Gramian’s condition on
topological structures reconstructed from some real networks. (a) Dolphins and Karate networks; (b) Little
Rock network. Each data point is an average of 300 independent realizations, and whiskers in panels (a,b) show
standard deviation (S. D.) of n,..

Moreover, disassortative ER networks are more difficult to control than assortative networks. The second category
is sparse and dense networks. Here n; depends weakly on the degree correlation for undirected ER networks.
Furthermore, n, of the undirected SF networks shows the local maximum and minimum, which is completely dif-
ferent from the former situation. Since the degree distributes in the term of k= (c is defined as the power expo-
nent), we can also find that the larger a induces the smaller 7, at the same value of degree correlation. Figure 3
indicates that the correlation has a strong influence on the transition point in undirected networks with moder-
ately sparse links, while the transition point is weakly affected by the correlation in sparse and dense networks.
Interestingly, this is different from the corresponding result for structural controllability, where the correlation
dramatically impacts the number of driver nodes for dense networks!!.

In order to explore local maximal transition points in undirected networks, we examine the reciprocal con-
dition number (W) and rank(W) of the controllability Gramian (7(W) is defined as the ratio of the small-
est singular value to the largest). Figure 4 depicts the v(W) and rank(W) as functions of the number of driver
nodes for different correlation coefficients r in undirected ER networks, with <k> = 2. As seen in Fig. 4, 7(W)
and rank(W) exhibit rapid growth as the number of driver nodes increases, the controllability Gramian W can
be well-conditioned, which demonstrates that numerical control can be achieved by increasing the number of
inputs. It is known that the smaller the values of v(W) and rank(W) are, the harder it is to achieve numerical
control of the network. By comparing v(W) and rank(W) with different correlation coefficients, we find that for
the same number of driver nodes, the values of (W) and rank(W) with r = —0.7 are smaller than those with r=0
and r=0.6. Hence, the network with r = —0.7 requires a greater number of driver nodes to achieve control, which
results in the phenomenon of the maximal transition point in Fig. 3.
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Figure 3. Impacts of degree correlation on the controllability transition point for undirected ER and SF
networks (<k> =2, and power exponent o = 2.5) with size N=100. The initial states of the simulations
are chosen randomly on the unit sphere centered at the origin and the target states are randomly oriented with
o=1072. Each data point is an average of 300 independent realizations, and values of n, in panels (a,b) are
shown in the term of “mean &+ S.D.”.
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Figure 4. Numerical reciprocal condition number ~(W) of the controllability Gramian and its rank
rank(W) as functions of diver nodes with different degree correlations for undirected ER networks, with
<k> =2. The statistics and parameters not shown are the same as those used in Fig. 3. Each data point is an
average of 300 independent realizations.

Furthermore, we explore the controllability transition point as a function of network size for different values
of correlation coefficient r, as shown in Fig. 5. The transition point n, for both the undirected ER and SF networks
depends linearly on the network size, which is different from the corresponding results for both the structural
controllability and the exact controllability. From ref. 5, we know that the minimal number of driver nodes for
undirected networks is determined by the algebraic multiplicity of the eigenvalues of the coupling matrix A. The
increment of the number of driver nodes with network size is extremely small according to the exact control-
lability theory, while the transition point for numerical control is related linearly to the network size. In other
words, the maximal and minimal transition points cannot disappear in large networks. In addition, we study the
relationship between the controllability transition point and network size for the directed ER and SF networks,
the results of which, are presented in Fig. 6. These results are similar to those for undirected networks. The slope
of the linear function presented in Figs 5 and 6 may provide us with a method for estimating the minimal number
of driver nodes required for numerical controllability.

Finally, it is necessary to explore the case of directed networks. As can be seen in Figs 7 and 8, here n, exhibits
a quadratic dependence on the ™" degree correlation in the ER and SF networks with moderately sparse links.
This result is similar to that of undirected ER networks, shown in Fig. 3. However, n; monotonically decreases
according to rin-out, yout-in gpd yout-out have a weak effect on n,. In contrast with the case of ER networks, rin-o%,
routin and routout all cause n, to decrease in SF networks. To summarize, the most striking differences between the
above results and the corresponding conclusions for the structural controllability lies on that the transition point
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Figure 5. Impacts of degree correlation on the controllability transition point for undirected ER(a) and SF(b)
networks with different network sizes (<k> =2 and a = 3). The statistics and parameters not shown are the
same as those used in Fig. 3. Each data point is an average of 300 independent realizations, and whiskers in
panels (a) and (b) show standard deviation of n,.
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Figure 6. Impacts of degree correlation on the controllability transition point for directed ER (in panel (a)) and
SE (in panel (b)) networks with different network sizes (<k> = 2 and a = 3). The statistics and parameters not
shown are the same as those used in Fig. 3. Each data point is an average of 300 independent realizations, and
whiskers in panels (a,b) show standard deviation of n,.

depends strongly on the degree correlation in networks with moderately sparse links. In contrast, it cannot be
affected by the degree correlation in sparse and dense networks, which is completely different from those results
in structural controllability that the minimal number of driver nodes can be significantly affected for dense net-
works!!. In addition, the value of the transition point in directed networks is larger than that in undirected net-
works, which indicates the difference in controllability between directed and undirected networks.

It is worth mentioning that the driver nodes for all simulations are selected randomly. Concerning the struc-
tural controllability of directed networks, the value of the minimal number of driver nodes depends sensitively
on the importance of the selected driver nodes in the hierarchical structure!?. In this paper, we also choose driver
nodes according to the differences in their importance, such as the degree and betweenness centrality. However,
these selection methods cannot efficiently affect the value of the transition point.

Discussion

Previous studies have offered effective tools for approaching the issue of controllability in complex networks
based on the Kalman and PBH rank conditions?®, to examine whether a system can be driven from any initial
state to any desired state within finite time. However, in practice the controllability Gramian becomes an essential
factor in obtaining the length of the control trajectory?. In general, the Kalman rank condition is equivalent to
the Gramian’s rank condition. Nonetheless, a system with a well-conditioned Kalman’s controllability matrix may
have an ill-conditioned controllability Gramian®. In this case, the length of the control trajectory will be too long
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Figure 7. Impact of degree correlation on the controllability transition point for directed ER networks
with N =100. The statistics and parameters not shown are the same as those used in Fig. 3. Each data point is an
average of 300 independent realizations, and values of 7, in all panels are shown in the term of “mean + S.D.”.

and the cost will be too high. By increasing the number of driver nodes, the controllability Gramian becomes
well-conditioned, and numerical control can be achieved?®. Motivated by the fact that the degree correlation
influences the numerical calculation of the Gramian matrix, we have examined how the degree correlation affects
the controllability transition point of networks, and illustrated the difficulty of achieving numerical control of
networks with varied degree correlations.

We performed numerical simulations in order to reveal the effect of degree correlation on the transition point
in undirected and directed networks. We found that the neutral undirected ER and SF networks are the easiest to
control, and the transition point can only be influenced by the correlation in both undirected and directed net-
works with moderately sparse links. For sparse networks, it is necessary to control almost all of the nodes, while
for dense networks, a lower fraction of driver nodes can ensure that numerical control is successful. Therefore,
a varying correlation cannot affect the transition points in either sparse or dense networks. In particular, the
transition point depends linearly on the network size based on the minimal energy control. These results are
dramatically different from those relating to structural and exact controllability. It is worth mentioning that the
dynamics on the topological structures of both real and model networks is only linearly time-invariant, while the
dynamics of real systems may be time-varying. In the future work, we expect to further study the relationship
between controllability and the structure of complex networks based on the Gramian matrix.

Methods

Controllability of complex networks. For a N-dimensional linear time-invariant dynamical system,
x(t) = Ax(t) + Bu(t), it is considered as controllable if controllability condition can be satisfied. According to
different controllability conditions suitable for different networks and calculations, the controllability of complex
networks can be divided as follows:
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Figure 8. Impact of degree correlation on the controllability transition point for directed SF networks
with N=100 and <k> =4. The statistics and parameters not shown are the same as those used in Fig. 3. Each
data point is an average of 300 independent realizations, and values of n, in all panels are shown in the term of
“mean £+ S.D.”.

1. Structural controllability: In the Kalman’s rank condition®, the system is controllable when the following
Eq. 4 is satisfied.

rank[B, AB, - - -, AN"1B] = N. (4)

However, it is difficult to calculate controllability matrix (the left part of Eq. 4) if the weights of some matrix
elements in matrix A are unknown. To solve the problem, an effective approach is to choose the non-zero
weights in matrix A and matrix B which satisfy Eq. 4, then the system is structural controllable accordingly.
Furthermore, the minimal number of driver nodes which is needed to fully control the directed networks can
be calculated by the maximum matching?.

2. Exact controllability: According to the PBH rank condition®, authors of ref. 5 have proven that the minimal
number of driver nodes of controllability for the network with arbitrary structure and link weights is given by
the following Eq. 5:

ND = mlax{/j'()\z)}) (5)
where u(\;) is the geometric multiplicity of the distinct eigenvalue ); for the adjacent matrix A. This general
method based on the multiplicity of eigenvalues is called exact controllability theory.

3. Numerical controllablhty According to the Gramian condition’, the system is controllable when the Gramian
matrix W (t,, t, f D (ty, t)BB @ (t,, t)dt is well-conditioned. Because the Gramian matrix refers to the

numerical calculatlon of control trajectory and energy consumption, the system is considered as numerical

SCIENTIFICREPORTS | 6:23952 | DOI: 10.1038/srep23952 7



www.nature.com/scientificreports/

controllable if it satisfies the Gramian condition. However, due to numerical calculation, the structural con-
trollable or exact controllable system probably has the ill-conditioned Gramian matrix. Therefore, the mini-
mal number of driver nodes may not be the same for different controllability criterions.

Degree correlation. Each node in a network has an in-degree k;, and an out-degree k., and we ensure that
no self-loops exist in the networks. The degree correlation measures the tendencies of nodes to connect with
other nodes that have similar in- and out- degrees as themselves. This can be quantified by using the Pearson
coefficient®:

MYk — M 102G, + k)P
r= >
MY 2G4 k) = MUY 123, + k)T (6)

where >_;- sums over all edges, j; and k; are the degrees of nodes which are connected to the ith edge, and M is the
total number of edges. For undirected networks, j and k are the degrees of two nodes belonging to edge i. A posi-
tive value of r indicates the assortative network while the negative value of r characterizes a disassortative
network.

Network construction and calculation of transition point. Simulated annealing is used to obtain
networks with the desired degree correlation, by rewiring links while leaving the in- and out- degrees unchanged.
It is worth mentioning that self-loops are not permitted during the rewiring operation, or in the original network.
We set the desired degree correlation r*and energy E(r) = |r — r*| by carrying out the following steps to minimize
the energy. (I) Initialize the parameters: temperature T and E(r); (II) Choose two edges with an equal probabil-
ity; (III) Rewire the two edges while leaving the in- and out- degrees unchanged, and calculate the energy of the
resulting network E(r'); (IV) The new configuration can be accepted with probability

[ if AE < 0
P= e 2HT i AE > 0 (7)

(V) Calculate |E (') — E(r*)|, and if it is smaller than the defined value (here, we set the defined value is 0.01)
then stop, else repeat from step (2) and gradually decrease T.

In addition to the real network structures of some empirical networks**-*2, models of Erdds-Rényi (ER) and
Scale-free (SF) networks are also used to study the effects of correlations on the controllability transition. The
edges are assigned weights, drawn from a uniform distribution in [—1, 1]. B is a diagonal matrix, whose diagonal
elements B;; are assigned 1 when the ith node is a driver node, and a fraction of nodes fare randomly chosen as
driver nodes at each independent realization. For an N-dimensional linear time-invariant dynamical system, the
control trajectory with minimized energy at t € [t,, t,] is given by":

x(t) = Ot t)| ¥ + M, (DL, t)xV — X)), ®)

where the initial states of the simulations x(* are chosen randomly on the unit sphere centered at the origin, and
the target states x") are randomly oriented to be o = 102 apart, where o is the distance from the initial state to the
target state. We consider the numerical control to be successful if the distance between the calculated state x(t,)
from Eq. 3 and the target state x(!) is less than 7 in the time window ¢, < t< ¢, for t,=0, t;=1 and
n < ||x(l) — x<0)||, with 7=107C. Then, the corresponding rate of driver nodes is defined as the transition point
ng (ng= N,/N, where N, and N are the minimum number of driver nodes and the size of nodes in the system
respectively). In this fashion, we compute the transition points in different networks with different values of
degree correlation r.
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