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small network of coupled pendula
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Received: 24 March 2016 . Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where
Accepted: 21June 2016 : different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite
Published: 21July 2016 : homogeneous coupling. Although these states are typically observed in the large ensembles of
. oscillators, recently it has been shown that so-called weak chimera states may occur in the systems
with small numbers of oscillators. Here, we show that similar multistable states demonstrating
partial frequency synchronization, can be observed in simple experiments with identical mechanical
oscillators, namely pendula. The mathematical model of our experiment shows that the observed
multistable states are controlled by elementary dynamical equations, derived from Newton'’s laws
that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable
chimera-like states are observable in small networks relevant to various real-world systems.

Chimera states correspond to the spatiotemporal patterns in which synchronized and phase locked oscillators
coexist with desynchronized and incoherent ones'~?. These patterns have been reported both in simulations!~182
and experiments'®-*® of the large networks of coupled oscillators with a variety of topologies. Recently, Ashwin &
Burylko? defined a weak chimera state as one referring to a trajectory in which two or more oscillators are fre-
quency synchronized and one or more oscillators drift in phase and frequency with respect to the synchronized
group. It has been found that these states can be observed in small networks as few as 4 phase oscillators (two
groups of in-phase and antiphase oscillators)* .

Up to now weak chimera states in small networks have been reported in simulation and theory of coupled
phase oscillators. Here, we show that similar multistable chimera-like states can be observed experimentally in
small networks of more general oscillators. As a proof of concept, we use the network of four coupled externally
excited double pendula. Each pendulum is characterized by the coexistence of rotational or oscillatory periodic
solutions of different frequencies. We argue that such multistability implies the occurrence of these states and
present evidence that they can persist for a positive measure set of coupling strength.

We consider the system of 4 identical coupled double pendula arranged into a cross configuration, as shown
in Fig. 1(a) The lower pendula’s bobs (marked with symbols I, i=1, 2, 3, 4) can rotate or oscillate around their
horizontal axes at points D;, D,, D, D,. The displacements of these bobs are given by ,,(f). Lower bobs are con-
nected to the upper bobs by the rotational pivots at D;. The upper bobs (I;) can only oscillate around the horizontal
axes marked by A}, A,, A; and A, and located on the base III. One of the bob’s ends is connected to the base by the
rotational pivot at A; and the second ends are suspended on the springs characterized by the stiffness coefficient
k.. The displacements of upper bobs are given by ¢, (). The upper bobs I; of length 7, have mass m; and moment
of inertia J; while the lower bobs II; of length 7, have mass m, and moment of inertia J,. The detailed geometry

. is shown in Fig. 1(b). The viscoelastic damping is assumed in the pivots at D; (with damping coefficient c.) and
A, (with damping coefficient k). The base, mounted on the shaker, is excited in the vertical direction by the
kinematic displacement, y = Acoswt. The upper pendula’s bobs are coupled to the nearest neighbor by the plane
springs (with stiffness coeflicient o) shown in green. The similar system in which pendula have not been coupled
i.e., the system without plane springs has been considered by Strzalko et al.*.
The dynamics of the system of Fig. 1(a,b) can be analyzed using the equations of motion (see Methods).
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Figure 1. (a) Model of a set of (N=4) double pendula located at an oscillating platform, (b) geometry of i-th
double pendulum.
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Figure 2. Regions of existence of different types of rotational or oscillatory responses of the uncoupled
pendulum in the space of parameters A and w. In regions 1-6 double pendulum is multi stable with co-
existing solutions of different frequencies. In these regions for o >0 the multistable chimera-like states can be
observed.

Results

In the absence of coupling (when one removes green planar springs and thus, coupling parameter o =0 in
Equation(1) in Methods) it is possible to identify excitation parameters (A and w) for which each double pen-
dulum exhibits multistability. In Fig. 2 we present regions of existence of various N:M , where N is the number
of rotation/oscillation of lower pendulum II,_, and M is the number of periods of excitations, eg., 1:1 means that
pendula I, _, oscillate or rotate with the frequency of the excitation w, 2:1 (pendula II,_, oscillate or rotate with the
frequency of the excitation % w), etc. One can identify six main regions, indicated from 1 to 6 in Fig. 2, in which
the excited double pendulum is multistable. In region 1 three solutions exist: 1:1 rotations (above the green line),
1:4 oscillations (between the dashed red lines) and 1:2 rotations (between solid black lines). Region 2 is character-
ized by the co-existence of four solutions: 1:1 rotations (above the green line), 1:4 oscillations (between the dashed
red lines), 1:2 rotations (between solid black lines) and 3:6 rotations (between solid orange lines). Four solutions
are stable also in region 3:1:1 rotations (above the green line), 1:6 oscillations (between the dashed black lines),
1:2 rotations (between solid black lines), 1:3 rotations (between solid yellow lines). Three solutions: 1:1 rotations
(above the green line), 1:6 oscillation (between dashed black lines), 1:2 rotation (between solid black lines) can be
observed in region 4. Region 5 is another example of the co-existence of three solutions: 1:1 rotations (above the
green line), 1:2 rotations (between solid black lines), 1:3 rotation (between solid yellow lines). Finally in region 6
we observe four solutions: 1:1 rotations (above green line), 1:4 oscillations (between the dashed black lines), 3:6
rotations (between solid orange lines).

In regions 1-6 each of four uncoupled double pendula can exhibit M (equal to 3 or 4) various independent
dynamical responses, i.e., 1:1, 2:1 or 3:1 rotational and oscillatory solutions. The set of 4 pendula is characterized
by M*configurations. One can see that the number of configurations grows exponentially with the number of
pendula (i.e., in the case of n pendula we have M" configurations) so there is spatial chaos®! in an uncoupled
system. For sufficiently small coupling one can observe multistable chimera-like states which persist over the wide
range of system parameters and can be captured experimentally. These states coexist with various cases of com-
plete, phase and cluster synchronous states.

Experimentally observed multistable chimera-like states are illustrated in Fig. 3(a-f). Upper images present
general view of the pendula’s configurations while lower plots show time series of the lower pendula bobs. The
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Figure 3. Experimentally observed multistable chimera-like states: (a-d) A=0.01[m], w= 187 [rad/s] (region 5
of Fig. 2), (e,f) A=0.005[m], w= 107 [rad/s] (region 1 of Fig. 2); (a) pendula 1 and 2 rotate with frequency Lo,
pendula 3 and 4 with frequency 1w, (b) pendula 1, 3 and 4 rotate with frequency 2w and pendulum 2 with ’
frequency 2w, (c) pendulum 1 rotates with frequency L w, pendula 2 and 3 with frequency w and pendulum 4
with frequency 1w, (d) pendula 1, 2 and 4 rotate with Prequency 1w and pendulum 3 with frequency w, ()
pendula 1,3 and 4 rotate with frequency 2w, pendulum 2 oscillates with frequency *w, (f) pendula 1 and 4 rotate
with frequency w, pendulum 2 rotates with frequency %w and pendulum 3 oscillates with the frequencyiw.

figures present a kind of a stroboscope type images of the pendula motion in different cases. All experiments have
been recorded using Vision Research Phantom v711 high speed camera. Typical recording speed was 1000 frames
per second (fps) and for the purpose of a still photograph visualization a set of 5 of them every fifth frame:
5% 0.001 =0.005 seconds have been chosen. Then, the images were combined to a single image presenting all
chosen images overlaid with the assumed transparency level. The wider area covered by the set of frozen images
of each pendulum, the faster speed of its rotation or oscillation and vice verse. In Fig. 3(a-d) we show multistable
states in which all the pendula rotate (A =0.01[m], w= 187 [rad/s]-region 5 of Fig. 2). In Fig. 3(a) pendula 1 and
2 rotate with frequency %w and pendula 3 and 4 with frequency %w, Pendula 3 and 4 are in antiphase to each
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other (see movie W1). The case in which pendula 1, 3 and 4 rotate with frequency . and pendulum 2 with fre-
quency 1w is shown in Fig. 3(b). Pendula 1 and 4 are synchronized in phase and pendulum 3 is in antiphase to
pendula 1 and 4 (see movie W2). Configuration of Fig. 3(c) presents the case when pendulum 1 rotates with a
frequency 2w, pendula 2 and 3 with frequency w and pendulum 4 with frequency Lw. Pendula 2 and 3 are syn-
chronized (35ee movie W3). Figure 3(d) shows the configuration in which pendula I, % and 4 rotate with frequency
L and pendulum 3 with frequency w. Pendula 1 and 2 are synchronized in phase (see movie W4).

In Fig. 3(e,f) we observe multistable states in which the pendula show both rotational and oscillatory behavior
(A=0.005[m], w=107 [rad/s]-region 1 of Fig. 2). Figure 3(e) shows the chimera-like state in which pendula 1,
3 and 4 rotate with frequency %w while pendulum 2 oscillates with frequency %w. Pendula 1 and 4 are synchro-
nized in phase (see movie W5). The chimera-like state shown in Fig. 3(f) is characterized by 3 rotating and one
oscillating pendula. Pendula 1 and 4 rotate with the frequency w and are synchronized in phase. Pendula 2 and 3
respectively rotate with frequency 1w and oscillate with frequency 1w (see movie W6).

The presented multistable states coexist with various synchronous states. Movies W7-W9 present the case of
the complete synchronization of all pendula in rotational motion (W7), the case when all pendula oscillate with
frequency w and pendula 2, 3, 4 are synchronized in phase and pendulum 1 is in antiphase to them (W8) and the
case when all pendula oscillate with the frequency w and pendula 1, 3 and 2, 4 create two clusters of phase syn-
chronized pendula respectively. These clusters are in antiphase to each other (W9).

In conclusion, we have constructed the simple experimental setup to explore the spatio-temporal dynamics of
the small network of the locally coupled pendula. The nodes in the network are externally excited double pendula.
Despite a small number of nodes, namely 4, we observe the formation of spatio-temporal patterns of multistable
chimera-like states. This behavior is observed experimentally, confirmed in numerical simulations, persistent
over a positive measure set of system parameters and seems to be characteristic for the small networks of coupled
multistable general oscillators relevant to various real-world systems.

Methods
The dynamics of the system of coupled pendula shown in Fig. 1(a) is given by:

U+ mlglz + nglz)%‘z + ko + 57712"5 sin2¢p; + m2§1€2(¢i2 sin(p;; — ¢p)

_Sbizz cos(; — i) — (mg + mzfl)(sz coswt + g)cos p; + an (@ — V1))

+an(pn — Pura) =0,

U, + mzﬁzz)g'ﬁiz + m2£2(Aw2 coswt + g)sin ¢;,

+m2§2(¢i21§1(505(90i1 = @) + @nsinlen — ¥p)) + P =0, (1)
wherei=1,2,3,4.

Numerical simulations. We used the following parameter values: J, = 4.521 x 10 3[kgm?],
J,=2.908 x 10~5[kgm?], m, = 0.5562(kg], m, = 0.0166[kg], £, = 0.153[m], &, = 0.096[m], ¢, = 0.180[m],
1, =0.315[m], 7,=0.145[m], k,=6850[N/m] ¢, = 0.5 X 10~*[Nms] and k.= 0.050[Nms]. The parameters values
used in experiment have been independently measured.

Egs (1) have been integrated by the 4" order Runge-Kutta method. Bifurcation curves in Fig. 2 have been
calculated using path following method AUTO

Experimental observations. In our experiments, the rig with four coupled double pendula has been
mounted on the shaker LDS V780 Low Force Shaker (basic data are as follows: sine force peak 5120[N], max
random force (rms) 4230[N], max acceleration sine peak g, =111 g [m/s?], system velocity sine peak 1.9[m/s],
displacement pk-pk g, =25.4[mm], moving element mass 4.7[kg]). The shaker introduces practically kinematic
periodic excitation A cos wt, where A and w are the amplitude and the frequency of the excitation, respectively.
All experiments were recorded at motion videos taken by Vision Research Phantom v711 high speed camera.
Typical recording speed used was 1000 frames per second (fps). Different random initial conditions have been
given to each pendulum.
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