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Experimental multistable states for 
small network of coupled pendula
Dawid Dudkowski1, Juliusz Grabski1, Jerzy Wojewoda1, Przemyslaw Perlikowski1, 
Yuri Maistrenko1,2,3 & Tomasz Kapitaniak1

Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where 
different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite 
homogeneous coupling. Although these states are typically observed in the large ensembles of 
oscillators, recently it has been shown that so-called weak chimera states may occur in the systems 
with small numbers of oscillators. Here, we show that similar multistable states demonstrating 
partial frequency synchronization, can be observed in simple experiments with identical mechanical 
oscillators, namely pendula. The mathematical model of our experiment shows that the observed 
multistable states are controlled by elementary dynamical equations, derived from Newton’s laws 
that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable 
chimera-like states are observable in small networks relevant to various real-world systems.

Chimera states correspond to the spatiotemporal patterns in which synchronized and phase locked oscillators 
coexist with desynchronized and incoherent ones1–25. These patterns have been reported both in simulations1–18,26 
and experiments19–25 of the large networks of coupled oscillators with a variety of topologies. Recently, Ashwin & 
Burylko27 defined a weak chimera state as one referring to a trajectory in which two or more oscillators are fre-
quency synchronized and one or more oscillators drift in phase and frequency with respect to the synchronized 
group. It has been found that these states can be observed in small networks as few as 4 phase oscillators (two 
groups of in-phase and antiphase oscillators)27–29.

Up to now weak chimera states in small networks have been reported in simulation and theory of coupled 
phase oscillators. Here, we show that similar multistable chimera-like states can be observed experimentally in 
small networks of more general oscillators. As a proof of concept, we use the network of four coupled externally 
excited double pendula. Each pendulum is characterized by the coexistence of rotational or oscillatory periodic 
solutions of different frequencies. We argue that such multistability implies the occurrence of these states and 
present evidence that they can persist for a positive measure set of coupling strength.

We consider the system of 4 identical coupled double pendula arranged into a cross configuration, as shown 
in Fig. 1(a) The lower pendula’s bobs (marked with symbols IIi, i =​ 1, 2, 3, 4) can rotate or oscillate around their 
horizontal axes at points D1, D2, D3, D4. The displacements of these bobs are given by ϕi2(t). Lower bobs are con-
nected to the upper bobs by the rotational pivots at Di. The upper bobs (Ii) can only oscillate around the horizontal 
axes marked by A1, A2, A3 and A4 and located on the base III. One of the bob’s ends is connected to the base by the 
rotational pivot at Ai and the second ends are suspended on the springs characterized by the stiffness coefficient 
ks. The displacements of upper bobs are given by ϕi1(t). The upper bobs Ii of length η1 have mass m1 and moment 
of inertia J1 while the lower bobs IIi of length η2 have mass m2 and moment of inertia J2. The detailed geometry 
is shown in Fig. 1(b). The viscoelastic damping is assumed in the pivots at Di (with damping coefficient cc) and 
Ai (with damping coefficient kc). The base, mounted on the shaker, is excited in the vertical direction by the 
kinematic displacement, y =​ Acos ωt. The upper pendula’s bobs are coupled to the nearest neighbor by the plane 
springs (with stiffness coefficient α​) shown in green. The similar system in which pendula have not been coupled 
i.e., the system without plane springs has been considered by Strzalko et al.30.

The dynamics of the system of Fig. 1(a,b) can be analyzed using the equations of motion (see Methods).
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Results
In the absence of coupling (when one removes green planar springs and thus, coupling parameter α =​ 0 in 
Equation(1) in Methods) it is possible to identify excitation parameters (A and ω​) for which each double pen-
dulum exhibits multistability. In Fig. 2 we present regions of existence of various N:M , where N is the number 
of rotation/oscillation of lower pendulum II1–4 and M is the number of periods of excitations, eg., 1:1 means that 
pendula II1–4 oscillate or rotate with the frequency of the excitation ω, 2:1 (pendula II1–4 oscillate or rotate with the 
frequency of the excitation ½ ω), etc. One can identify six main regions, indicated from 1 to 6 in Fig. 2, in which 
the excited double pendulum is multistable. In region 1 three solutions exist: 1:1 rotations (above the green line), 
1:4 oscillations (between the dashed red lines) and 1:2 rotations (between solid black lines). Region 2 is character-
ized by the co-existence of four solutions: 1:1 rotations (above the green line), 1:4 oscillations (between the dashed 
red lines), 1:2 rotations (between solid black lines) and 3:6 rotations (between solid orange lines). Four solutions 
are stable also in region 3:1:1 rotations (above the green line), 1:6 oscillations (between the dashed black lines), 
1:2 rotations (between solid black lines), 1:3 rotations (between solid yellow lines). Three solutions: 1:1 rotations 
(above the green line), 1:6 oscillation (between dashed black lines), 1:2 rotation (between solid black lines) can be 
observed in region 4. Region 5 is another example of the co-existence of three solutions: 1:1 rotations (above the 
green line), 1:2 rotations (between solid black lines), 1:3 rotation (between solid yellow lines). Finally in region 6 
we observe four solutions: 1:1 rotations (above green line), 1:4 oscillations (between the dashed black lines), 3:6 
rotations (between solid orange lines).

In regions 1–6 each of four uncoupled double pendula can exhibit M (equal to 3 or 4) various independent 
dynamical responses, i.e., 1:1, 2:1 or 3:1 rotational and oscillatory solutions. The set of 4 pendula is characterized 
by M 4configurations. One can see that the number of configurations grows exponentially with the number of 
pendula (i.e., in the case of n pendula we have Mn configurations) so there is spatial chaos31 in an uncoupled 
system. For sufficiently small coupling one can observe multistable chimera-like states which persist over the wide 
range of system parameters and can be captured experimentally. These states coexist with various cases of com-
plete, phase and cluster synchronous states.

Experimentally observed multistable chimera-like states are illustrated in Fig. 3(a–f). Upper images present 
general view of the pendula’s configurations while lower plots show time series of the lower pendula bobs. The 

Figure 1.  (a) Model of a set of (N =​ 4) double pendula located at an oscillating platform, (b) geometry of i-th 
double pendulum.

Figure 2.  Regions of existence of different types of rotational or oscillatory responses of the uncoupled 
pendulum in the space of parameters A and ω. In regions 1–6 double pendulum is multi stable with co-
existing solutions of different frequencies. In these regions for α​ >​ 0 the multistable chimera-like states can be 
observed.
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figures present a kind of a stroboscope type images of the pendula motion in different cases. All experiments have 
been recorded using Vision Research Phantom v711 high speed camera. Typical recording speed was 1000 frames 
per second (fps) and for the purpose of a still photograph visualization a set of 5 of them every fifth frame: 
5 ×​ 0.001 =​ 0.005 seconds have been chosen. Then, the images were combined to a single image presenting all 
chosen images overlaid with the assumed transparency level. The wider area covered by the set of frozen images 
of each pendulum, the faster speed of its rotation or oscillation and vice verse. In Fig. 3(a–d) we show multistable 
states in which all the pendula rotate (A =​ 0.01[m], ω​ =​ 18π​ [rad/s]–region 5 of Fig. 2). In Fig. 3(a) pendula 1 and 
2 rotate with frequency ω1

3
 and pendula 3 and 4 with frequency ω.1

2
Pendula 3 and 4 are in antiphase to each 

Figure 3.  Experimentally observed multistable chimera-like states: (a–d) A =​ 0.01[m], ω​ =​ 18π​ [rad/s] (region 5 
of Fig. 2), (e,f) A =​ 0.005[m], ω​ =​ 10π​ [rad/s] (region 1 of Fig. 2); (a) pendula 1 and 2 rotate with frequency ω1

3
, 

pendula 3 and 4 with frequency ω1
2

, (b) pendula 1, 3 and 4 rotate with frequency ω1
2

 and pendulum 2 with 
frequency ω1

3
, (c) pendulum 1 rotates with frequency ω1

3
, pendula 2 and 3 with frequency ω and pendulum 4 

with frequency ω1
2

, (d) pendula 1, 2 and 4 rotate with frequency ω1
3

 and pendulum 3 with frequency ω, (e) 
pendula 1, 3 and 4 rotate with frequency ω1

2
, pendulum 2 oscillates with frequency ω1

4
, (f) pendula 1 and 4 rotate 

with frequency ω​, pendulum 2 rotates with frequency ω1
2

 and pendulum 3 oscillates with the frequency ω1
4

.
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other (see movie W1). The case in which pendula 1, 3 and 4 rotate with frequency ω1
2

and pendulum 2 with fre-
quency ω1

3
 is shown in Fig. 3(b). Pendula 1 and 4 are synchronized in phase and pendulum 3 is in antiphase to 

pendula 1 and 4 (see movie W2). Configuration of Fig. 3(c) presents the case when pendulum 1 rotates with a 
frequency ω1

3
, pendula 2 and 3 with frequency ω and pendulum 4 with frequency ω1

2
. Pendula 2 and 3 are syn-

chronized (see movie W3). Figure 3(d) shows the configuration in which pendula 1, 2 and 4 rotate with frequency 
ω1

3
 and pendulum 3 with frequency ω. Pendula 1 and 2 are synchronized in phase (see movie W4).
In Fig. 3(e,f) we observe multistable states in which the pendula show both rotational and oscillatory behavior 

(A =​ 0.005[m], ω​ =​ 10π​ [rad/s]–region 1 of Fig. 2). Figure 3(e) shows the chimera-like state in which pendula 1, 
3 and 4 rotate with frequency ω1

2
while pendulum 2 oscillates with frequency ω1

4
. Pendula 1 and 4 are synchro-

nized in phase (see movie W5). The chimera-like state shown in Fig. 3(f) is characterized by 3 rotating and one 
oscillating pendula. Pendula 1 and 4 rotate with the frequency ω​ and are synchronized in phase. Pendula 2 and 3 
respectively rotate with frequency ω1

2
 and oscillate with frequency ω1

4
 (see movie W6).

The presented multistable states coexist with various synchronous states. Movies W7–W9 present the case of 
the complete synchronization of all pendula in rotational motion (W7), the case when all pendula oscillate with 
frequency ω​ and pendula 2, 3, 4 are synchronized in phase and pendulum 1 is in antiphase to them (W8) and the 
case when all pendula oscillate with the frequency ω​ and pendula 1, 3 and 2, 4 create two clusters of phase syn-
chronized pendula respectively. These clusters are in antiphase to each other (W9).

In conclusion, we have constructed the simple experimental setup to explore the spatio-temporal dynamics of 
the small network of the locally coupled pendula. The nodes in the network are externally excited double pendula. 
Despite a small number of nodes, namely 4, we observe the formation of spatio-temporal patterns of multistable 
chimera-like states. This behavior is observed experimentally, confirmed in numerical simulations, persistent 
over a positive measure set of system parameters and seems to be characteristic for the small networks of coupled 
multistable general oscillators relevant to various real-world systems.

Methods
The dynamics of the system of coupled pendula shown in Fig. 1(a) is given by:
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where i =​ 1, 2, 3, 4.

Numerical simulations.  We used the following parameter values: J1 =​ 4.521 ×​ 10−3[kgm2], 
J2 =​ 2.908 ×​ 10−5[kgm2], m1 =​ 0.5562[kg], m2 =​ 0.0166[kg], ξ1 =​ 0.153[m], ξ2 =​ 0.096[m], ς1 =​ 0.180[m], 
η1 =​ 0.315[m], η2 =​ 0.145[m], ks =​ 6850[N/m] cc =​ 0.5 ×​ 10−4[Nms] and kc =​ 0.050[Nms]. The parameters values 
used in experiment have been independently measured.

Eqs (1) have been integrated by the 4th order Runge-Kutta method. Bifurcation curves in Fig. 2 have been 
calculated using path following method AUTO32.

Experimental observations.  In our experiments, the rig with four coupled double pendula has been 
mounted on the shaker LDS V780 Low Force Shaker (basic data are as follows: sine force peak 5120[N], max 
random force (rms) 4230[N], max acceleration sine peak gn =​ 111 g [m/s2], system velocity sine peak 1.9[m/s], 
displacement pk-pk gn =​ 25.4[mm], moving element mass 4.7[kg]). The shaker introduces practically kinematic 
periodic excitation ωA tcos , where A and ω are the amplitude and the frequency of the excitation, respectively. 
All experiments were recorded at motion videos taken by Vision Research Phantom v711 high speed camera. 
Typical recording speed used was 1000 frames per second (fps). Different random initial conditions have been 
given to each pendulum.
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