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: In 2012, Tetrodotoxin (TTX) was identified in mussels and linked to the presence of Prorocentrum

* minimum (P. minimum) in Greece. The connexion between TTX and P. minimum was further studied in

. this paper. First, the presence of TTX-producer bacteria, Vibrio and Pseudomonas spp, was confirmed in
Greek mussels. In addition these samples showed high activity as inhibitors of sodium currents (Iy,).
P. minimum was before associated with neurotoxic symptoms, however, the nature and structure
of toxins produced by this dinoflagellate remains unknown. Three P. minimum strains, ccmp1529,
ccmp2811 and ccmp2956, growing in different conditions of temperature, salinity and light were
used to study the production of toxic compounds. Electrophysiological assays showed no effect of

: ccmp2811 strain on ly,, while ccmp1529 and ccmp2956 strains were able to significantly reduce I, in

. the same way as TTX. In these samples two new compounds, m/z 265 and m/z 308, were identified and

. characterized by liquid chromatography tandem high-resolution mass spectrometry. Besides, two TTX-
related bacteria, Roseobacter and Vibrio sp, were observed. These results show for the first time that

¢ P. minimum produce TTX-like compounds with a similar ion pattern and C9-base to TTX analogues and

. with the same effect on Iy,

. Prorocentrum minimum (P. minimum) is a widely distributed neritic bloom-forming dinoflagellate first described
© by Pavillard in 1916. Since then, more than ten taxonomy synonyms have been used to describe the same micro-
organism. This controversy and confusion with names was related to the geographic area where it was isolated,
including tropical, subtropical and temperate climates'. Blooms can occur in a wide range of environmental
conditions since P. minimum has been described as eurythermal and euryhaline®.
: P. minimum is potentially harmful to humans through consumption of toxic seafood. Over the years several
. human intoxications have been associated with the presence of P. minimum blooms. This dinoflagellate was con-
. sidered responsible for more than 200 deaths in Japan, in 1942 and 1943, with symptoms such as liver injury,
haemorrhage, unconsciousness, coma, and death after 24-48 hours. The toxin described in those episodes was a
* hydrophilic compound named venerupin and the syndrome was called Venerupin Shellfish Poisoning (VSP)*-.
. At that time, P. minimum was considered the source of venerupin although no definitive links between dino-
. flagellate and toxin were reported. Later on P. minimum was involved in several episodes of human poisoning
. after shellfish consumption in Portugal (Obidos Lagoon). The symptoms were considered to be characteristic of
© paralytic shellfish poisoning (PSP)°. The definitive link between P. minimum and neurotoxic effects was estab-
- lished with the analysis of several axenic clones of P. minimum from French coastal samples. These dinoflagellates
: produced a water-soluble neurotoxic compound, different from PSP, which was able to rapidly kill mice after
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Figure 1. (A) Rarefaction curves for white tissue (WT) and TTX contaminated samples (1770/2012 and
1774/2012) samples showing the OTU based (97% 16S rRNA gene sequence similarity) number of observed
species as a function of number of sequences per sample. (B) Bootstrapped tree for hierarchical samples
clustering.

neurotoxic symptoms”®. This unknown compound was able to block sodium and calcium channels and was accu-
mulated by shellfish”. However, since some of the toxic episodes related to P. minimum were also associated with
the presence of other toxic microalgae such as Dinophysis spp., its toxicity was discussed'. This coexistence does
not eliminate the potential risk of P minimum blooms for human health, being evident that the reported toxicity
of this dinoflagellate was clone-related and also related to environmental conditions'. In this sense, although most
P. minimum clones were reported as non-toxic, and rare human toxicity episodes have been attributed to this
specie, it should be considered for risk assessment.

Tetrodotoxin (TTX) is one of the most important neurotoxins known to block sodium channels and thus it
inhibits the propagation of action potentials in muscle and nerve cells. The minimum lethal dose for TTX is 8 ug/Kg
and the median lethal dose is 10 ug/Kg’. Symptoms can appear between 10 and 45 minutes after exposure,
although depending of the amount of the toxin ingested some manifestations could appear 6 hours later. This
compound blocks site 1 of voltage dependent sodium channels'* and it has interesting pharmacological applica-
tions in the study of excitable membranes as well as therapeutic uses in treating migraines, addictions, or as an
anaesthetic agent for pain'’.

TTX has been described in different aquatic animals such as fish, arthropods, echinoderms, molluscs, worms,
newts, frogs or toads as well as several bacteria species and dinoflagellates'*2. However, the origin of TTX is still
unclear, although the presence of this toxin in such a diverse group of animals suggests that bacteria might be as
the primary source®. In this sense, TTX can be produced without bacteria, but the presence of microorganisms
could, in some way, simplify TTX biosynthesis'.

To date, few appearances of TTX in bivalve molluscs have been reported'*!. Recently, TTX has been detected
in mussels and Pacific oyster from the English coast (2013-2014)'. In addition in 2012, in Greece, during routine
controls of shellfish, an unexplained toxicity associated with neurological symptoms was observed in a series of
mouse bioassays (MBA). This atypical toxicity coincided with the absence of known dinoflagellates and other
toxins, while only P. minimum was present in seawater. After mass-spectrometry analysis, both TTX and TTX
analogues were confirmed"’. Therefore a potential TTX presence-dinoflagellate link was hypothesized. In this
context the aim of this work was to further study the relationship between TTX and P. minimum blooms in order
to identify and characterize the compounds produced by this dinoflagellate.

Results
To further study the occurrence and origin of TTXs in mussels collected in the unusual toxic episode in Greece, it
was evaluated the presence of bacteria as TTX producers as well as the effect on Na, channels.

Firstly, the presence of bacteria was checked in contaminated mussel-samples, 1770/2012 and 1774/2012,
from the Greek episode. Levels of 222.9 ng/Kg and 206.3 ug/Kg of TTXs respectively were reported when these
samples were previously analysed by mass spectrometry'”. Sequence reads were clustered at 97% identity resulting
in 297 unique Operational Taxonomic Units (OTUs). A rarefaction plot of observed bacterial species in control
(white non-contaminated tissue) and TTX-mussel samples showed higher species diversity in the uncontami-
nated material (Fig. 1A). Although high species diversity was achieved, uncontaminated sample was under repre-
sented when compared to TTX-mussel samples. Jackknifed hierarchical clustering by UPGMA (unweighted pair
group method with arithmetic mean) showed a high support for the depurated samples clustering separate from
the non-depurated one, while a lower support was observed for contaminated samples (Fig. 1B). In this way, the
identified OTUs corresponded to 9 bacterial phyla (Supplementary Table 2 and Sub-Table 2). Higher percent-
ages of proteobacterial OTUs, the phylum containing Pseudomonas, Pseudoalteromonas, and Vibrio, two known
TTX producers, were detected in TTX-contaminated mussels. However these genera were not represented in
the Proteobacteria of non-contaminated sample. To better identify Vibrio and Pseudomonas species, OTUs were
re-picked with 100% homology. When compared to the GreenGenes 16 S RNA database'®, several potential TTX
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Figure 2. Effect of mussel sample 1786/2012 over Iy, current activity. Automated patch clamp experiments
were carried out in hNav1.6 transfected cells. I, magnitude is expressed as percentage of basal current.

(A) Dose-response inhibition of serial dilutions of 1786/2012 mussel sample over Iy,. 0.4, 2 and 4 pl of extract
were added to 200 pl of extracellular solution. Significant differences (*)p < 0.05. (B) Dose-response inhibition
of TTX standard over Iy, with an IC,, 0f 0.43 to 1.2nM. A discontinuous line marks the 50% of sodium current
(A and B) and the corresponding TTX standard concentration (B).

producers were identified in both TTX-contaminated samples (Supplementary Table 3). The distribution of these
bacteria showed that in both samples Vibrio parahaemolyticus and Vibrio alginolyticus were the dominant species,
while Pseudomonas appeared at lower levels as well as other Vibrio species.

Next, to further support the existence of TTX in mussel extracts, the effect over Na, channels, the main cellular
target of TTX, was checked by patch clamp measurements in stable transfected hNa, 1.6 HEK cells'>?. Aliquots
of 2g of DG of sample 1786/2012 collected in Greece were extracted as previously described!”. As Fig. 2 shows,
serial dilutions of the TTX-positive mussel extract 1786/2012 were tested (0.4, 2 and 4 pl) and a dose response
effect was reported. At the highest concentration tested, an inhibition of 54.65 £ 14.08% versus control current
was observed (Fig. 2A). In the same cells, the control of TTX standard elicited a dose response sodium current
(In,) inhibition, IC5, 0.72nM (95% confidence interval 0.43 to 1.2nM) (Fig. 2B).

Although the source of TTXs in contaminated mussels seemed to be related to bacteria, the dinoflagellate P. minimum
was present in water in high abundance when toxic mussels were harvested, therefore the presence of toxins and
bacteria in this microalgae was studied. Three strains of P. minimum from different collection sites, ccmp1529
from Ecuador, temperature range 18 °C to 22°C, ccmp2811 from Sarasota, Florida (USA), temperature range
18°C to 22°C, and ccmp2956 from Johor Strait, between Singapore and Malaysia, temperature range 22 °C to
28°C, were cultured in L1 medium in different growth conditions, varying light intensity (785, 840 and 865),
salinity (ranging from 31%o to 37%o) and temperature (19 °C or 24 °C), with each condition being carried out in
triplicate. After 15 days of growth, cells were harvested and the extracts obtained dissolved in acetic acid 0.03 M
and analysed for the presence of active compounds with similar characteristics to TTXs. The same rate of growth
was obtained for ccmp1529 strain either at 19°C and 24 °C, slightly less growth was obtained when the ccmp2956
strain was grown at 19 °C compared to 24 °C and no growth was observed when the ccmp2811 strain was cultured
at 24°C. Therefore ccmp1529 and ccmp2956 strains were analysed both at 19°C and 24 °C, while only cultures
obtained at 19°C were analysed in the case of ccmp2811. No significant effect, in terms of growth, was observed
when light was modified and only ccmp2956 strain was able to grow at 37%o of salinity. Then, the effect of dino-
flagellate extracts on Iy, was checked. Electrophysiological recordings showed that while ccmp1529 extracts did
not produce any effect on I, when dinaflagellates were grown at 19 °C, the addition of serial dilutions of 24 °C
extract culture reveal a dose dependent current reduction with a maximal inhibition of 49.75 & 8.04% versus
control current (Fig. 3A). This effect was not dependent on light intensity. Likewise, the ccmp2956 strain cultured
at 19°C had no effect on Iy, but when it was grown at 24 °C and 37%o salinity, a maximal current inhibition of
47.65 £ 10.6% versus control was observed (Fig. 3B). When salinity was 31-33%o, Iy, inhibition was dependent
on light intensity, since no effect was observed with dinoflagellates cultured at 18 W/840, while 39.69 4 12.03%
inhibition was obtained at 18W/865. ccmp2811 extracts from cultures grown at 19 °C did not produce a signifi-
cant I, inhibition when consecutive dilutions were added (Fig. 3C). For all these assays TTX standard was used
as control of Iy, inhibition (Fig. 3D). Therefore, these results indicate the presence of some compound produced
by P. minimum with a similar effect than TTX on I,. The profile of compounds present in cultures grown at 19°C
or 24°C seems to be different, at least with regard to potency over Iy, inhibition.

Next, we proceeded to the identification of compounds produced by P. minimum cultures using mass spec-
trometry technology. The first screening of culture extracts was done by Multiple Reaction Monitoring (MRM)
mode, searching for the most common TTX analogues described in the literature (Supplementary Table 1). In
this way, 5 compounds with same product ions, but different retention times than TTXs standards were obtained,
m/z 320 > 302, m/z 304 > 162, m/z 302 > 162, m/z 290 > 272, m/z 272 > 254. Then, by operating in the Product
Ion Scan mode, the fragmentation pathway of these five compounds was checked following the pattern fragmen-
tation observed in TTX, 4,9-anhydroTTX and 11-deoxyTTX standards (Supplementary Figure 1B,C and D). That
is, for TTX (m/z 320) the ions m/z 302 [M + H-H,O] ", m/z 162 and m/z 178 (2-aminohydroxiquinazoline and
2-aminodihydroxyquinazoline, respectively). For 4,9-anhydroTTX (m/z 302) the ions m/z 284 [M + H-H,0]*,
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Figure 3. Effect of P. minimum extracts growing in different conditions over Iy, activity. Automated patch
clamp experiments were carried out in hNav1.6 transfected cells. I, magnitude is expressed as percentage of
basal current. (A) Effect of extracts from ccmp1529 strain cultured at 19 and 24 °C and different light exposures
over Iy,. (B) Effect of extracts from ccmp2956 strain cultured at 19 and 24 °C, two light exposures and two
different salinities over Iy,. (C) Effect of extracts from ccmp2811 strain cultured at 19°C over I, (D) TTX
dose-response inhibition of Iy,. (E and F) Representative current traces of Iy, in the presence of an extract
from ccmp1529 and TTX. Results are mean &= SEM of 3 experiments, each performed in duplicate. Significant
differences *p < 0.05, **p < 0.01.

m/z 162 and m/z 178. And in the case of 11-deoxyTTX (m/z 304) the ions m/z 286 [M+ H-H,0] ", m/z 162 and
m/z 176 The five compounds initially observed in P. minimum cultures did not follow this fragmentation path-
way (data not show), therefore these five compounds could not be identified as TTX analogues. However, since
P. minimum extracts had some TTX activity, mass spectrometry operating procedure was changed from Product
to Precursor Ion Scan Mode. Thus the search of compounds was addressed from the common product ion for all
TTX analogues, m/z 162, to precursor ions. In this way, operating in the Precursor Ion Scan mode, the extract
from ccmp2956 strain (24 °C and 37%o) with high inhibitory effect on Iy,, was checked. In this sample two pre-
cursor ions, m/z 265 and m/z 308, were observed (Fig. 4). Chromatograms obtained by Ultra performance Liquid
Chromatography tandem mass spectrometry (UPLC-MS/MS) show two peaks with retention times of 3.8 min
and 8 min respectively (Fig. 4A and C). The Product Ion Scan of these peaks shows for the parent peak m/z 265
[M+H]*, the ions m/z 247 corresponding to [M + H-H,O]*, m/z 178.9 and m/z 162, Fig. 4B, and in the case of
m/z 308 [M + H]* the ions m/z 290 corresponding to [M + H-H,0] ", m/z 162 and m/z 179.8 (Fig. 4D).
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Figure 4. Product Ion Scan of TTX analogues m/z 265 and m/z 308 in ccmp2956 strain extract. (A) Product
Ion Scan chromatogram obtained in positive mode of compound m/z 265. (B) Product Ion Scan chromatogram
obtained in positive mode of compound m/z 308. (C) Mass spectrum obtained in Product Ion Scan of
compound m/z 265. (D) Mass spectrum obtained in Product Ion Scan of compound m/z 308.

MS! C, H;N;04 320.1088 320.1099 1.1 3.44
MS§? C,H;5N;0, 302.0983 302.0984 0.1 0.33
MS? C, H3N;04 284.0877 284.0923 4.6 16.19
TTX C,,H;;N;0; 266.0771 266.0828 5.7 2142
C,oH}3N;05 256.0928 256.0957 2.9 11.32
CgH;N,0, 178.0611 178.0621 1.0 5.62
CeH,N;0 162.0662 162.0683 2.1 12.96
MS! CyH,(N,O; 265.1506 265.1543 3.7 13.95
M§? CyH;sN,O, 247.1401 247.1434 33 13.35
m/z 265 CyH,(N,O 191.0927 191.1192 26.5 138.67
CoH N, 179.1291 179.1199 —9.2 —51.36
CyH, N, 162.1026 162.0927 -9.9 —61.08
MS! C,,H,,N;0, 308.1452 308.1183 —26.9 —87.30
MS§? C,1HsN;O¢ 290.1347 290.1317 —3.0 —10.34
m/z 308
CyH ;N0 180.1131 180.0999 —13.2 —73.29
CoH| N, 162.1026 162.0842 —184 —113.52

Table 1. MS" Data for TTX standard and compounds m/z 308 and m/z 265.

To characterize and predict the molecular formula of these two new compounds, m/z 308 and m/z 265, and
their product-ions, a high-resolution mass spectrometry Ion Trap-Time of Flight (IT-TOF) was used. This tech-
nology allows us to predict the formula using ad oc predictor software based on the accurate mass data recorded.
TTX standard was employed as control to predict the molecular formula of precursor and ion products. In this
way, elemental composition, accurately measured mass/charge ratio, theoretical value m/z, and mass errors
expressed in ppm and mDa for TTX, m/z 308 and m/z 265 were obtained after MS" spectra. These data are sum-
marized in Table 1 and shown in Figs 5, 6 and 7. As Fig. 5 shows, TTX (m/z 320.1099, [C,,H,N;0,+ H]") ion
was observed in MS! spectrum, then in MS? spectrum ions [M + H-H,0] " at m/z 302.0984 and [M + H-2H,O]*
at m/z 284.0899 were obtained. The other characteristic ions, [M + H-C;H,,0,]" at m/z 162.0683 and
[M+ H-C;H,(O¢] " at m/z 178.0621 and the losses 2 and 3 H,O molecules at m/z 284.0923 and m/z 266.0828
respectively and [M + H-CH,O;]™ at m/z 256.0957 were observed at MS® spectrum. The errors between these
measured ion products and the theoretical values range from 0.1-5.7 mDa, Table 1, indicating a good accuracy
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Figure 5. Accurate MS!~® spectra of TTX standard in positive mode (m/z 320 and molecular formula
C,H,;N;04). (A) MS! range m/z 150- 50. (B) MS? of m/z 320. (C) MS® of m/z 302 with the predicted structures
of the fragments 256, 178 and 162.

between the predicted molecular formula either for TTX or its ion products. Similarly, m/z 265 and m/z 308
compounds were analysed and their MS" product-ions spectra are shown in Figs 6 and 7. The ion products of
265-compound (m/z 265.1543, [CoH,,N,O; + H] ") observed in MS? spectrum were: [M + H-H,O] " ion at m/z
247.1434, [M + H-H,,0,] " ion at m/z 191.1192, [M + H-H,O;] " ion at m/z 179.1199, and [M + H-H,NO,]*
ion at m/z 162.0927 (Fig. 6). For the 308-compound (m/z 308.1183, [C,;H,,N;0,+ H] "), the ion products
observed in MS? spectrum were: [M + H-H,O] " ion at m/z 290.1317, [M + H-C,HO4] " ion at m/z 180.0999
and [M +H-C,H,,0,]" ion at m/z 162.0842 (Fig. 7). Since these compounds are present in low concentration in
P minimum extracts only MS? spectra were obtained. The errors between these measured product-ions and the
theoretical values calculated are shown in Table 1. In this case the higher range observed was probably related to
the low concentration. In addition the predicted structure proposed for each compound based on the high reso-
lution masses of fragment ions are shown in Figs 5, 6 and 7.

Next, the presence of this characterized compounds, m/z 308 and m/z 265, was checked in all P. minimum
extracts, using [M + H-H,O] " ions for identification and m/z 162 ions for quantification. Since no standards of
these compounds were available, results were obtained as peak area and also as ng of TTX equivalent/mL (see
Supplementary Table 4). Both compounds were present in all P minimum extracts. While the amount of com-
pound 308 did not show a direct relation with the effect on Iy, the extracts with higher amount of compound 265
produced higher I, inhibition.

Finally, the presence of TTX-producing bacteria was checked in P. minimum cultures. For this experiment,
ccmp1529 strain was cultured both at 19 and 24 °C, ccmp2956 strain was cultured at 19°C, and ccmp2811 cultures
were obtained at 24°C all 31-33%o salinity. Firstly, we checked for the presence of bacteria described in contam-
inated mussels, Vibrio and Pseudomonas spp. P. minimum cultures were analysed by PCR using specific primers
for Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae. After PCR amplification,
V. alginolyticus was observed in ccmp2811 and ccmp1529 cultures, while none were detected in sample ccmp2956
(Supplementary Figure 2). When the same assay was performed using specific primers for Pseudomonas, no pos-
itive amplification product was detected (results not shown). In addition, P. minimum cultures were analysed for
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Figure 6. Accurate MS!-2 spectra of compound m/z 265 and molecular formula C,H,,N,O;. (A) MS! range
m/z 150- 500. (B) MS? of m/z 265 with the proposed structures of fragments 191, 179 and 162. (C) Proposed
structure for m/z 265 (NH, group can be in different positions).

the presence of other marine bacteria, resulting in the identification of several bacteria from «-Proteobacterium
class, including Roseobacter and Flavobacteria (Supplementary Figure 3 and Table 5).

Discussion

The presence of TTX in mussels is an important issue from both a toxicological and human-health risk stand-
point. Although this compound is a regulated toxin in Europe and around the world, it is not included in regular
monitoring programs because the consumption of species that usually accumulate the toxin is prohibited. Before
2014 only one highly toxic TTX-accumulation in scallops from Japan had been reported'!. However, from 2014
to date three reports have identified the presence of TTX in shellfish and it was also detected in several edible
gastropods!®-172223, Therefore, the presence of TTXs in shellfish as well as the source of these toxins should be
taken into account, since TTX-contaminated samples will not be detected by official analytical methods, such as
LC-MS/MS or HLPC with fluorescence detection, because T'TX is not required to be included in these methods.
In addition, the MBA, that could detect all toxins, is no longer used in Europe as an official assay. In this paper
the presence of TTX in contaminated samples collected in Greece was confirmed through the effect on Iy,. In
addition, V. parahaemolyticus and V. alginolyticus species, two known TTX-producers, were identified in these
samples'!. Besides this, several species from Pseudomonas genus were also observed. This genus had previously
been reported in TTX production, although the species were not specified*?*. From our data, both Vibrio and
Pseudomonas sp. could be detected in TTX-contaminated mussel samples. In the case of Pseudomonas, several
species are confirmed by 99% sequence homology and for the first time they can be clearly linked to TTX and
contaminated mussels'’.

Therefore, the connection between shellfish, bacteria and TTX in the toxic episode earlier described in Greece
was clear, however, a P. minimum bloom was occurring at the same time and it could also be connected. Since the
toxin production by this dinoflagellate has not to date been clarified, we studied its growth and toxicity in different
conditions. In this way, depending on the salinity, temperature and light, P. minimum strains produce some com-
pounds with an inhibitory effect on Iy,, the same as TTX. The inhibitory effect on transfected hNa, 1.6 HEK cells
was higher when P. minimum strains from Ecuador and Malaysia were grown at 24 °C, while the Florida strain
was not able to grow at this temperature. In the Malaysia strain the effect was also dependent of light and salin-
ity conditions. These results confirm previous data where a water-soluble component produced by P. minimum
was able to block sodium channels”. The variations of P. minimum toxicity were previously linked to the clone
studied and to environmental circumstances®®. Our results also confirm these hypotheses, since depending on the
strain and on the growth conditions the effect on Iy, is different, as well as the toxin production.

From electrophysiological experiments with P minimum extracts, the presence of some active compound
produced by dinoflagellates was evident. To determine its structure, UPLC-MS/MS technology with Electrospray
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Figure 7. Accurate MS!-2 spectra of compound m/z 308 and molecular formula C,;H,,N;0,. (A) MS!
range m/z 150- 500. (B) MS? of m/z 308 with the proposed structures of fragments 180 and 162. (C) Proposed
structure for m/z 308.

Ionization (ESI) source was employed to follow the fragmentation pathway of TTX and analogues earlier
described?"?. In this case a column for Hydrophilic Interaction Chromatography (HILIC) with polar analytes
was used and 5 compounds with apparently the same product ions but different retention times to TTX and
analogues were obtained??*?’. However, these compounds did not follow the characteristic fragmentation path-
way of TTXs. TTX and analogues follow the same pattern, first dehydrated ions by losing a molecule of water
[M + H-H,0], and sometimes a second one [M + H-2H,0], and then the m/z 162 and m/z 178 or 176 ion prod-
ucts. These conditions are deemed necessary to affirm that the compounds are TTX analogues®”?. Therefore,
P. minimum extracts were checked for ion precursors of the common ion product for all TTX analogues, m/z
162, and two peaks m/z 265 and 308 were obtained. To determine its structure, high-resolution UPLC-IT-TOF
technology was performed using TTX as model. Based on the predicted elemental composition and the structure
of a parent compound, the structures of product ions can be obtained with a high degree of confidence?"**-32,
As mentioned, it is well known that TTX can easily lose a molecule of water (—18 Da), yielding the abundant
ion m/z 302. Taking into account the structure for the TTX, the loss of water can occur in different carbons but
it is considered that the easiest loss is in C42!. This fragmentation was confirmed with a MS® spectrum. In this
spectrum, the most intense product ions were m/z 284.0877, 266.0828, 256.0957, 178.0621 and 162.0683. The
product ions m/z 284.0877, [C,;H,3N;0,+ H] T, and 266.0828, [C,;H,;N;0;+ H] ", were formed by elimina-
tion of one (—18 Da) and two molecules of water (—36 Da), respectively. The next ion product, m/z 256.0957,
[C,oH,3N;0;5 + H]*, was formed by the elimination of CO (—28 Da) from m/z 284. Finally, the two last ions, m/z
178.0621, [CsH;N;0, + H] ™, and 162.0683, [CsHgN;O + H] ™, were formed by the elimination of C,HsO5 (—78
Da) and C,H4O,, (—94 Da), respectively, from m/z 284. According to the ESI-MS" results for #/z 265 and 308,
these two compounds had similar fragmentation behaviour. Due to the small amount of compounds present in
samples comparing to the TTX amount used for these experiments (2000 ng/mL), only MS? could be performed
and the signal intensity obtained in these spectra was low. Compound m/z 265, [CoH,,N,O5 + H] ™, loses a mol-
ecule of water (—18 Da) giving rise to ion m/z 247.1434, [CoH sN,O, + H]". The most intense product ions
in M$? spectra for this compound were m/z 191.1192, 179.1199 and 162.0927. The product ion m/z 191.1192,
[CoH,(N,O + H] ", was formed by elimination of H,,0, (—74 Da) and m/z 179.1199, [C,H,,N,+ H] ", and m/z
162.0927, [CoH, N3+ H] " by elimination of 86 and 104 Da respectively. Compound m/z 308 [C,,H,,N;0, +H]*
loses a molecule of water, m/z 290.1317, [C,;H,(N;04+ H]*. Besides, m/z 180.0999, [CoH;N;0 + H]*, and m/z
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162.0842, [CoH,N; + H] ", are also obtained by elimination of C,HgO4 and of C,H,,0; respectively. The ion m/z
162.0662 identified, as product ion of TTX is different from m/z 162.1026 identified as product ion m/z 265 and
m/z 308. In the first case it is a C8 molecule while in the second it is a C9. These structures and molecular formula
were also proposed as fragment ions of 5,6,11-trideoxyTTX?!. In addition, a similar molecule C;H,N;0,, molec-
ular weight 191.1, is produced after strong base treatment of TTX'. When the errors between theoretical and
experimental data are compared some differences are observed. In the case of TTX, both precursor and product
ions have a narrow mass difference (0.1-5.7 mDa). In the case of compound m/z 265, mass differences for precur-
sor and 3 of 4 product ions are within the range (3.7-9.9 mDa). While in the case of compound m/z 308, due to
the low amount, the mass differences are wider (3-26.9 mDa). Therefore the increase in error should be related to
the decrease in the amount of compound used. In addition the sample were not purified, and some matrix effect
is also present. However, the errors observed do not invalidate these results since the fragmentation pattern of the
TTX analogues observed show the loses of water (—18 Da), m/z 162 and m/z 179-180. Therefore, m/z 265 and
308 compounds could be precursors, maybe important molecules for later TTXs synthesis. In this regard, bacteria
associated with TTX production, Roseobacter genus and V. alginolyticus specie, have also previously been identi-
fied in P. minimum cultures'’. So far, the biosynthetic pathway in organisms that produce TTX is not known and
some TTX analogues have been proposed as intermediates of TTX in microorganisms®'. Therefore, compounds
m/z 308 and m/z 265 identified in P. minimum cultures are TTX analogues produced in or by the dinoflagellate,
with the same activity on Iy, as TTX. These molecules could be TTX precursors in mussels.

In terms of activity it seems that the effect on Na, channels is directly related to m/z 265 presence. However,
the quantification of both molecules was done with TTX standard and can be not accurate. In addition, as hap-
pens with other TTX analogues, the effect on Iy, can be different?2. In this sense, it has been described that the
hydroxyl group at C6 and a CH,OH group in the same carbon, are necessary for TTX binding to Na, channels®.
These groups are also present in compounds m/z 308 and m/z 265. It is important to emphasize that the presence
and above all the position of CH,OH group is important for TTX-Na, channels binding, and the compounds
reported in this work have the same group. Thus, although when compared to TTX structure, some groups are
missing, these molecules show inhibition of I, since the C9 base of TTX is maintained. This structure is common
to all TTX active analogues®'. In this sense the C9 base of TTX is often used to determine the total amount of TTX
analogues in samples'>1. However, the affinity and toxicity of analogues should be different?>*,

A symbiosis between bacteria and dinoflagellates has been often proposed, however little is known about this
phenomenon. Sometimes the bacteria induce death of the algae, while in other situations it provides essential
vitamins for microalgae. This is the case for Roseobacter sp and P minimum cultures, which the symbiotic associa-
tion increases the production of B1 and B12 vitamins essential for the dinoflagellate®*¢. Roseobacter sp have been
associated with the production of TTX in the copepod Pseudocaligus fugu®. In this case, m/z 320 and m/z 302
ions were identified as TTX and anhydroTTX in Roseobacter sp. cultures. In our experiments both ions (1/z 320
and m/z 302) and other fragment ions were also detected, however since they did not follow the TTX characteris-
tic fragmentation pathway they were not identified as TTXs. As it was reported before, TTX and analogues have
been detected in many different animals and environments, in addition considerable differences were found in
the analogues identified in pufferfish (TTX derivatives) and amphibians (chiquiritoxin)?"*. It has been suggested
that this wide range of compounds identified is probably due to the different biosynthesis or metabolism of TTX
between animals®. Therefore, our results point to compounds 307 (C,;H,;N;0;) and 264 (C,H,,N,Os) as other
TTX analogues produced by P. minimum associated with bacteria (Roseobacter and Vibrio sp). This symbiotic
production may explain why the strain is not always toxic. As far as we know, this is the first time that the toxic
compounds produce by P. minimum have been identified and related to symbiotic bacteria. The structures pro-
posed for the C9 base in these two compounds are shown in Figs 6C and 7C. In the case of m/z 265, the position of
the NH, group is not defined. For compound m/z 308 two structures could be proposed because the double bond
can be located in several positions. To finally clarify this, the structural NMR determination and crystallographic
analysis should be performed, although this would require a massive scaling of cultures to obtain enough pure
compound. A consequence of TTX being produced by bacteria in algae is that this would potentially be highly
influenced by environmental conditions, hence opening a justification as to why climate change provide a link to
the recent increase of TTX presence in previously unreported areas.

Methods
Chemicals and Solutions. TTX certified standard was purchased from Laboratorios CIFGA S.A. (Lugo,
Spain). 0.5mL of solution contains 80.7 + 6.6 umol TTX/Kg and 9.9 + 1.1 pmol 4,9-anhTTX/Kg.

Acetonitrile and methanol were obtained from Panreac (Barcelona, Spain). All solvents were HPLC or analyt-
ical grade and the water was obtained from a water purification system (Milli-Q, Millipore, Spain). Formic acid
was purchased from Merck (Darmstadt, Germany). Ammonium formate was from Fluka (Sigma-Aldrich, Spain).
Other reagents were from Sigma (Sigma-Aldrich, Spain).

Plastic tissue cultures dishes were purchased from Falcon (Madrid, Spain). Fetal calf serum, Dulbecco’s modified
Eagle medium/F12 nutrient mixture (DMED/F12), Glutamax, Minimum essential medium, non essential amino
acids (MEM NEAA) and G418 were purchased from Gibco (Glasgow, UK). DetachinTM was purchased from
Genlantis (USA).

Mussel samples treatment. Aliquots of 2 g of DG (digestive glands) of sample 1786/2012 collected in
Greece were extracted as previously described'’. The extract obtained was used for patch clamp recordings.

For DNA extraction DG of samples 1770/2012 and 1774/2012", and one white sample (WT) (not toxic) were
separated from mussels and stored at —80 °C until processed. At least 5 DG from each sample were mechanically
homogenized, and DNA was extracted using the DNA extraction kit NucleoSpin Tissue DNA, RNA and protein
purification kit (Macherey Nagel, forensic quality certified free of detectable DNA). The bacterial DNA extraction
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protocol was used, following the manufacturer instructions. After purification DNA concentration was deter-
mined with a NanoDrop (Thermo Scientific). To study bacteria presence, 16s DNA was amplified, sequenced and
analysed (See Supplementary Information).

Automated Patch clamp electrophysiological recordings. For Na current measurements HEK-293
cells stably transfected with the Na channel hNa,1.6 were used?**°-*2, This cell line was kindly provided by Dr
Andrew Powell (GlaxoSmithKline R&D, Stevenage, UK). Cells were cultured in DMEM/F12 medium supple-
mented with 10% of fetal bovine serum, Glutamax and MEM NEAA (1% w/v). G418 was freshly added at a final
concentration of 0.4 mg/ml in each cell passage. Cells were incubated in a humidified 5% CO,/95% air atmos-
phere at 37°C until 80% of confluence. Then, cells were incubated at 30 °C for 24-48 h before electrophysiological
measurements. Cells were split twice per week.

All the measurements were recorded in whole-cell patch clamp configuration using an IonFlux 16 system
(Fluxion, California, USA) and the corresponding Ionflux 16 software for cell capture, seal formation, whole cell
obtaining, data acquisition and analysis. After incubation at 30 °C for 24-48h, cells were washed twice with Ca?"
and Mg?" free phosphate buffered saline (PBS) and harvested with 5ml of Detachin™ solution. Detached cells were
resuspended in extracellular solution containing (mM): 2 CaCl,, 1 MgCl,, 100 Hepes, 4 KCI, 145 NaCl, 10 TEA-CI
and 10 Glucose. pH 7.4 and 320 mOsm. Electrophysiological recordings were carried out at room temperature
(£22°C) in a 96-well IonFlux microfluidic plate®.

In. (Na current) was evoked by depolarizing to —10mV for 50 ms after a 100 ms step to —120mV from
—90mV holding potential (V}). The intracellular solution composition for Iy, recordings was (in mM): 100 CsE,
45 CsCl, 10 Hepes, 5 NaCl, 5 EGTA corrected to pH 7.1 using CsOH. The contaminating effects of resistance and
capacitance currents were compensated electronically by the software. Leak resistance is measured by introducing
ashort 20mV pulse at the beginning of each sweep and measuring the current difference**. A sampling frequency
of 10kHz was used.

P. minimum cultures. Three strains of P. minimum, from the National Center for Marine Algae and
Microbiota, Bigelow (Maine, USA) ccmp1529, ccmp2811 and ccmp2956 were incubated in L1 medium with
salinity of 31-33 and 37%,. The salinity was adjusted to these proportions by the addition of freshwater removing
chlorine by aeration. The three strains were incubated at 19 °C with 16:8 h light-dark photoperiod or 24 °C with
14:10h light-dark photoperiod and different light properties (18 W/765, 18 W/840 and 18 W/865). ccmp2811
only properly grew at 19°C. The cells were counted using an Utermo6hl camera. After 15 days, the cells were har-
vested by filtration and extracted with methanol. The extracts were always adjusted to 7 x 107 cells/mL. Methanol
extracts were vacuum dried and dissolved in acetic acid 0.03 M for further electrophysiological or spectrometry
purposes. For bacteria identification, P. minimum cultures were harvested after 15 days growth, filtered and frozen
at —80 °C until use (see bellow).

L1 medium properties: To 1L of sterilized seawater was added: 0.075 g NaNO;, 0.00565 g, NaH,PO,. 2H,0,
1.0mL of trace elements stock solution (1) and 1.0 mL of vitamin mix stock solution (2). (1) was made by adding
(per 1L): FeCl,-6H,0 (3.15g), Na,EDTA-2H,0 (4.36g), CuSO,-5H,0 (1 x 108 M), Na,M00,2H,0 (9 x 10~
M), ZnSO,-7H,0 (8 x 10~* M), CoCl,-6H,0 (5 x 10~ M), MnCL-4H,O (9 x 10-7 M), H,SeO; (1 x 10~ M),
Na,VO, (1 x 1078 M), K,CrO, (1 x 1072 M). (2) was made by adding (per 1L): Cyanocobalamin (0.0005 g),
Thiamine HCI (0.1 g), Biotin (0.0005g).

UPLC Conditions. Chromatographic separation was carried out using both a 1290Infinity ultra-high-
performance liquid chromatography system coupled to a 6460 Triple Quadrupole mass spectrometer (Agilent
Technologies, Waldbronn, Germany) and from Shimadzu (Kyoto, Japan), two pumps (LC-30AD), autoinjector
(SIL-10AC) with refrigerated rack, degasser (DGU-20A), column oven (CTO-10AS) and a system controller
(SCL-10AVP) coupled to IT-TOF. The toxins were separated using a column ACQUITY UPLC BEH Amide
(2.1 X 100 mm, 1.7 pm, Waters) at 35°C. Mobile phase A was 100% water with 10 mM formic acid and 10 mM
ammonium formate. Mobile phase B was acetonitrile-water (95:5), containing 5mM formic acid and 2mM
ammonium formate. The gradient program with a flow rate of 0.4 mL/min was started with 100% B and then a
linear gradient to 65% B in 7 minutes. After an isocratic hold time linear of 2 minutes at 65% B and return to the
starting conditions of 100% B in 0.5 minutes. Finally, 100% B was kept for 3.5 minutes before the next injection.
The injection volume was 5pL.

MS detection. MS detection was performed using an Agilent G6460C Triple Quadrupole mass spectrometer
equipped with an Agilent Jet Stream ESI source (Agilent Technologies, Waldbronn, Germany) and an IT-TOF-MS
system with an electrospray ionization (ESI) interface (Shimadzu, Kyoto, Japan). The nitrogen generator is a
Nitrocraft NCLC/MC from Air Liquid (Spain).

Agilent source conditions were optimized to achieve the best sensitivity for all compounds: drying gas tem-
perature of 250 °C and flow of 5L/min, nebulizer gas pressure of 55 psi (Nitrocraft NCLC/MS from Air Liquid),
sheath gas temperature of 400 °C and flow of 12 L/min. The capillary voltage was set to 3000V in positive mode
with a nozzle voltage of 0 V. The fragmentor was 152 and the cell accelerator voltage was 2 for each toxin in this
method.

IT-TOF-MS source conditions were nebulizing gas flow, 1.5L/min, heat block temperature and CDL temper-
ature, 200 °C and detector voltage, 1.65kV.

MS/MS analysis. Initial simple analysis was done in MRM mode. The mass spectrometer was operated in
positive mode and the collision energy optimized using MassHunter Optimizer software (Supplementary Table 1).
Two ions product were analysed per compound, one for quantification and another for confirmation.
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Mass spectrum analysis. To confirm and identify TTX analogues the fragmentation pathway of each
molecule was used. The mass spectrometer was operated in the Product Ion Scan positive mode for each TTX
analogue with scan range from 50 to 350 m/z, scan time 1120 msec and collision energy from 20 to 50 eV. Three
characteristic ions were always formed [M + H-H,O]*, m/z 162 and m/z 178 (or 176) and sometimes also
[M +H-2H,0] 21262 To confirm the presence of TTX analogues, the Precursor Ion Scan of m/z 162 product
ion was checked with scan range from 50 to 450 m/z, scan time 40 msec and collision energy from 20 to 50eV.

IT-TOF-MS analysis. The UPLC from Shimadzu (Kyoto, Japan) mentioned above was connected with an
Ion Trap-Time of Flight (IT-TOF) mass spectrometer from Shimadzu. The molecules were analysed using an
ion accumulation time of 10 msec and the collision energy for MS™ was adjusted to 50% in the analysis and the
isolation width of precursor ions was 3.0Th. For full-scan MS analyses, the spectra were recorded in the range of
m/z 150-500. Data-dependent acquisition was set such that the most abundant ions in full-scan MS would trig-
ger tandem mass spectrometry (MS", n=2-3). Data were acquired and processed by LC/MS solution software
including a formula predictor to calculate elemental compositions.

Formula assignments.  Accurate masses of fragment ions were processed using the Lab Solution software
supplied with the instrument. Any mass corresponding to the formula predictor also calculated particular com-
positions. To assign the elemental composition of fragment ions, the error ranges were set less than 1 Da as a
limit to the calculation of possible elemental compositions using the formula predictor. The other conditions for
calculating elemental compositions that were taken into account were the upper limits on the number of C, H, O,
N atoms, C/H ratios and the range of double-bond-equivalent (DBE).
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