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. just as keywords in literary texts. Therefore, some of the methods for ranking words in texts can also
. be used to compare different DNA sub-sequences. In analogy with the literary texts, here we claim
that the distribution of distances between the successive sub-sequences (words) is g-exponential
which is the distribution function in non-extensive statistical mechanics. Thus the g-parameter can
be used as a measure of words clustering levels. Here, we analyzed the distribution of distances
between consecutive occurrences of 16 possible dinucleotides in human chromosomes to obtain their
corresponding g-parameters. We found that CG as a biologically important two-letter word concerning
its methylation, has the highest clustering level. This finding shows the predicting ability of the method
in biology. We also proposed that chromosome 18 with the largest value of g-parameter for promoters
of genes is more sensitive to dietary and lifestyle. We extended our study to compare the genome of
some selected organisms and concluded that the clustering level of CGs increases in higher evolutionary
organisms compared to lower ones.

DNA molecules as ordered strings of genetic codes including Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T) contain all information required for an organism to retain its life and produce next generation.
Cytosines can be epigenomically modified to methylcytosines by de novo and maintenance DNA methyltrans-
ferases. C5-cytosine methylation occurs predominantly in the CpG dinucleotide context.

DNA sequences as one-dimensional arrays of four nucleotides (A, C, T and G) can be considered as texts so
that they can be analyzed from a linguistic point of view to discover their different linguistic features. It is believed
that there is a meaningful relation between linguistic interpretation of sub-sequences and their biological signif-
icances?. Here, the important matter is how to define the alphabets and words, for example nucleotides may be
assumed as letters and sequences of # consecutive nucleuotides (n-tuples) as words. Some genome elements like
exons, introns and others can also play the role of words.

There are two main approaches in the linguistic analysis of text. The first one considers a given text as a whole
and attributes a quantitative measure to it. The Zipf’s, Heaps’ and Menzerath-Altmann’s laws are examples of
such an approach. The second approach looks at the details of the text and finds the relation between parts of the
text, namely words. The keyword detection methods fall into this category. DNA sequences have been analyzed
by both approaches®. If we provide a list of distinct words in a text (or corpus) and sort the words according to
their frequency from the most frequent word in the first rank to the least one in the last rank, according to Zipf,
there is a power law relationship between frequencies and ranks’. Mantegna et al. studied Zipf’s law for coding
and non-coding regions and found that non-coding regions behave more closely to natural languages than coding
regions’. They extended these studies in ref. 4 and compared the statistical properties of coding and non-coding
regions by means of statistical linguistics. They reported that the n-tuple Zipf’s plot of non-coding DNA has
a power regression in a wide range of ranks; while, it is logarithmic for coding regions. Heaps’ law concerns
about the number of distinct words in a given text. Clearly by proceeding through the text from the beginning,
the number of it’s distinct words grows. Therefore a power law relation exists between the size of the text part
and the number of distinct words therein®. It was shown that the Heaps’ law should be modified for coding
regions of DNA. It was also understood that DNA has a revealed difference with random sequences’. A kind of
self-similarity is discovered in texts according to Menzerath- Altmann’s law'® which states that the average size of
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the text’s components tends to decrease as the number of the components increases. It is meaningful in different
levels of texts including syllabus-letter, word-syllabus and sentence-word’. For instance, in word-syllabus level it
means that the longer a word, the shorter the syllabuses. In the context of genome, this law in chromosome-based
genome can be interpreted as species with more chromosomes tend to have less average chromosome size'®. In
ref. 11 this law was applied in gene-exon-based level and it has been shown that the number of exons in a gene
increases as the mean size of exons decreases.

In literary texts, keywords are more correlated and clustered than common words'2. Similarly, functional DNA
sub-sequences form clusters. Some genome elements like genes, Transcription Factor Binding Sites (TFBSs) and
CpG islands are shown to be clustered through the genome and are not randomly distributed'*-'. Hence, the clus-
tering level can be regarded as a measure to rank the biological sequence-based words according to their impor-
tance on the context of DNA. Accordingly, finding an appropriate algorithm is critical for detecting clustering of
DNA words. Hackenberg et al. used fluctuations of distances between occurrences of each word to calculate the
clustering level of each word on the DNA sequences of chromosomes. They observed a correlation between DNA
keyword clustering and the enrichment of the corresponding words in functional genome elements’®. In order to
predict biological significant words, an algorithm was also introduced in ref. 17 to detect clusters of DNA words
using their distance distributions; however the expected values by the method do not satisfactorily comply with
the observed data. Provata et al. used fractal methods for comparing fractal dimensions of coding/non-coding
regions of higher and lower eukaryotes'®. Najafi and Darooneh showed that this finding may be interpreted as a
method for ranking words in a text. They detected that the pattern of a word type locations in a text is a fractal;
therefore, introduced degree of fractality as an index to rank the importance and complexity of words'. Statistical
mechanics also appears as an appropriate tool in linguistic studies®. Non-extensive statistical mechanics as a gen-
eralization of Boltzman Gibbs (BG) statistical mechanics is successfully used to describe a wide range of complex
systems such as natural and social systems?!. The Tsallis entropy is the key concept in non-extensive statistical
mechanics which can explain several features of complex systems and the distribution function is g-exponential
which is a generalization of the ordinary exponential®. So g-parameter as the nonextensivity parameter shows
the nonextensivity level of the system and has been applied effectively in various fields of study such as physics,
chemistry, biology, economy and linguistics?. In this study we proposed and applied a method for finding the
important sub-sequences in DNA. This method was firstly introduced by Mehri and Darooneh to extract the
important words in a text using non-extensive statistical mechanics®. It is noticeable that in random distribution
of words, the distribution function of distances between successive appearance of a word is exponential, while
in the meaningful texts the words form clusters and their distribution functions are no longer exponential but
g-exponential. Hence, the g-exponential as a generalization of the ordinary exponential is a suitable candidate
for describing the clustering of words. In current work, we find the g parameter for all dinucleotides in different
chromosomes of humans and predict their potential susceptibility for epigenetic modifications. As we find here,
CG appears to be more clustered in genome elements of all organisms. Therefore it can be used for classification
of organisms from evolutionary perspective.

Methods
Distribution of sub-sequences. The occurrence probability of a specific nucleotide (letter) in a DNA
sequence is

_ N
TN (1)

where X indicates one of the nucleotides (A, C, T and G). Ny is the total number of such nucleotide in the
sequence and N is the length of the sequence (the total number of nucleotides) in terms of base pairs (bp). A given
sub-sequence (word) has the generic form as S: X, X,...X; where X; is the nucleotide (letter) at the i-th position
and L is the word length. In the pure random sequence, there is no correlation between occurrences of letters and
they are completely independent. Therefore. the occurrence probability of word S is just the multiplication of it’s
letters probabilities.

Wx

Ws = Wx,Wx,Wx, (2)
The probability of finding two consecutive occurrences of a given word at the distance d in terms of bp is,

L+d—1

pg(d) ~ wy(1l — wy) (3)
By imposing the normalization condition, we find,
pe(d) = wg(1 — wy)”. )

Equation 4 is the geometric distribution function for a discrete random variable. The geometric distribution is
the only memory less discrete distribution. In practice, it is convenient to use the cumulative distribution function
(cdf) which is defined by,

Pl = Sl — w).
(x) dz::x“)s( U-’s) )

By using the geometric series formula, we obtain,
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Figure 1. g-exponential function for three different values of g, ordinary exponential function or g=1
(solid line), g =2 (dashed line) and q =3 (dotted line).

P(x) = (1 — wg)* = e %. (6)

Where x,=1/|In(1 — ws)| and has a large value because ws<< 1. Thus, for purely random sequences, the cdf of the
inter-word distances has exponential form.

As a matter of fact, the nucleotides are not randomly distributed and their occurrence probabilities are
dependent on each other which means the presence of correlations and forming the clusters. For the clustered
sequences, larger inter-word distances exist as well as smaller ones, i.e. existence of larger distances is more prob-
able comparing to the random sequences. Therefore the cdf of inter-word distances is no longer exponential, but
has a power law relationship for large distances. The g-exponential is a generalization of the ordinary exponential
function using a real parameter q and exhibits a power law behavior in its tail and recovers the exponential func-
tion as a limiting case. This g-exponential function is defined as,

1
e(x) = (1 + (1 — @x)-a )

The parameter g is assumed to be a positive number. When it is close to one, e (x) approaches to exp(x). For q > 1
and x > #1 we have,
q-

1
e(—x) ~x a1 (8)

The inverse of the g-exponential is g-logarithmic function which is defined as,

X171 -1
Inx="—+—
! 1—-¢ ©9)

It is also a generalization of the logarithmic function and for =1 is just Inx.
We assume here that the cumulative distribution function of distances between consecutive occurrences of a
word in a DNA sequence can be described by:

1
1—

P(x) = eq[—i] = [1 -1 - q)i] !

X X (10)

Equation 10 represents the Tsallis distribution which is arising from maximization of the Tsallis entropy under
appropriate constraints in the context of the non-extensive statistical mechanics?. Nowadays non-extensive sta-
tistical mechanics appears as a powerful tool for studying systems with long range interactions between its com-
ponents and/or systems with limited sizes and/or non-equilibrium ones**-?*. Non-extensive statistical mechanics
has been used previously to describe features of several systems with the aforementioned properties from quite
various fields (examples can be found in Tsallis book)?!. Texts with long range correlations between its com-
ponents are also successfully analyzed via non-extensive statistical mechanics approach??. Similarly, biological
systems ranging from genes and proteins to cells and organisms lie in the above-mentioned category of systems
because of the long range correlations between some DNA words®. Thus, we assumed that non-extensive statis-
tical mechanics would be a proper candidate to study these systems.

In Fig. 1 the g-exponential function, e (—x), is plotted for different values of q. It is obvious that larger dis-
tances are more probable for larger g values. Therefore more deviation of q from one is equivalent to existence
of larger distances which corresponds to the higher clustering quality. So the g-parameter can be considered
as a quantitative measure of the clustering levels of different sequences. The clustering level is consequence of
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Figure 2. Cumulative distribution functions of distances between consecutive occurrences of CG
dinucleotides on chromosome 1. The real and shuffled data are marked by circle and diamond, respectively.
The dashed line is the fitting result for the shuffled data by exponential function. The dotted line shows the g-
exponential fitting result for the real data.

correlations in a sequence. Shuftling the sequence would surely destroy any correlations and drastically decrease
the clustering quality of words with large g-value. The words with g ~ 1 are randomly distributed through the
sequence and shuffling operation doesn’t change their g-values. Therefore we can assume that the clustering level
demonstrates the importance of a word".

Ranking DNA words. Functional DNA sequences and genome elements are clustered through DNA
sequences just as keywords in texts'?"'%. Therefore some of the methods for extracting keywords in texts might
also be valid for DNA sequences. We use the method originated from non-extensive statistical mechanics (based
on the value of g-parameter) to rank importance of different DNA sequences and genome elements®?. In this
method, the value of g-parameter associated with the cdf of inter-word distances,reveals the importance level
of a word. This is because that larger g value means more clustering of word and more deviation from random
distributions, as discussed earlier.

To apply this method, the first step is defining DNA words. Initially, we choose dinucleotides as DNA words.
Considering their positions (coordinates) on all human chromosomes from UCSC database (www.genome.ucsc.
edu), we obtain the distances between consecutive occurrences of each dinucleotide and calculate the frequen-
cies of each distance. If a sub-sequence (word) occurs quite consecutively without any distances and/or occurs
considering overlaps, all these sub-sequences are accounted for the original word. The cumulative distribution
function of distances versus the distances is plotted for each dinucleotide to obtain its corresponding g-parameter.
Then different dinucleotides can be compared based on the value of their g-parameters. This approach is also
performed for other DNA words as trinucleotides and exons.

Results

Dinucleotides. Regarding four nucleotides (A, G, C and T) as letters, sixteen possible dinucleotides are
assumed as different two-letter words. For each word, distances between consecutive occurrences are obtained
and then the cumulative distribution functions of distances versus distances in terms of base pairs (bp) are plotted
for all human chromosomes. It is found that the graphs for all dinucleotides on all human chromosomes are suit-
ably fitted by g-exponential distribution function (Equation 8). The largest R? and the smallest RMS (0.9999 and
0.0004, respectively) are obtained for TA dinucleotide on chrX; while, the smallest R? and the largest RMS (0.9909
and 0.0134, respectively) are calculated for CG dinucleotide on chr4 indicating reasonable quality of fitting. It is
shown in Fig. 2 for CG dinucleotide on chromosome 1 as an example. Similarly, the cumulative distribution func-
tion of distances is shown for the randomly shuffled data, where the whole sequences of chromosome 1 have been
shuffled uniformly without changing the total number of each nucleotides. The difference between two graphs is
thoroughly evident in Fig. 2. The distribution function for the shuffled sequences is fitted suitably by exponential
function; while the real data is fitted quite appropriately by g-exponential function. Note that some data points of
Fig. 2 are omitted. However all data points are used for fitting by g-exponential distribution function.

It's worth mentioning that clustering on the whole chromosome implies the clustering level on average but due
to various spatial variation across the genome, it is more convenient to discuss about the clustering level on spe-
cific regions essential for gene expression pattern. Hence, we have obtained q-parameter on the upstream regions
of genes on all human chromosomes separately as well as on the whole chromosomes (Table 1). Dinucleotides
with different g-parameters for some randomly chosen chromosomes are also shown in Table 1 as well as trinu-
cleotides in Table 2 which indicates the importance levels of these sub-sequences.

The complete list of the obtained g-parameter for different dinucleotides on all chromosomes is available in
Supplementary Material A and on upstream regions of genes in Supplementary Material B.
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CG 1.8971 1.8537 1.8118 1.6237 1.7202 1.6253 2.4934 1.534 1.5883 1.6165
TA 1.2975 1.1545 1.3703 1.1784 1.3302 1.1696 1.2598 1.1419 1.3159 1.1897
GG 1.2194 1.2118 1.2651 1.2357 1.2470 1.2313 1.3284 1.2354 1.2565 1.2654
AC 1.1123 1.0248 1.1366 1.0244 1.1143 1.0249 1.0884 1.0228 1.0264 1.023
CA 1.0636 1.0169 1.0579 1.0166 1.0425 1.0178 1.0300 1.0167 1.0641 1.0191

Table 1. g-parameters for different dinucleotides on some randomly chosen human chromosomes in (a)
on the upstream regions of genes and (b) on the whole chromosome.

GCG 1.735146 | 1.675188 | 1.635335 | 1.609606 | 1.598388
CCG 1.726111 | 1.663821 | 1.633669 | 1.629512 | 1.644872
CGC 1.725597 | 1.665496 | 1.633301 | 1.613182 | 1.606054
CGG 1.719771 | 1.651277 | 1.605608 | 1.600651 | 1.578919
GAT 1.042450 | 1.037433 | 1.022208 | 1.021420 | 1.034390
ACT 1.027384 | 1.004085 | 1.002648 | 1.002119 | 1.002287

Table 2. g-parameters for different trinucleotides on some randomly chosen human chromosomes.

1.5 [] EXON
| TFBS

Non-extensivity Parameter

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Figure 3. Comparison of dinucleotides g-parameters in exons and TFBSs.

We have also obtained g-parameters of dinucleotides in exons as well as TFBSs (Transcription Factor Binding
Sites). As it is obvious in Fig. 3, g-parameters of all sixteen dinucleotides are larger in exons rather than TFBSs.

The g-log of the distances for CG and GC dinucleotides on chromosome 21 is shown in Fig. 4 as an example.
Their linearity confirms the suitable fitting by Tsallis distribution function. The graph has steeper slope for CG in
comparison to GC, this corresponds to having a larger g-parameter and therefore a higher clustering level which
means more deviation from random distribution.

Genome elements. To show that the applicability of this method is not restricted to words with the same
lengths, we also applied the aforementioned method for analyzing genome elements of various sizes such as
exons. For this purpose, we selected the exons of all human genome by considering positions of exons on each
chromosome and obtained the distances between consecutive occurrences of exons. Figure 5 shows the cumula-
tive distribution function of distances. The result is appropriately fitted by Tsallis distribution function. Note that
some data points are omitted for better visibility of the graph, although all data points are used for fitting.

Comparing different species. We extended our study by comparing the clustering levels of CG dinucleo-
tide in the whole genome of some selected organisms including Ebola virus, D. erecta, C Elegance, chicken and
human. The results of this comparison are provided in Fig. 6.

Discussion

In order to quantify the clustering level of DNA-based words with a reasonable criterion, we have introduced
well known q-parameter in statistical mechanics as a measure of ranking the importance of some defined DNA
sequences and genome elements in human genome and the genome of different organisms.We have applied our
method to compare different dinucleotides and found that CG dinucleotide has the largest g-parameter among
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Figure 4. g-log of the cumulative distribution function of distances between consecutive occurrences of CG
(circles) and GC (squares) dinucleotides versus distances for chromosome 21 as an instance. The linearity
confirms the goodness of fits.
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Figure 5. Cumulative distribution function of distances between exons on whole genome. Exons as DNA
words with variable lengths also fit well with g-exponential function. Dashed line shows the fitting result.
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Figure 6. g-parameter of CG dinucleotide over whole genome for some selected organisms. Clustering level
of CGs increases in higher evolutionary organisms compared to lower ones.
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the others not only on the whole chromosomes but also on the upstream regions of genes which reveals their
higher clustering level compared to other dinucleotides in all human chromosomes (Supplementary Material
A and B). The biological interpretation of this data is associated with the biological functions of CG element
and its effect on the expression of genes as a consequence of epigenetic modification. This finding implies that
CG is the most important two-letter word among the others; sixteen possible dinucleotides in the context of
DNA sequences in all of the human chromosomes. Regarding CG clustering on the whole chromosome, it can
be seen that chromosome 3 has the largest value of g-parameter indicating its higher tendency for spontane-
ous mutation to thymine during evolutionary time scale. It is also found that chromosome 18 has the largest
value of g-parameter for upstream regions (Promoters) of genes when compared to other human chromosomes.
Moreover, the chromosomes 8 and 10 have the lowest values of g-parameters. Therefore, it appears that the effect
of chromosome 18 on differentiation of somatic cells during the developmental stage may be significant. It may
also be more prone to epigenetic modification originated from environmental conditions such as dietary and life-
style. As shown in Fig. 2, DNA words in a random distribution behave exponentially; while in the real case, where
the words are correlated, their distribution function goes to g-exponential. Therefore, the amount of difference
between these two cases for a specific word indicates it’s level of significance. In other words, the more deviation
from the exponential function to g-exponential one reveals higher biological significance. Exons as the precursors
of proteins are considered as one of the genetically important elements in cells. Resulting data of analyzing the
clustering level of exons are in good agreement with the biological importance of exons as the coding regions of
proteins. These findings together confirmed the ability of our methods in analyzing the genome sequences based
on the clustering level of their elements and can be used for further analysis of genome sequences. Furthermore,
comparisons of g-parameters for CG content at the genome of different organisms (Fig. 6) shows that the cluster-
ing level of CG dinucleotides in different organisms changes in a regular pattern in accord with the evolutionary
time scale. More clustering of CG dinucleotide in more evolved and complex organisms can be attributed to
gradual increase of specific functional and structural roles of CG dinucleotide inside DNA during evolutionary
time. Since, the higher organisms such as human have genomes in which the g-parameter for CG dinucleotides is
greater than that of evolutionary lower organisms and it may be concluded that higher organisms are more sus-
ceptible to environmental conditions in cases that these conditions can affect the phenotype of organisms based
on the epigenetic modifications. This observation is in agreement with ref. 27, in which the authors analyzed
the distribution of dinucleotides inside human and other organisms using distance-based approach and found
a significant statistical distribution for CG of human genome; while for the other organisms studied they found
more heterogeneity.

Conclusion

In summary, regarding our method of analysis and biological interpretation of resulting data, it can be said that
non-extensive entropy model is able to quantitatively distinguish the biologically important DNA words in the
context of genomic sequence and provide a systematic insight to the sequence-based information of biological
events at the level of genome. Considering the mass accumulation of protein sequences in bioinformatics data-
bases, it appears that similar analysis for different protein families can provide valuable information appropriate
for designing new variant of protein for biotechnological applications.
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