Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion

Abstract

Chemical induction of squamous tumors in the mouse skin induces multiple benign papillomas: high-frequency terminally benign low-risk papillomas and low-frequency high-risk papillomas, the putative precursor lesions to squamous cell carcinoma (SCC). We have compared the gene expression profile of twenty different early low- and high-risk papillomas with normal skin and SCC. Unsupervised clustering of 514 differentially expressed genes (P<0.001) showed that 9/10 high-risk papillomas clustered with SCC, while 1/10 clustered with low-risk papillomas, and this correlated with keratin markers of tumor progression. Prediction analysis for microarrays (PAM) identified 87 genes that distinguished the two papilloma classes, and a majority of these had a similar expression pattern in both high-risk papillomas and SCC. Additional classifier algorithms generated a gene list that correctly classified unknown benign tumors as low- or high-risk concordant with promotion protocol and keratin profiling. Reduced expression of immune function genes characterized the high-risk papillomas and SCC. Immunohistochemistry confirmed reduced T-cell number in high-risk papillomas, suggesting that reduced adaptive immunity defines papillomas that progress to SCC. These results demonstrate that murine premalignant lesions can be segregated into subgroups by gene expression patterns that correlate with risk for malignant conversion, and suggest a paradigm for generating diagnostic biomarkers for human premalignant lesions with unknown individual risk for malignant conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

DMBA:

dimethyl benz[a]-anthracene

FDR:

false discovery rate

K:

keratin

MDS:

multidimensional scaling

PAM:

prediction analysis for microarray

SAM:

significance analysis for microarrays

SCC:

squamous cell carcinomas

TPA:

12-O-tetradecanoylphorbol-13-acetate

TCR:

T cell receptor

TPR:

tetratrico peptide repeat

ETS:

E26 transformation specific

References

  • Balkwill F, Mantovani A . (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Brown K, Strathdee D, Bryson S, Lambie W, Balmain A . (1998). The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr Biol 8: 516–524.

    Article  CAS  PubMed  Google Scholar 

  • Callen JP, Bickers DR, Moy RL . (1997). Actinic keratoses. J Am Acad Dermatol 36: 650–653.

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z . (2002). Inflammation and cancer. Nature 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwiche N, Scita G, Jones C, Rutberg S, Greenwald E, Tennenbaum T et al. (1996). Loss of retinoic acid receptors in mouse skin and skin tumors is associated with activation of the rasHa oncogene and high risk for premalignant progression. Cancer Res 56: 4942–4959.

    CAS  PubMed  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM . (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7: 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Dighe AS, Richards E, Old LJ, Schreiber RD . (1994). Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1: 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Loukinova E, Smith CW, Chen Z, Van Waes C . (1997). Genes differentially expressed with malignant transformation and metastatic tumor progression of murine squamous cell carcinoma. J Cell Biochem Suppl 28–29: 90–100.

    Article  PubMed  Google Scholar 

  • Dooley TP, Reddy SP, Wilborn TW, Davis RL . (2003). Biomarkers of human cutaneous squamous cell carcinoma from tissues and cell lines identified by DNA microarrays and qRT-PCR. Biochem Biophys Res Commun 306: 1026–1036.

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P . (2005). HMGB1: guiding immunity from within. Trends Immunol 26: 381–387.

    Article  CAS  PubMed  Google Scholar 

  • Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J et al. (2003). The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. J Exp Med 198: 747–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science 294: 605–609.

    Article  CAS  PubMed  Google Scholar 

  • Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, O’Reilly M et al. (1993). Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 90: 6076–6080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . (2004). Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113: 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennings H, Shores R, Mitchell P, Spangler EF, Yuspa SH . (1985). Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis 6: 1607–1610.

    Article  CAS  PubMed  Google Scholar 

  • Hummerich L, Muller R, Hess J, Kokocinski F, Hahn M, Furstenberger G et al. (2006). Identification of novel tumour-associated genes differentially expressed in the process of squamous cell cancer development. Oncogene 25: 111–121.

    Article  CAS  PubMed  Google Scholar 

  • Juric D, Sale S, Hromas RA, Yu R, Wang Y, Duran GE et al. (2005). Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc Natl Acad Sci USA 102: 17763–17768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95: 7556–7561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larcher F, Bauluz C, Diaz-Guerra M, Quintanilla M, Conti CJ, Ballestin C et al. (1992). Aberrant expression of the simple epithelial type II keratin 8 by mouse skin carcinomas but not papillomas. Mol Carcinog 6: 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D et al. (2004). Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350: 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Staudt LM . (1996). LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 87: 734–745.

    CAS  PubMed  Google Scholar 

  • Morris RJ, Coulter K, Tryson K, Steinberg SR . (1997). Evidence that cutaneous carcinogen-initiated epithelial cells from mice are quiescent rather than actively cycling. Cancer Res 57: 3436–3443.

    CAS  PubMed  Google Scholar 

  • Morris RJ, Tryson KA, Wu KQ . (2000). Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res 60: 226–229.

    CAS  PubMed  Google Scholar 

  • Nambiar PR, Nakanishi M, Gupta R, Cheung E, Firouzi A, Ma XJ et al. (2004). Genetic signatures of high- and low-risk aberrant crypt foci in a mouse model of sporadic colon cancer. Cancer Res 64: 6394–6401.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Washizu J, Nakamura N, Enomoto A, Yoshikai Y . (1998). Translational efficiency is up-regulated by alternative exon in murine IL-15 mRNA. J Immunol 160: 936–942.

    CAS  PubMed  Google Scholar 

  • Nishimura H, Yajima T, Naiki Y, Tsunobuchi H, Umemura M, Itano K et al. (2000). Differential roles of interleukin 15 mRNA isoforms generated by alternative splicing in immune responses in vivo. J Exp Med 191: 157–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Inoue K, Sato H, Iida A, Ohnishi Y, Sekine A et al. (2004). Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature 429: 72–75.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada J, Balmain A . (2003). Stem-cell hierarchy in skin cancer. Nat Rev Cancer 3: 434–443.

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V . (2006). TLR-4 dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107: 3727–3732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridd K, Zhang SD, Edwards RE, Davies R, Greaves P, Wolfreys A et al. (2006). Association of gene expression with sequential proliferation, differentiation and tumor formation in murine skin. Carcinogenesis 27: 1556–1566.

    Article  CAS  PubMed  Google Scholar 

  • Schlingemann J, Hess J, Wrobel G, Breitenbach U, Gebhardt C, Steinlein P et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. Int J Cancer 104: 699–708.

    Article  CAS  PubMed  Google Scholar 

  • Serewko MM, Popa C, Dahler AL, Smith L, Strutton GM, Coman W et al. (2002). Alterations in gene expression and activity during squamous cell carcinoma development. Cancer Res 62: 3759–3765.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA . (2000). Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192: 755–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennenbaum T, Weiner AK, Belanger AJ, Glick AB, Hennings H, Yuspa SH . (1993). The suprabasal expression of α6β4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res 53: 4803–4810.

    CAS  PubMed  Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Chu G . (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression 2. Proc Natl Acad Sci USA 99: 6567–6572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuspa SH . (1998). The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis. J Dermatol Sci 17: 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ND was supported by the American University of Beirut in Beirut/Lebanon and by the National Cancer Institute Scientist Exchange Program Fellowship. RP-L and AG were supported by the Penn State Huck Institutes of Life Sciences the Penn State Institute of the Environment, and NIH Grant CA117957 to AG This research was also supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N Darwiche or A B Glick.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwiche, N., Ryscavage, A., Perez-Lorenzo, R. et al. Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene 26, 6885–6895 (2007). https://doi.org/10.1038/sj.onc.1210491

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1210491

Keywords

This article is cited by

Search

Quick links