Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retinoic acid induces TGFβ-dependent autocrine fibroblast growth

Abstract

To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4lox/− and taf4−/− embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4lox/− cells, but less than 300 in taf4−/− cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4lox/− cells exhibit transforming growth factor (TGF)β-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFβ signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFβ pathways that leads to deregulated cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM . (2002). Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4: 599–604.

    Article  CAS  Google Scholar 

  • Annes JP, Munger JS, Rifkin DB . (2003). Making sense of latent TGFbeta activation. J Cell Sci 116: 217–224.

    Article  CAS  Google Scholar 

  • Bastien J, Rochette-Egly C . (2004). Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328: 1–16.

    Article  CAS  Google Scholar 

  • Benetti R, Del Sal G, Monte M, Paroni G, Brancolini C, Schneider C . (2001). The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO J 20: 2702–2714.

    Article  CAS  Google Scholar 

  • Bohnsack BL, Lai L, Dolle P, Hirschi KK . (2004). Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev 18: 1345–1358.

    Article  CAS  Google Scholar 

  • Brand M, Yamamoto K, Staub A, Tora L . (1999). Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274: 18285–18289.

    Article  CAS  Google Scholar 

  • Brigstock DR . (2003). The CCN family: a new stimulus package. J Endocrinol 178: 169–175.

    Article  CAS  Google Scholar 

  • Cao Z, Flanders KC, Bertolette D, Lyakh LA, Wurthner JU, Parks WT et al. (2003). Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells. Blood 101: 498–507.

    Article  CAS  Google Scholar 

  • Cerignoli F, Guo X, Cardinali B, Rinaldi C, Casaletto J, Frati L et al. (2002). retSDR1, a short-chain retinol dehydrogenase/reductase, is retinoic acid-inducible and frequently deleted in human neuroblastoma cell lines. Cancer Res 62: 1196–1204.

    CAS  Google Scholar 

  • Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J et al. (2002). Hop is an unusual homeobox gene that modulates cardiac development. Cell 110: 713–723.

    Article  CAS  Google Scholar 

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P . (1992). All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71: 73–85.

    Article  CAS  Google Scholar 

  • Eifert C, Sangster-Guity N, Yu LM, Chittur SV, Perez AV, Tine JA et al. (2006). Global gene expression profiles associated with retinoic acid-induced differentiation of embryonal carcinoma cells. Mol Reprod Dev 73: 796–824.

    Article  CAS  Google Scholar 

  • Falender AE, Freiman RN, Geles KG, Lo KC, Hwang K, Lamb DJ et al. (2005). Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev 19: 794–803.

    Article  CAS  Google Scholar 

  • Falk LA, De Benedetti F, Lohrey N, Birchenall-Roberts MC, Ellingsworth LW, Faltynek CR et al. (1991). Induction of transforming growth factor-beta 1 (TGF-beta 1), receptor expression and TGF-beta 1 protein production in retinoic acid-treated HL-60 cells: possible TGF-beta 1-mediated autocrine inhibition. Blood 77: 1248–1255.

    CAS  Google Scholar 

  • Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ . (2002). Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 21: 2880–2889.

    Article  CAS  Google Scholar 

  • Freiman RN, Albright SR, Zheng S, Sha WC, Hammer RE, Tjian R . (2001). Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science 293: 2084–2087.

    Article  CAS  Google Scholar 

  • Gangloff YG, Werten S, Romier C, Carre L, Poch O, Moras D et al. (2000). The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. Mol Cell Biol 20: 340–351.

    Article  CAS  Google Scholar 

  • Glick AB, Flanders KC, Danielpour D, Yuspa SH, Sporn MB . (1989). Retinoic acid induces transforming growth factor-beta 2 in cultured keratinocytes and mouse epidermis. Cell Regul 1: 87–97.

    Article  CAS  Google Scholar 

  • Glick AB, McCune BK, Abdulkarem N, Flanders KC, Lumadue JA, Smith JM et al. (1991). Complex regulation of TGF beta expression by retinoic acid in the vitamin A-deficient rat. Development 111: 1081–1086.

    CAS  Google Scholar 

  • Grob P, Cruse MJ, Inouye C, Peris M, Penczek PA, Tjian R et al. (2006). Cryo-electron microscopy studies of human TFIID: conformational breathing in the integration of gene regulatory cues. Structure 14: 511–520.

    Article  CAS  Google Scholar 

  • Grotendorst GR, Okochi H, Hayashi N . (1996). A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7: 469–480.

    CAS  Google Scholar 

  • Harris TM, Childs G . (2002). Global gene expression patterns during differentiation of F9 embryonal carcinoma cells into parietal endoderm. Funct Integr Genomics 2: 105–119.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Hill CS . (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10: 283–294.

    Article  CAS  Google Scholar 

  • Jacquemin P, Hwang JJ, Martial JA, Dolle P, Davidson I . (1996). A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 271: 21775–21785.

    Article  CAS  Google Scholar 

  • Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A et al. (2005). An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37: 138–144.

    Article  CAS  Google Scholar 

  • Koda H, Okuno M, Imai S, Moriwaki H, Muto Y, Kawada N et al. (1996). Retinoic acid-stimulated liver stellate cells suppress the production of albumin from parenchymal cells via TGF-beta. Biochem Biophys Res Commun 221: 565–569.

    Article  CAS  Google Scholar 

  • Krig SR, Chandraratna RA, Chang MM, Wu R, Rice RH . (2002). Gene-specific TCDD suppression of RARalpha- and RXR-mediated induction of tissue transglutaminase. Toxicol Sci 68: 102–108.

    Article  CAS  Google Scholar 

  • Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C et al. (2002). Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62: 58–64.

    Article  CAS  Google Scholar 

  • Leask A, Abraham DJ . (2003). The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81: 355–363.

    Article  CAS  Google Scholar 

  • Leask A, Holmes A, Black CM, Abraham DJ . (2003). Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 278: 13008–13015.

    Article  CAS  Google Scholar 

  • Lee YJ, Park CW, Hahn Y, Park J, Lee J, Yun JH et al. (2000). Mit1/Lb9 and Copg2, new members of mouse imprinted genes closely linked to Peg1/Mest(1). FEBS Lett 472: 230–234.

    Article  CAS  Google Scholar 

  • Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA et al. (2004). Mapping key functional sites within yeast TFIID. EMBO J 23: 719–727.

    Article  CAS  Google Scholar 

  • Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A et al. (1995). Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature 373: 448–451.

    Article  CAS  Google Scholar 

  • Matangkasombut O, Auty R, Buratowski S . (2004). Structure and function of the TFIID complex. Adv Protein Chem 67: 67–92.

    Article  CAS  Google Scholar 

  • Mengus G, Fadloun A, Kobi D, Thibault C, Perletti L, Michel I et al. (2005). TAF4 inactivation in embryonic fibroblasts activates TGFbeta signalling and autocrine growth. EMBO J 24: 2753–2767.

    Article  CAS  Google Scholar 

  • Mengus G, May M, Carre L, Chambon P, Davidson I . (1997). Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev 11: 1381–1395.

    Article  CAS  Google Scholar 

  • Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V et al. (2005). Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 37: 863–867.

    Article  CAS  Google Scholar 

  • Nagpal S, Ghosn C, DiSepio D, Molina Y, Sutter M, Klein ES et al. (1999). Retinoid-dependent recruitment of a histone H1 displacement activity by retinoic acid receptor. J Biol Chem 274: 22563–22568.

    Article  CAS  Google Scholar 

  • Nugent P, Ma L, Greene RM . (1998). Differential expression and biological activity of retinoic acid-induced TGFbeta isoforms in embryonic palate mesenchymal cells. J Cell Physiol 177: 36–46.

    Article  CAS  Google Scholar 

  • Nunes I, Kojima S, Rifkin DB . (1996). Effects of endogenously activated transforming growth factor-beta on growth and differentiation of retinoic acid-treated HL-60 cells. Cancer Res 56: 495–499.

    CAS  Google Scholar 

  • Okuno M, Kojima S, Akita K, Matsushima-Nishiwaki R, Adachi S, Sano T et al. (2002). Retinoids in liver fibrosis and cancer. Front Biosci 7: d204–d218.

    Article  CAS  Google Scholar 

  • Okuno M, Moriwaki H, Imai S, Muto Y, Kawada N, Suzuki Y et al. (1997). Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-beta in liver stellate cells. Hepatology 26: 913–921.

    CAS  Google Scholar 

  • Pendaries V, Verrecchia F, Michel S, Mauviel A . (2003). Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner. Oncogene 22: 8212–8220.

    Article  CAS  Google Scholar 

  • Roberts AB, Sporn MB . (1992). Mechanistic interrelationships between two superfamilies: the steroid/retinoid receptors and transforming growth factor-beta. Cancer Surv 14: 205–220.

    CAS  Google Scholar 

  • Sanders SL, Weil PA . (2000). Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. J Biol Chem 275: 13895–13900.

    Article  CAS  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Tanese N, Saluja D, Vassallo MF, Chen JL, Admon A . (1996). Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc Natl Acad Sci USA 93: 13611–13616.

    Article  CAS  Google Scholar 

  • Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C et al. (2002). Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 277: 45510–45517.

    Article  CAS  Google Scholar 

  • Tora L . (2002). A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev 16: 673–675.

    Article  CAS  Google Scholar 

  • Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F et al. (2006). The methyl-CpG binding protein MBD1 is required for PML-RARalpha function. Proc Natl Acad Sci USA 103: 1400–1405.

    Article  CAS  Google Scholar 

  • Walker AK, Rothman JH, Shi Y, Blackwell TK . (2001). Distinct requirements for C. elegans TAF(II)s in early embryonic transcription. EMBO J 20: 5269–5279.

    Article  CAS  Google Scholar 

  • Wei Y, Harris T, Childs G . (2002). Global gene expression patterns during neural differentiation of P19 embryonic carcinoma cells. Differentiation 70: 204–219.

    Article  CAS  Google Scholar 

  • Yu Q, Stamenkovic I . (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176.

    Google Scholar 

Download references

Acknowledgements

We thank Dr C Rochette-Egly, Dr F Cammas and Dr Olivier Poch for the antibodies against RARγ and the RARγ and RXRα expression vectors as well as for helpful discussions and bioinformatic analysis, Dr C Hill for the TGFβ responsive 3T3 cells, C Thibault for the affymetrix arrays, and the common services of the IGBMC. This work was supported by grants from the CNRS, INSERM, Ministère de la Recherche et de la Technologie, Association pour la Recherche contre le Cancer and the European Union. ID is an équipe labelisée of the Ligue Nationale et Départementale Région Alsace contre le Cancer.

Author information

Authors and Affiliations

Corresponding author

Correspondence to I Davidson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadloun, A., Kobi, D., Delacroix, L. et al. Retinoic acid induces TGFβ-dependent autocrine fibroblast growth. Oncogene 27, 477–489 (2008). https://doi.org/10.1038/sj.onc.1210657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1210657

Keywords

This article is cited by

Search

Quick links