Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria

Abstract

The virulence properties of many pathogenic bacteria are due to proteins encoded by large gene clusters called pathogenicity islands1,2, which are found in a variety of human pathogens including Escherichia coli, Salmonella, Shigella, Yersinia, Helicobacter pylori, Vibrio cholerae, and animal and plant pathogens such as Dichelobacter nodosus and Pseudomonas syringae1,2,3. Although the presence of pathogenicity islands is a prerequisite for many bacterial diseases, little is known about their origins or mechanism of transfer into the bacterium. The bacterial agent of epidemic cholera, Vibrio cholerae , contains a bacteriophage known as cholera-toxin phage (CTXφ)4, which encodes the cholera toxin, and a large pathogenicity island called the VPI (for V. cholerae pathogenicity island)5 which itself encodes a toxin-coregulated pilus that functions as a colonization factor6 and as a CTXφ receptor4. We have now identified the VPI pathogenicity island as the genome of another filamentous bacteriophage, VPIφ. We show that VPIφ is transferred between V. cholerae strains and provide evidence that the TcpA subunit of the toxin-coregulated type IV pilus is in fact a coat protein of VPIφ. Our results are the first description of a phage that encodes a receptor for another phage and of a virus–virus interaction that is necessary for bacterial pathogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the VPI.
Figure 2: PCR products obtained from either whole-cell overnight cultures or cell-free phage (φ) preparations of wild-type strain N16961 and TCP2.
Figure 3: Southern blot of phage DNA preparations from DK238 and CVD110.
Figure 4: Analysis of the VPIφ replicative form.
Figure 5: Electron micrographs of VPIφ.
Figure 6: PCR products of immunoprecipitated phage preparations from strains 395 and TCP2, following incubation with and without anti-TCP antibodies (Ab), demonstrate specificity of anti-TCP antibody for VPIφ.
Figure 7: PCR analysis of VPI genes from a tcpA mutant and mutant complemented with tcpA.

Similar content being viewed by others

References

  1. Lee, C. A. Pathogenicity islands and evolution of bacterial pathogens. Infect. Agent. Dis. 5, 1–7 ( 1996).

    CAS  Google Scholar 

  2. Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23, 1089–1097 (1997).

    Article  CAS  Google Scholar 

  3. Huang, H. C., Lin, R. H., Chang, C. J., Collmer, A. & Deng, W. L. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant. Microbe Interns 8, 733–746 (1995).

    Article  CAS  Google Scholar 

  4. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Karaolis, D. K. R.et al. AVibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl Acad. Sci. USA 95, 3134–3139 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. The use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 ( 1987).

    Article  ADS  CAS  Google Scholar 

  7. Politzer, R. Cholera. Monogr. Ser. 43 (Geneva, World Health Organization, (1959).

  8. Kaper, J. B., Morris, J. G. J & Levine, M. M. Cholera. Clin. Microbiol. Rev. 8, 48–86 (1995).

    Article  CAS  Google Scholar 

  9. Herrington, D. A. et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168, 1487–1492 (1988).

    Article  CAS  Google Scholar 

  10. DiRita, V. J., Parsot, C., Jander, G. & Mekalanos, J. J. Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl Acad. Sci. USA 88, 5403–5407 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Carroll, P. A., Tashima, K. T., Rogers, M. B., DiRita, V. J. & Calderwood, S. B. Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol. Microbiol. 25, 1099–1111 (1997).

    Article  CAS  Google Scholar 

  12. Häse, C. C. & Mekalanos, J. J. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae . Proc. Natl Acad. Sci. USA 95, 730– 734 (1998).

    Article  ADS  Google Scholar 

  13. Kovach, M. E., Shaffer, M. D. & Peterson, K. M. Aputative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142, 2165– 2174 (1996).

    Article  CAS  Google Scholar 

  14. Altschul, S. F.et al . Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  15. Michalski, J., Galen, J. E., Fasano, A. & Kaper, J. B. CVD110, an attenuated Vibrio cholerae O1 El Tor live oral vaccine strain. Infect. Immun. 61, 4462–4468 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobbs, M. & Mattick, J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233– 243 (1993).

    Article  CAS  Google Scholar 

  17. Taylor, R. K., Shaw, C. E., Peterson, K. M., Spears, P. & Mekalanos, J. J. Safe, live Vibrio cholerae vaccines? Vaccine 6, 151– 154 (1988).

    Article  CAS  Google Scholar 

  18. Dalrymple, B. & Mattick, J. S. An analysis of the organization and evolution of type 4 fibrial (MePhe) subunit proteins. J. Mol. Evol. 25, 261–269 ( 1987).

    Article  ADS  CAS  Google Scholar 

  19. Shaw, C. E. & Taylor, R. K. Vibrio cholerae O395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins. Infect. Immun. 58, 3042–3049 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel, P.et al. Shared antigenicity of type 4 pilins expressed by Pseudomonas aeruginosa, Moraxella bovis, Neisseria gonorrhoeae, Dichelobacter nodosus, and Vibrio cholerae. Infect. Immun. 59, 4674–4676 ( 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Girón, J. A., Ho, A. S. Y. & Schoolnick, G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710– 713 (1991).

    Article  ADS  Google Scholar 

  22. Hicks, S., Frankel, G., Kaper, J. B., Dougan, G. & Phillips, A. D. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect. Immun. 66, 1570–1578 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saiki, R. K.et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487– 491 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1982 ).

    Google Scholar 

Download references

Acknowledgements

We thank our colleagues at the University of Maryland for their support, particularly D. Hone for discussions, T. Agin, J. Michalski and M. Boyanapalli for technical assistance, and R. T. Milanich for help with prepAring the figures; and R. Taylor for RT4032, pRT198 and anti-peptide 6 TcpA antibody. This work was supported by grants from the NIH and Department of Veterans Affairs. D.K.R.K. is a recipient of a Burroughs Wellcome Fund Career Award in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. R. Karaolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaolis, D., Somara, S., Maneval, D. et al. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379 (1999). https://doi.org/10.1038/20715

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/20715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing