Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of Jupiter's radio emission and aurorae by the solar wind

Abstract

Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field1,2 and a large magnetosphere3. Jupiter also has polar aurorae4, which are similar in many respects to Earth's aurorae5. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably6,7. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A representative frequency–time spectrogram of jovian radio emissions detected by the Cassini spacecraft during the approach to Jupiter at a radial distance of about 1,350 Jupiter radii (RJ).
Figure 2: The power flux of the hectometric radiation as a function of time as detected by the Cassini and Galileo spacecraft during the Cassini fly-by of Jupiter.
Figure 3: A detailed comparison of the solar wind magnetic field strengths.
Figure 4: A frequency–time spectrogram from the Galileo PWS showing the radio emission intensities detected by Galileo during event B.

Similar content being viewed by others

References

  1. Burke, B. F. & Franklin, K. L. Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955).

    Article  ADS  Google Scholar 

  2. Drake, F. D. & Hvatum, S. Non-thermal microwave radiation from Jupiter. Astron. J. 64, 329–330 (1959).

    Article  ADS  Google Scholar 

  3. Warwick, J. W. Radiophysics of Jupiter. Space Sci. Rev. 6, 841–891 (1967).

    Article  ADS  Google Scholar 

  4. Broadfoot, A. L. et al. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science 204, 979–982 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Chamberlain, J. W. Physics of the Aurora and Airglow (Academic, New York, 1961).

    Google Scholar 

  6. Carr, T. D., Desch, M. D. & Alexander, J. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 226–284 (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  7. Clarke, J. T., Moos, H. W., Atreya, S. K. & Lane, A. L. Observations from Earth orbit and variability of the polar aurora on Jupiter. Astrophys. J. 241, L179–L1182 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Gurnett, D. A. et al. The Cassini radio and plasma wave investigation. Space Sci. Rev. (in the press).

  9. Warwick, J. W. et al. Voyager 1 planetary radio astronomy observations near Jupiter. Science 204, 995–998 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Wu, C. S. & Lee, L. C. A theory of terrestrial kilometric radiation. Astrophys. J. 213, 621–626 (1979).

    Article  ADS  Google Scholar 

  11. Bigg, E. K. Influence of the satellite Io on Jupiter's decametric radiation. Nature 203, 1008–1010 (1964).

    Article  ADS  Google Scholar 

  12. Goldreich, P. & Lynden-Bell, D. Io, a unipolar inductor. Astrophys. J. 156, 59–78 (1969).

    Article  ADS  Google Scholar 

  13. Queinnec, J. & Zarka, P. Io-controlled decametric arcs and Io–Jupiter interaction. J. Geophys. Res. 103, 26649–26666 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Ladreiter, H. P., Zarka, P. & Lecacheux, A. Direction finding study of Jovian hectometric and broadband kilometric radio emissions: Evidence for their auroral origin. Planet. Space Sci. 42, 919–931 (1994).

    Article  ADS  Google Scholar 

  15. Zarka, P. & Genoa, F. Low-frequency Jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983).

    Article  ADS  Google Scholar 

  16. Desch, M. D. & Barrow, C. H. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission. J. Geophys. Res. 89, 6819–6823 (1984).

    Article  ADS  Google Scholar 

  17. Gurnett, D. A. et al. The Galileo plasma wave investigation. Space Sci. Rev. 60, 341–355 (1992).

    Article  ADS  Google Scholar 

  18. Scarf, F. L., Gurnett, D. A. & Kurth, W. S. Jupiter plasma wave observations: an initial Voyager 1 overview. Science 204, 991–995 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Gurnett, D. A. The Earth as a radio source: terrestrial kilometric radiation. J. Geophys. Res. 79, 4227–4238 (1974).

    Article  ADS  Google Scholar 

  20. Voots, G. R., Gurnett, D. A. & Akasofu, S.-Y. Auroral kilometric radiation as an indicator of auroral magnetic disturbances. J. Geophys. Res. 82, 2259–2266 (1977).

    Article  ADS  Google Scholar 

  21. Gallagher, D. L. & Gurnett, D. A. Auroral kilometric radiation: time-averaged source location. J. Geophys. Res. 84, 6501–6509 (1979).

    Article  ADS  Google Scholar 

  22. Zarka, P. Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998).

    Article  ADS  Google Scholar 

  23. Louarn, P. et al. Trapped electrons as a free energy source for the auroral kilometric radiation. J. Geophys. Res. 95, 5983–5995 (1990).

    Article  ADS  Google Scholar 

  24. Ergun, R. E. et al. Electron-cyclotron maser driven by charge particle acceleration from magnetic field-alligned electric fields. Astrophys. J. 538, 456–466 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Huff, R. L. Mapping of auroral kilometric radiation sources to the aurora. J. Geophys. Res. 93, 11445–11454 (1988).

    Article  ADS  Google Scholar 

  26. Clarke, J. T. et al. Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. J. Geophys. Res. 103, 20217–20236 (1998).

    Article  ADS  Google Scholar 

  27. Dougherty, M. K. et al. The Cassini magnetic field investigation. Space Sci. Rev. (submitted).

  28. Young, D. T. et al. Cassini plasma spectrometer investigation. Space Sci. Rev. (submitted).

  29. Esposito, L. W. et al. The Cassini ultraviolet imaging spectrograph investigation. Space Sci. Rev. (in the press).

Download references

Acknowledgements

The research at the University of Iowa, the University of Michigan, and the University of Colorado was supported by NASA through the Jet Propulsion Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gurnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurnett, D., Kurth, W., Hospodarsky, G. et al. Control of Jupiter's radio emission and aurorae by the solar wind. Nature 415, 985–987 (2002). https://doi.org/10.1038/415985a

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/415985a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing