Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Super-tough carbon-nanotube fibres

These extraordinary composite fibres can be woven into electronic textiles.

Abstract

The energy needed to rupture a fibre (its toughness) is five times higher for spider silk than for the same mass of steel wire, which has inspired efforts to produce spider silk commercially1,2,3. Here we spin 100-metre-long carbon-nanotube composite fibres that are tougher than any natural or synthetic organic fibre described so far, and use these to make fibre supercapacitors that are suitable for weaving into textiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Photograph of a textile containing two nanotube-fibre supercapacitors woven in orthogonal directions.

Similar content being viewed by others

References

  1. Kubik, S. Angew. Chem. Int. Edn 41, 2721–2723 (2002).

    Article  CAS  Google Scholar 

  2. Vollrath, F. & Knight, D. P. Nature 410, 541–548 (2001).

    Article  ADS  CAS  Google Scholar 

  3. Lesuer, D. R. et al. Metallurg. Mater. Trans. A 30, 1559–1568 (1999).

    Article  Google Scholar 

  4. Vigolo, B. et al. Science 290, 1331–1334 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Vigolo, B., Poulin, P., Lucas, M., Luanois, P. & Bernier, P. Appl. Phys. Lett. 81, 1210–1212 (2002).

    Article  ADS  CAS  Google Scholar 

  6. Poulin, P., Vigolo, B. & Launois, P. Carbon 40, 1741–1749 (2002).

    Article  CAS  Google Scholar 

  7. Nikolaev, P. et al. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Jiang, K., Li, Q. & Fan, S. Nature 419, 801 (2002).

    Article  ADS  CAS  Google Scholar 

  9. Chand, S. J. Mater. Sci. 35, 1303–1313 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Walters, D. A. et al. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Yu, M.-F, Files, B. S., Arepalli, S. & Ruoff, R. S. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Zhu, H. W. et al. Science 296, 884–886 (2002).

    Article  ADS  CAS  Google Scholar 

  13. Mamedov, A. A. et al. Nature Mater. 1, 190–194 (2002).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray H. Baughman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalton, A., Collins, S., Muñoz, E. et al. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003). https://doi.org/10.1038/423703a

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/423703a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing