Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Global carbon cycle (communication arising)

Metabolic balance of the open sea

Abstract

The rise of oxygenic photosynthesis nearly three billion years ago led to the accumulation of free oxygen and to the subsequent diversification of life on Earth; today, nearly half of all oxygen production derives from the photosynthetic activities of marine phytoplankton1. The conclusion that the open sea –– and therefore much of our planet's surface –– is in a net heterotrophic metabolic state2,3,4 is enigmatic and is a first-order question in the global carbon cycle, as discussed by del Giorgio and Duarte5. Our findings suggest that autotrophy in the open sea is episodic and decoupled from the more constant heterotrophic processes. Consequently, the metabolic balance of the open sea depends on proper space and timescale integration to achieve an ecological understanding of life in the sea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ecosystem variability in the upper water column at station ALOHA (22° 45′ N, 158° W).

Similar content being viewed by others

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Science 281, 237–240 (1998).

    Article  ADS  CAS  Google Scholar 

  2. del Giorgio, P. A., Cole, J. J. & Cimbleris, A. Nature 385, 148–151 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Duarte, C. M. & Agustí, S. Science 281, 234–236 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Duarte, C. M., Agustí, S., del Giorgio, P. A. & Cole, J. J. Science 284, 1735 (1999).

    Google Scholar 

  5. del Giorgio, P. A. & Duarte, C. M. Nature 420, 379–384 (2002).

    Article  ADS  CAS  Google Scholar 

  6. Emerson, S. et al. Nature 389, 951–954 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Emerson, S., Quay, P. D., Stump, C., Wilbur, D. & Schudlich, R. J. Geophys. Res. 100, 15873–15887 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Najjar, R. G. & Keeling, R. F. Global Biogeochem. Cycles 14, 573–584 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Karl, D. M., Bidigare, R. R. & Letelier, R. M. in Phytoplankton Productivity and Carbon Assimilation in Marine and Freshwater Ecosystems (eds Williams, P. J. leB., Thomas, D. R. & Reynolds, C. S.) 222–264 (Blackwell, London, 2002).

    Google Scholar 

  10. McGillicuddy, D. J. Jr et al. Nature 394, 263–266 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Uz, B. M., Yoder, J. A. & Osychny, V. Nature 409, 597–600 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Gregg, M. C., Sanford, T. B. & Winkel, D. P. Nature 422, 513–515 (2003).

    Article  ADS  CAS  Google Scholar 

  13. Young, R. W. et al. Global Biogeochem. Cycles 5, 119–134 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Karl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, D., Laws, E., Morris, P. et al. Metabolic balance of the open sea. Nature 426, 32 (2003). https://doi.org/10.1038/426032a

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/426032a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing