Abstract
The technology of optical coherence tomography (OCT) has evolved rapidly from time-domain to spectral-domain and swept-source OCT over the recent years. OCT has become an important tool for assessment of the anterior chamber angle and detection of angle closure. Improvement in image resolution and scan speed of OCT has facilitated a more detailed and comprehensive analysis of the anterior chamber angle. It is now possible to examine Schwalbe's line and Schlemm's canal along with the scleral spur. High-speed imaging allows evaluation of the angle in 360°. With three-dimensional reconstruction, visualization of the iris profiles and the angle configurations is enhanced. This article summarizes the development and application of OCT for anterior chamber angle measurement, detection of angle closure, and investigation of the pathophysiology of primary angle closure.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science 1991; 254: 1178–1181.
Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994; 112: 1584–1589.
Leung CK, Chan WM, Ko CY, Chui SI, Woo J, Tsang MK et al. Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology 2005; 112: 980–984.
Ang GS, Wells AP . Changes in Caucasian eyes after laser peripheral iridotomy: an anterior segment optical coherence tomography study. Clin Experiment Ophthalmol 2010; 38: 778–785.
See JL, Chew PT, Smith SD, Nolan WP, Chan YH, Huang D et al. Changes in anterior segment morphology in response to illumination and after laser iridotomy in Asian eyes: an anterior segment OCT study. Br J Ophthalmol 2007; 91: 1485–1489.
Memarzadeh F, Li Y, Chopra V, Varma R, Francis BA, Huang D . Anterior segment optical coherence tomography for imaging the anterior chamber after laser peripheral iridotomy. Am J Ophthalmol 2007; 143: 877–879.
Pavlin CJ, Harasiewicz K, Foster FS . Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol 1992; 113: 381–389.
Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol 2005; 123: 1053–1059.
Sakata LM, Lavanya R, Friedman DS, Aung HT, Seah SK, Foster PJ et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol 2008; 126: 181–185.
Liu S, Li H, Dorairaj S, Cheung CY, Rousso J, Liebmann J et al. Assessment of scleral spur visibility with anterior segment optical coherence tomography. J Glaucoma 2010; 19: 132–135.
Leung CK, Yung WH, Yiu CK, Lam SW, Leung DY, Tse RK et al. Novel approach for anterior chamber angle analysis: anterior chamber angle detection with edge measurement and identification algorithm (ACADEMIA). Arch Ophthalmol 2006; 124: 1395–1401.
Wong HT, Lim MC, Sakata LM, Aung HT, Amerasinghe N, Friedman DS et al. High-definition optical coherence tomography imaging of the iridocorneal angle of the eye. Arch Ophthalmol 2009; 127: 256–260.
Leung CK, Cheung CY, Li H, Dorairaj S, Yiu CK, Wong AL et al. Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. Invest Ophthalmol Vis Sci 2007; 48: 4116–4122.
Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A et al. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg 2006; 32: 1803–1808.
Li H, Leung CK, Cheung CY, Wong L, Pang CP, Weinreb RN et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol 2007; 91: 1490–1492.
Radhakrishnan S, See J, Smith SD, Nolan WP, Ce Z, Friedman DS et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 2007; 48: 3683–3688.
Leung CK, Li H, Weinreb RN, Liu J, Cheung CY, Lai RY et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci 2008; 49: 3469–3474.
Tan AN, Sauren LD, de Brabander J, Berendschot TT, Lima Passos V, Webers CA et al. Reproducibility of anterior chamber angle measurements with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 2010 (in press).
Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 2001; 119: 1179–1185.
Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE et al. In vivo human retinal imaging by ultrahigh-speed spectral-domain optical coherence tomography. Opt Lett 2004; 29: 480–482.
Wylegał E, Teper S, Nowińska AK, Milka M, Dobrowolski D . Anterior segment imaging: fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg 2009; 35: 1410–1414.
Aung T, Zheng C, Tun TA, Kumar RS, Wong TY, Cheung CY . Novel anterior chamber angle measurements with high definition optical coherence tomography using the Schwalbe's line as the landmark. ARVO Meet Abstracts 2010; 51: 3855.
Yun S, Tearney G, de Boer J, Iftimia N, Bouma B . High-speed optical frequency-domain imaging. Opt Express 2003; 11: 2953–2963.
Yasuno Y, Madjarova VD, Makita S, Akiba M, Morosawa A, Chong C et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt Express 2005; 13: 10652–10664.
Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology 2008; 115: 769–774.
Memarzadeh F, Tang M, Li Y, Chopra V, Francis BA, Huang D . Optical coherence tomography assessment of angle anatomy changes after cataract surgery. Am J Ophthalmol 2007; 144: 464–465.
Nolan WP, See JL, Aung T, Friedman DS, Chan YH, Smith SD et al. Changes in angle configuration after phacoemulsification measured by anterior segment optical coherence tomography. J Glaucoma 2008; 17: 455–459.
Kucumen RB, Yenerel NM, Gorgun E, Kulacoglu DN, Dinc UA, Alimgil ML . Anterior segment optical coherence tomography measurement of anterior chamber depth and angle changes after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg 2008; 34: 1694–1698.
Tai MC, Chien KH, Lu DW, Chen JT . Angle changes before and after cataract surgery assessed by Fourier-domain anterior segment optical coherence tomography. J Cataract Refract Surg 2010; 36: 1758–1762.
Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology 2010; 117: 1967–1973.
Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol 2010; 94: 1184–1189.
Congdon NG, Youlin Q, Quigley H, Hung PT, Wang TH, Ho TC et al. Biometry and primary angle-closure glaucoma among Chinese, White, and Black populations. Ophthalmology 1997; 104: 1489–1495.
Quigley HA, Silver DM, Friedman DS, He M, Plyler RJ, Eberhart CG et al. Iris cross-sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure. J Glaucoma 2009; 18: 173–179.
Aptel F, Denis P . Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology 2010; 117: 3–10.
Wang BS, Narayanaswamy A, Amerasinghe N, Zheng C, He M, Chan YH et al. Increased iris thickness and association with primary angle closure glaucoma. Br J Ophthalmol 2010; 95 (1): 46–50.
Wang B, Sakata LM, Friedman DS, Chan YH, He M, Lavanya R et al. Quantitative iris parameters and association with narrow angles. Ophthalmology 2010; 117: 11–17.
Cheung CY, Liu S, Weinreb RN, Liu J, Li H, Leung DY et al. Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 4040–4046.
Quigley HA . Angle-closure glaucoma-simpler answers to complex mechanisms: LXVI Edward Jackson Memorial Lecture. Am J Ophthalmol 2009; 148: 657–669.
Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS et al. Ultrahigh speed 1050 nm swept source/fourier domain OCT retinal and anterior segment imaging at 100 000 to 400 000 axial scans per second. Opt Express 2010; 18: 20029–20048.
Acknowledgements
CL has received research support from Carl Zeiss Meditec, Optovue, and Tomey, and honorarium from Carl Zeiss Meditec for conference presentation. RW is a consultant to Carl Zeiss Meditec. RW has received research support from Carl Zeiss Meditec and Optovue.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Leung, CS., Weinreb, R. Anterior chamber angle imaging with optical coherence tomography. Eye 25, 261–267 (2011). https://doi.org/10.1038/eye.2010.201
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/eye.2010.201
Keywords
This article is cited by
-
Iridocorneal angle imaging of a human donor eye by spectral-domain optical coherence tomography
Scientific Reports (2023)
-
Biometric indicators of anterior segment parameters before and after laser peripheral iridotomy by swept-source optical coherent tomography
BMC Ophthalmology (2022)
-
Evaluation of the Anterior Chamber Angle Structures in Perinatal Infants Using a Wide-Field Digital Fundus Camera
Current Medical Science (2022)
-
Anterior chamber angle imaging with swept-source optical coherence tomography: comparison between CASIAII and ANTERION
Scientific Reports (2020)
-
Reproducibility and agreement of four anterior segment-optical coherence tomography devices for anterior chamber angle measurements
Graefe's Archive for Clinical and Experimental Ophthalmology (2020)