Abstract
Aims
To examine the rate of macular thickness loss using time-domain optical coherence tomography (OCT) in functionally progressing versus non-progressing eyes, determined by standard automated perimetry (SAP).
Methods
Glaucoma suspects (GS) and glaucomatous (G) eyes underwent SAP and OCT imaging every 6 months. Functional progression was determined using pointwise linear regression, defined as 2 contiguous locations losing ≥1.0 dB/year at P<1.0% in the same hemifield. The annual rate of macular thickness loss was calculated from inner and outer regions of the macular map.
Results
72 eyes (43 GS and 29G) with ≥30 months of follow-up were enroled. Fourteen eyes demonstrated SAP progression. The annual rate of macular thickness loss (μm/year) in progressing eyes was faster (all P<0.05) than non-progressing eyes in temporal outer (−1.90±2.97 vs 0.33±2.77), nasal inner (−1.70±2.66 vs 0.14±2.76), superior inner (−2.15±4.57 vs 0.51±2.99), temporal inner quadrants (−2.58±5.05 vs −0.38±2.34), and the average of inner macular quadrants (−1.84±2.90 vs 0.03±2.10). The rate of loss in the nasal inner (P=0.02) and temporal outer (P=0.02) macular regions was associated with optic disc haemorrhage.
Conclusions
Eyes with SAP progression have significantly greater rates of macular thickness loss consistent with glaucomatous retinal ganglion cell atrophy, as compared with non-progressing eyes.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Quigley HA, Dunkelberger GR, Green WR . Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107: 453–464.
Hoyt WF, Frisen L, Newman NM . Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol 1973; 12: 814–829.
Quigley HA, Flower RW, Addicks EM, McLeod DS . The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 1980; 19: 505–517.
Sommer A, Katz J, Quigley HA, Miller NR, Robin HA, Richter RC et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109: 77–83.
Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A . An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99: 19–28.
Airaksinen PJ, Drance SM, Douglas GR, Mawson DK, Nieminen H . Diffuse and localized nerve fiber loss in glaucoma. Am J Ophthalmol 1984; 98: 566–571.
Harwerth RS, Carter-Dawson L, Shen F, al e . Ganglion cell lossess underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 2242–2250.
Zeimer R, Asrani S, Zou S, Quigley H, Jampel H . Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 1998; 105: 224–231.
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science 1991; 254: 1178–1181.
Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J . Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma 2008; 17: 183–188.
Vessani RM, Moritz R, Batis L, Zagui RB, Bernardoni S, Susanna R . Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma 2009; 18: 253–261.
Park SB, Sung KR, Kang SY, Kim KR, Kook MS . Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009; 127: 1603–1609.
Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim DM . Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci 2009; 50: 662–668.
Sehi M, Greenfield DS . Assessment of retinal nerve fiber layer using optical coherence tomography and scanning laser polarimetry in progressive glaucomatous optic neuropathy. Am J Ophthalmol 2006; 142: 1056–1059.
Greenfield DS, Bagga H, Knighton RW . Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 2003; 121: 41–46.
Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138: 218–225.
Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110: 177–189.
Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Weinreb RN . Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139: 44–55.
Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112: 391–400.
De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R et al. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol 2011; 129: 562–568.
De Moraes CG, Liebmann CA, Susanna Jr R, Ritch R, Liebmann JA . Examination of the Performance of Different Pointwise Linear Regression. Clin Exp Ophthalmol 2011; e-pub ahead of print 8 September 2011; doi:10.1111/j.1442-9071.2011.02680.x.
Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51: 217–222.
Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 2009; 50: 5741–5748.
Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123: 464–470.
Grewal DS, Sehi M, Paauw JD, Greenfield DS . Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. J Glaucoma 2012; 21 (4): 214–220.
Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology 2011; 118: 1551–1557.
Kanadani FN, Hood DC, Grippo TM, Wangsupadilok B, Harizman N, Greenstein VC et al. Structural and functional assessment of the macular region in patients with glaucoma. Br J Ophthalmol 2006; 90: 1393–1397.
Heijl A, Bengtsson B, Hyman L, Leske MC . Natural history of open-angle glaucoma. Ophthalmology 2009; 116: 2271–2276.
Hood DC, Fortune B, Arthur SN, Xing D, Salant JA, Ritch R et al. Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma 2008; 17: 519–528.
Budenz DL, Fredette MJ, Feuer WJ, Anderson DR . Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology 2008; 115: 661–666 e4.
Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS . A comparison of structural measurements using 2 Stratus optical coherence tomography instruments. J Glaucoma 2007; 16: 287–292.
Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL . The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 2007; 48: 763–773.
Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM . Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005; 46: 2440–2443.
Tan O, Chopra V, Lu AT, Schuman JS et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 2009; 116: 2305–2314 e1-2.
Boden C, Blumenthal EZ, Pascual J, McEwan G, Weinreb RN, Medeiros F et al. Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 2004; 138: 1029–1036.
Bengtsson B, Leske MC, Hyman L, Heijl A . Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 205–209.
Heijl A, Bengtsson B, Chauhan BC, Lieberman MF, Cunliffe I, Hyman L et al. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmology 2008; 115: 1557–1565.
Viswanathan AC, Crabb DP, McNaught AI, Westcott MC, Kamal D, Garway-Heath DF et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol 2003; 87: 726–730.
Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E . Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003; 121: 48–56.
Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology 2011; 118: 2409–2413.
Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M et al. Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma A Comparison between Spectral-Domain and Time-Domain Optical Coherence Tomography. Ophthalmology 2011; 118: 1558–1562.
Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701–713.
Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I . European Glaucoma Prevention Study (EGPS) Group. Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112: 366–375.
Acknowledgements
NIH Grant R01-EY013516, Bethesda, Maryland; P30EY014801 University of Miami core grant; an unrestricted grant from Research to Prevent Blindness, New York, NY, USA; The Maltz Family Endowment for Glaucoma Research, Cleveland, OH, USA; a grant from Mr Barney Donnelley, Palm Beach, FL, USA; and The Kessel Foundation, Bergenfield, NJ, USA. The sponsor or funding organization had no role in the design or conduct of this research.
Author information
Authors and Affiliations
Consortia
Corresponding author
Ethics declarations
Competing interests
Dr. Greenfield has received research support from Carl Zeiss Meditec, Dublin, CA, USA. The other authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Niles, P., Greenfield, D., Sehi, M. et al. Detection of progressive macular thickness loss using optical coherence tomography in glaucoma suspect and glaucomatous eyes. Eye 26, 983–991 (2012). https://doi.org/10.1038/eye.2012.76
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/eye.2012.76
Keywords
This article is cited by
-
The impact of disc hemorrhage studies on our understanding of glaucoma: a systematic review 50 years after the rediscovery of disc hemorrhage
Japanese Journal of Ophthalmology (2019)