Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496 (7446): 498–503.
Schmitt EA, Dowling JE . Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 1994; 344 (4): 532–542.
Schmitt EA, Dowling JE . Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 1999; 404 (4): 515–536.
Barishak YR . Embryology of the eye and its adnexae. Dev Ophthalmol 1992; 24: 1–142.
Greiling TM, Aose M, Clark JI . Cell fate and differentiation of the developing ocular lens. Invest Ophthalmol Vis Sci 2010; 51 (3): 1540–1546.
Zhao XC, Yee RW, Norcom E, Burgess H, Avanesov AS, Barrish JP et al. The zebrafish cornea: structure and development. Invest Ophthalmol Vis Sci 2006; 47 (10): 4341–4348.
Schmitt EA, Dowling JE . Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J Comp Neurol 1996; 371 (2): 222–234.
Easter Jr SS, Nicola GN . The development of vision in the zebrafish (Danio rerio. Dev Biol 1996; 180 (2): 646–663.
Bilotta J, Saszik S, Sutherland SE . Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn 2001; 222 (4): 564–570.
Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY et al. Mutations affecting development of the zebrafish retina. Development 1996; 123: 263–273.
Clark KJ, Urban MD, Skuster KJ, Ekker SC . Transgenic zebrafish using transposable elements. Methods Cell Biol 2011; 104: 137–149.
Tallafuss A, Gibson D, Morcos P, Li Y, Seredick S, Eisen J et al. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 2012; 139 (9): 1691–1699.
Andrews OE, Cha DJ, Wei C, Patton JG . RNAi-mediated gene silencing in zebrafish triggered by convergent transcription. Sci Rep 2014; 4: 5222.
Hwang WY, Peterson RT, Yeh JR . Methods for targeted mutagenesis in zebrafish using TALENs. Methods 2014; 69 (1): 76–84.
Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 2012; 8 (8): e1002861.
Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB . Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 2015; 12 (6): 535–540.
Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K . Ocular coloboma: a reassessment in the age of molecular neuroscience. J Med Genet 2004; 41 (12): 881–891.
Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E et al. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat 2012; 33 (3): 457–466.
Lun K, Brand M . A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 1998; 125 (16): 3049–3062.
Viringipurampeer IA, Ferreira T, DeMaria S, Yoon JJ, Shan X, Moosajee M et al. Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development. Hum Mol Genet 2012; 21 (10): 2357–2369.
Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY . Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet 2008; 17 (24): 3987–4000.
Gross JM, Perkins BD, Amsterdam A, Egana A, Darland T, Matsui JI et al. Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 2005; 170 (1): 245–261.
French CR, Stach TR, March LD, Lehmann OJ, Waskiewicz AJ . Apoptotic and proliferative defects characterize ocular development in a microphthalmic BMP model. Invest Ophthalmol Vis Sci 2013; 54 (7): 4636–4647.
Nadauld LD, Chidester S, Shelton DN, Rai K, Broadbent T, Sandoval IT et al. Dual roles for adenomatous polyposis coli in regulating retinoic acid biosynthesis and Wnt during ocular development. Proc Natl Acad Sci USA 2006; 103 (36): 13409–13414.
Lee J, Gross JM . Laminin beta1 and gamma1 containing laminins are essential for basement membrane integrity in the zebrafish eye. Invest Ophthalmol Vis Sci 2007; 48 (6): 2483–2490.
Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T et al. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 2013; 1 (1): 15–31.
Asai-Coakwell M, French CR, Berry KM, Ye M, Koss R, Somerville M et al. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 2007; 80 (2): 306–315.
Gosse NJ, Baier H . An essential role for Radar (Gdf6a) in inducing dorsal fate in the zebrafish retina. Proc Natl Acad Sci USA 2009; 106 (7): 2236–2241.
den Hollander AI, Biyanwila J, Kovach P, Bardakjian T, Traboulsi EI, Ragge NK et al. Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genet 2010; 11: 102.
Nelson SM, Park L, Stenkamp DL . Retinal homeobox 1 is required for retinal neurogenesis and photoreceptor differentiation in embryonic zebrafish. Dev Biol 2009; 328 (1): 24–39.
Yin J, Morrissey ME, Shine L, Kennedy C, Higgins DG, Kennedy BN . Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics 2014; 15: 825.
Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G et al. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 2008; 4 (2): e29.
Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V . Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res 2011; 21 (8): 1349–1359.
Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N et al. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biol Open 2013; 2 (5): 448–452.
Nasevicius A, Ekker SC . Effective targeted gene 'knockdown' in zebrafish. Nat Genet 2000; 26 (2): 216–220.
Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS . The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 2003; 130 (9): 1837–1851.
Zhang J, Talbot WS, Schier AF . Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92 (2): 241–251.
Lim S, Wang Y, Yu X, Huang Y, Featherstone MS, Sampath K . A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol 2013; 14 (7): R69.
Chen CC, Yeh LK, Liu CY, Kao WW, Samples JR, Lin SJ et al. Morphological differences between the trabecular meshworks of zebrafish and mammals. Curr Eye Res 2008; 33 (1): 59–72.
Gray MP, Smith RS, Soules KA, John SW, Link BA . The aqueous humor outflow pathway of zebrafish. Invest Ophthalmol Vis Sci 2009; 50 (4): 1515–1521.
Link BA, Gray MP, Smith RS, John SW . Intraocular pressure in zebrafish: comparison of inbred strains and identification of a reduced melanin mutant with raised IOP. Invest Ophthalmol Vis Sci 2004; 45 (12): 4415–4422.
Veth KN, Willer JR, Collery RF, Gray MP, Willer GB, Wagner DS et al. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet 2011; 7 (2): e1001310.
Sowden JC . Molecular and developmental mechanisms of anterior segment dysgenesis. Eye 2007; 21 (10): 1310–1318.
McMahon C, Semina EV, Link BA . Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138 (3): 343–350.
Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V et al. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet 2008; 17 (4): 490–505.
Skarie JM, Link BA . FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest Ophthalmol Vis Sci 2009; 50 (11): 5026–5034.
Skarie JM, Link BA . The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum Mol Genet 2008; 17 (16): 2474–2485.
Park S, Jamshidi Y, Vaideanu D, Bitner-Glindzicz M, Fraser S, Sowden JC . Genetic risk for primary open-angle glaucoma determined by LMX1B haplotypes. Invest Ophthalmol Vis Sci 2009; 50 (4): 1522–1530.
McMahon C, Gestri G, Wilson SW, Link BA . Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev Biol 2009; 332 (2): 287–298.
Klintworth GK . Corneal dystrophies. Orphanet J Rare Dis 2009; 4: 7.
Boisset G, Polok BK, Schorderet DF . Characterization of pip5k3 fleck corneal dystrophy-linked gene in zebrafish. Gene Expr Patterns 2008; 8 (6): 404–410.
Pellegata NS, Dieguez-Lucena JL, Joensuu T, Lau S, Montgomery KT, Krahe R et al. Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet 2000; 25 (1): 91–95.
Yeh LK, Liu CY, Chien CL, Converse RL, Kao WW, Chen MS et al. Molecular analysis and characterization of zebrafish keratocan (zKera) gene. J Biol Chem 2008; 283 (1): 506–517.
Kulkarni BB, Tighe PJ, Mohammed I, Yeung AM, Powe DG, Hopkinson A et al. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics 2010; 11: 526.
Vereb Z, Albert R, Poliska S, Olstad OK, Akhtar S, Moe MC et al. Comparison of upstream regulators in human ex vivo cultured cornea limbal epithelial stem cells and differentiated corneal epithelial cells. BMC Genomics 2013; 14: 900.
Semina EV, Bosenko DV, Zinkevich NC, Soules KA, Hyde DR, Vihtelic TS et al. Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Dev Biol 2006; 299 (1): 63–77.
Shiels A, Hejtmancik JF . Molecular genetics of cataract. Prog Mol Biol Transl Sci 2015; 134: 203–218.
Vihtelic TS, Yamamoto Y, Springer SS, Jeffery WR, Hyde DR . Lens opacity and photoreceptor degeneration in the zebrafish lens opaque mutant. Dev Dyn 2005; 233 (1): 52–65.
Goishi K, Shimizu A, Najarro G, Watanabe S, Rogers R, Zon LI et al. AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development 2006; 133 (13): 2585–2593.
Bredrup C, Matejas V, Barrow M, Blahova K, Bockenhauer D, Fowler DJ et al. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol 2008; 146 (4): 602–611.
Pathania M, Semina EV, Duncan MK . Lens extrusion from laminin alpha 1 mutant zebrafish. ScientificWorldJournal 2014; 2014: 524929.
Hansen L, Comyn S, Mang Y, Lind-Thomsen A, Myhre L, Jean F et al. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 2014; 22 (11): 1290–1297.
Hingorani M, Hanson I, van Heyningen V . Aniridia. Eur J Hum Genet 2012; 20 (10): 1011–1017.
Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 2013; 93 (6): 1126–1134.
Braasch I, Liedtke D, Volff JN, Schartl M . Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigment Cell Melanoma Res 2009; 22 (6): 839–850.
Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC et al. Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 2004; 7 (12): 1329–1336.
Beirl AJ, Linbo TH, Cobb MJ, Cooper CD . oca2 Regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res 2014; 27 (2): 178–189.
Tsetskhladze ZR, Canfield VA, Ang KC, Wentzel SM, Reid KP, Berg AS et al. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PLoS One 2012; 7 (10): e47398.
Gronskov K, Dooley CM, Ostergaard E, Kelsh RN, Hansen L, Levesque MP et al. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am J Hum Genet 2013; 92 (3): 415–421.
Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R et al. The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 2008; 135 (2): 387–399.
Moosajee M, Tulloch M, Baron RA, Gregory-Evans CY, Pereira-Leal JB, Seabra MC . Single choroideremia gene in nonmammalian vertebrates explains early embryonic lethality of the zebrafish model of choroideremia. Invest Ophthalmol Vis Sci 2009; 50 (6): 3009–3016.
Stiebel-Kalish H, Reich E, Rainy N, Vatine G, Nisgav Y, Tovar A et al. Gucy2f zebrafish knockdown—a model for Gucy2d-related leber congenital amaurosis. Eur J Hum Genet 2012; 20 (8): 884–889.
Baye LM, Patrinostro X, Swaminathan S, Beck JS, Zhang Y, Stone EM et al. The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness. Hum Mol Genet 2011; 20 (8): 1467–1477.
Beyer J, Zhao XC, Yee R, Khaliq S, McMahon TT, Ying H et al. The role of crumbs genes in the vertebrate cornea. Invest Ophthalmol Vis Sci 2010; 51 (9): 4549–4556.
Malicki J, Driever W . oko meduzy mutations affect neuronal patterning in the zebrafish retina and reveal cell-cell interactions of the retinal neuroepithelial sheet. Development 1999; 126 (6): 1235–1246.
Schonthaler HB, Lampert JM, Isken A, Rinner O, Mader A, Gesemann M et al. Evidence for RPE65-independent vision in the cone-dominated zebrafish retina. Eur J Neurosci. 2007; 26 (7): 1940–1949.
Shu X, Zeng Z, Gautier P, Lennon A, Gakovic M, Cheetham ME et al. Knockdown of the zebrafish ortholog of the retinitis pigmentosa 2 (RP2) gene results in retinal degeneration. Invest Ophthalmol Vis Sci 2011; 52 (6): 2960–2966.
Shu X, Zeng Z, Gautier P, Lennon A, Gakovic M, Patton EE et al. Zebrafish Rpgr is required for normal retinal development and plays a role in dynein-based retrograde transport processes. Hum Mol Genet 2010; 19 (4): 657–670.
Nakao T, Tsujikawa M, Notomi S, Ikeda Y, Nishida K . The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 2012; 7 (4): e32472.
Li C, Wang L, Zhang J, Huang M, Wong F, Liu X et al. CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis. Biochim Biophys Acta 2014; 1842 (7): 1121–1129.
Nishimura DY, Baye LM, Perveen R, Searby CC, Avila-Fernandez A, Pereiro I et al. Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71. Am J Hum Genet 2010; 86 (5): 686–695.
Tsujikawa M, Malicki J . Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 2004; 42 (5): 703–716.
Wasfy MM, Matsui JI, Miller J, Dowling JE, Perkins BD . myosin 7aa(−/−) mutant zebrafish show mild photoreceptor degeneration and reduced electroretinographic responses. Exp Eye Res 2014; 122: 65–76.
Phillips JB, Blanco-Sanchez B, Lentz JJ, Tallafuss A, Khanobdee K, Sampath S et al. Harmonin (Ush1c) is required in zebrafish Muller glial cells for photoreceptor synaptic development and function. Dis Model Mech 2011; 4 (6): 786–800.
Ebermann I, Phillips JB, Liebau MC, Koenekoop RK, Schermer B, Lopez I et al. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120 (6): 1812–1823.
Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1 F. Am J Hum Genet 2001; 69 (1): 25–34.
Aller E, Jaijo T, Garcia-Garcia G, Aparisi MJ, Blesa D, Diaz-Llopis M et al. Identification of large rearrangements of the PCDH15 gene by combined MLPA and a CGH: large duplications are responsible for Usher syndrome. Invest Ophthalmol Vis Sci 2010; 51 (11): 5480–5485.
Seiler C, Finger-Baier KC, Rinner O, Makhankov YV, Schwarz H, Neuhauss SC et al. Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 2005; 132 (3): 615–623.
Alvarez Y, Cederlund ML, Cottell DC, Bill BR, Ekker SC, Torres-Vazquez J et al. Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Dev Biol 2007; 7: 114.
van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ et al. von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 2010; 3 (5-6): 343–353.
Collin RW, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA 2013; 110 (24): 9856–9861.
Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S et al. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 2003; 263 (2): 191–202.
Omori Y, Malicki J . oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr Biol 2006; 16 (10): 945–957.
Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A et al. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. Elife. e-pub ahead of print 28 July 2015; doi:10.7554/eLife.08261.
Alvarez Y, Astudillo O, Jensen L, Reynolds AL, Waghorne N, Brazil DP et al. Selective inhibition of retinal angiogenesis by targeting PI3 kinase. PLoS One 2009; 4 (11): e7867.
Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ . Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 2009; 126 (5-6): 464–477.
Gregory-Evans CY, Moosajee M, Shan X, Gregory-Evans K . Gene-specific differential response to anti-apoptotic therapies in zebrafish models of ocular coloboma. Mol Vis 2011; 17: 1473–1484.
Bailey TJ, Davis DH, Vance JE, Hyde DR . Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci 2012; 53 (6): 3126–3138.
Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA . beta-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 2012; 7: 30.
Ramachandran R, Zhao XF, Goldman D . Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci USA 2011; 108 (38): 15858–15863.
Acknowledgements
We gratefully acknowledge funding from Fight for Sight UK, Moorfields Eye Charity, the Choroideremia Research Foundation, the Academy of Medical Sciences and the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology. Thanks to Philip Luthert for providing the human retinal histology section and to Adam Dubis for his guidance with OCT imaging.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Richardson, R., Tracey-White, D., Webster, A. et al. The zebrafish eye—a paradigm for investigating human ocular genetics. Eye 31, 68–86 (2017). https://doi.org/10.1038/eye.2016.198
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/eye.2016.198
This article is cited by
-
Benzydamine rescues ethanol-induced teratogenesis in zebrafish FASD model
Scientific Reports (2025)
-
Carboxymethyl Cellulose-Modified Strontium Oxide Nanoparticles: a Multifunctional Nanoplatform for C6 Glioma Therapy and Antimicrobial Applications
Journal of Inorganic and Organometallic Polymers and Materials (2025)
-
Integrative mRNA and miRNA Expression Profiles from Developing Zebrafish Head Highlight Brain-Preference Genes and Regulatory Networks
Molecular Neurobiology (2025)
-
Toxicity assessment of VX in zebrafish: multi-organ toxicity evaluation and tissue distribution visualization using DESI-MSI
Archives of Toxicology (2025)
-
Novel MYH10 heterozygous variants associated to a syndrome combining mainly ptosis and ocular coloboma expand the MYH10 related phenotypes
European Journal of Human Genetics (2025)