Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Three-dimensional multipotent progenitor cell aggregates for expansion, osteogenic differentiation and ‘in vivo’ tracing with AAV vector serotype 6

Abstract

Multipotent adult progenitor cells (MAPCs) are bone marrow-derived stem cells with a high growth rate suitable for therapeutical applications as three-dimensional (3D) aggregates. Combined applications of osteogenically differentiated MAPC (OD-MAPC) aggregates and adeno-associated viral vectors (AAV) in bone bioengineering are still deferred until information with regard to expansion technologies, osteogenic potential, and AAV cytotoxicity and transduction efficiency is better understood. In this study, we tested whether self-complementary AAV (scAAV) can potentially be used as a gene delivery system in an OD-MAPC-based ‘in vivo’ bone formation model in the craniofacial region. Both expansion of rat MAPC (rMAPC) and osteogenic differentiation with dexamethasone were also tested in 3D aggregate culture systems ‘in vitro’ and ‘vivo’. rMAPCs grew as undifferentiated aggregates for 4 days, with a population doubling time of 37 h. After expansion, constant levels of Oct4 transcripts, and Oct4 and CD31 surface markers were observed, which constitute a hallmark of undifferentiated stage of rMAPCs. Dexamethasone effectively mediated rMAPC osteogenic differentiation by inducing the formation of a mineralized collagen type I network, and facilitated the activation of the wnt/β-catenin, a crucial pathway in skeletal development. To investigate the genetic modification of rMAPCs grown as 3D aggregates before implantation, scAAV serotypes 2, 3 and 6 were evaluated. scAAV6 packaged with the enhanced green fluorescent protein expression cassette efficiently mediated long-term transduction (10 days) ‘in vitro’ and ‘vivo’. The reporter transduction event allowed the tracing of OD-rMAPC (induced by dexamethasone) aggregates following OD-rMAPC transfer into a macro-porous hydroxyapatite scaffold implanted in a rat calvaria model. Furthermore, the scAAV6-transduced OD-rMAPCs generated a bone-like matrix with a collagenous matrix rich in bone-specific proteins (osteocalcin and osteopontin) in the scaffold macro-pores 10 days post-implantation. Newly formed bone was also observed in the interface between native bone and scaffold. The collective work supports future bone tissue engineering applications of 3D MAPC cultures for expansion, bone formation and the ability to alter genetically these cells using scAAV vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ulloa-Montoya F, Kidder BL, Pauwelyn KA, Chase LG, Luttun A, Crabbe A et al. Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity. Genome Biol 2007; 8: R163.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roobrouck VD, Clavel C, Jacobs SA, Ulloa-Montoya F, Crippa S, Sohni A et al. Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells 2011; 29: 871–882.

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian K, Park Y, Verfaillie CM, Hu WS . Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol Bioeng 2011; 108: 364–375.

    Article  CAS  PubMed  Google Scholar 

  4. Taiani JT, Krawetz RJ, Zur Nieden NI, Elizabeth Wu Y, Kallos MS, Matyas JR et al. Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev 2010; 19: 989–998.

    Article  CAS  PubMed  Google Scholar 

  5. Hong L, Sultana H, Paulius K, Zhang G . Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference. J Steroid Biochem Mol Biol 2009; 114: 180–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ . Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 2005; 5: 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arpornmaeklong P, Brown SE, Wang Z, Krebsbach PH . Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev 2009; 18: 955–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J et al. Self-complementary AAV25-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol Ther 2011; 19: 1416–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction ‘in vivo’. Gene Therapy 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  10. Gao R, Yan X, Zheng C, Goldsmith CM, Afione S, Hai B et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Therapy 2011; 18: 38–42.

    Article  PubMed  Google Scholar 

  11. Chng K, Larsen SR, Zhou S, Wright JF, Martiniello-Wilks R, Rasko JE . Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. J Gene Med 2007; 9: 22–32.

    Article  CAS  PubMed  Google Scholar 

  12. Stender S, Murphy M, O’Brien T, Stengaard C, Ulrich-Vinther M, Soballe K et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 2007; 13: 93–99; discussion 99.

    Article  CAS  PubMed  Google Scholar 

  13. Montes GS, Junqueira LC . The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz 1991; 86 (Suppl 3): 1–11.

    Article  PubMed  Google Scholar 

  14. Triffitt JT . Osteogenic stem cells and orthopedic engineering: summary and update. J Biomed Mater Res 2002; 63: 384–389.

    Article  CAS  PubMed  Google Scholar 

  15. Mauney JR, Volloch V, Kaplan DL . Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng 2005; 11: 787–802.

    Article  CAS  PubMed  Google Scholar 

  16. Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C et al. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 2007; 8: 70.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ji KH, Xiong J, Fan LX, Hu KM, Liu HQ . Rat marrow-derived multipotent adult progenitor cells differentiate into skin epidermal cells ‘in vivo’. J Dermatol 2009; 36: 403–409.

    Article  CAS  PubMed  Google Scholar 

  18. Dimomeletis I, Deindl E, Zaruba M, Groebner M, Zahler S, Laslo SM et al. Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice. Exp Hematol 2010; 38: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  19. Kehoe DE, Jing D, Lock LT, Tzanakakis ES . Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 2010; 16: 405–421.

    Article  CAS  PubMed  Google Scholar 

  20. King JA, Miller WM . Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 2007; 11: 394–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buzzard JJ, Gough NM, Crook JM, Colman A . Karyotype of human ES cells during extended culture. Nat Biotechnol 2004; 22: 381–382; author reply 382.

    Article  CAS  PubMed  Google Scholar 

  22. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005; 37: 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  23. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004; 22: 53–54.

    Article  CAS  PubMed  Google Scholar 

  24. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP et al. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 2003; 72: 537–547.

    Article  CAS  PubMed  Google Scholar 

  25. Declercq HA, Verbeeck RM, De Ridder LI, Schacht EH, Cornelissen MJ . Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials 2005; 26: 4964–4974.

    Article  CAS  PubMed  Google Scholar 

  26. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346: 1513–1521.

    Article  CAS  PubMed  Google Scholar 

  27. Etheridge SL, Spencer GJ, Heath DJ, Genever PG . Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004; 22: 849–860.

    Article  CAS  PubMed  Google Scholar 

  28. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107: 513–523.

    Article  CAS  PubMed  Google Scholar 

  29. Angers S, Moon RT . Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10: 468–477.

    Article  CAS  PubMed  Google Scholar 

  30. zur Nieden NI, Price FD, Davis LA, Everitt RE, Rancourt DE . Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol Endocrinol 2007; 21: 674–685.

    Article  CAS  PubMed  Google Scholar 

  31. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR . Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 1993; 12: 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ . Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 1994; 269: 14566–14574.

    CAS  PubMed  Google Scholar 

  33. Case N, Rubin J . Beta-catenin—a supporting role in the skeleton. J Cell Biochem 2010; 110: 545–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V . A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 2006; 24: 627–633.

    Article  CAS  PubMed  Google Scholar 

  35. Itasaki N, Hoppler S . Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239: 16–33.

    CAS  PubMed  Google Scholar 

  36. Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A et al. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem 2009; 108: 896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakashima A, Katagiri T, Tamura M . Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. J Biol Chem 2005; 280: 37660–37668.

    Article  CAS  PubMed  Google Scholar 

  38. Hai B, Yan X, Voutetakis A, Zheng C, Cotrim AP, Shan Z et al. Long-term transduction of miniature pig parotid glands using serotype 2 adeno-associated viral vectors. J Gene Med 2009; 11: 506–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lebherz C, Auricchio A, Maguire AM, Rivera VM, Tang W, Grant RL et al. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum Gene Ther 2005; 16: 178–186.

    Article  CAS  PubMed  Google Scholar 

  40. Podsakoff G, Wong Jr KK, Chatterjee S . Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 1994; 68: 5656–5666.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Han Z, Zhong L, Maina N, Hu Z, Li X, Chouthai NS et al. Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells. Hum Gene Ther 2008; 19: 267–278.

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian K, Geraerts M, Pauwelyn KA, Park Y, Owens DJ, Muijtjens M et al. Isolation procedure and characterization of multipotent adult progenitor cells from rat bone marrow. Methods Mol Biol 2010; 636: 55–78.

    Article  PubMed  Google Scholar 

  43. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM . Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  44. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG . Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005; 106: 1601–1603.

    Article  CAS  PubMed  Google Scholar 

  45. Grieger JC, Choi VW, Samulski RJ . Production and characterization of adeno-associated viral vectors. Nat Protoc 2006; 1: 1412–1428.

    Article  CAS  PubMed  Google Scholar 

  46. Chang MC, Ko CC, Douglas WH . Preparation of hydroxyapatite–gelatin nanocomposite. Biomaterials 2003; 24: 2853–2862.

    Article  CAS  PubMed  Google Scholar 

  47. Kasper FK, Young S, Tanahashi K, Barry MA, Tabata Y, Jansen JA et al. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J Biomed Mater Res A 2006; 78: 335–342.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandra Horton at North Carolina State University for processing ‘in vivo’ tissue specimens for immunohistochemistry and Victoria Madden at UNC Microscopy Services Laboratory for processing in vitro cell matrices for electron microscopy. Also, we would like to acknowledge Dr Ganokon Urkasemsin for her contribution towards the statistical analysis of this project. João Ferreira was supported by the doctoral fellowship of FCT-Portuguese Foundation for Science and Technology (SFRH/BD/36841/2007). This work was supported in part by grants from the: NIH/NIDCR (K08DE018695), NC Biotech Center, American Association for Orthodontist Foundation awarded to C-CK; Northwest Genome Engineering Consortium pilot awarded to MLH; and Wellstone (5U54AR056953) and NIH (5R01AI072176) awarded to RJS.

Author information

Authors and Affiliations

Corresponding author

Correspondence to J R Ferreira.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, J., Hirsch, M., Zhang, L. et al. Three-dimensional multipotent progenitor cell aggregates for expansion, osteogenic differentiation and ‘in vivo’ tracing with AAV vector serotype 6. Gene Ther 20, 158–168 (2013). https://doi.org/10.1038/gt.2012.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/gt.2012.16

Keywords

This article is cited by

Search

Quick links