Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro

Abstract

Objective:

To investigate the anti-obesity effect of Rubi Fructus (RF) extract using brown adipose tissue (BAT) and primary brown preadipocytes in vivo and in vitro.

Methods:

Male C57BL/6 J mice (n=5 per group) were fed a high-fat diet (HFD) for 10 weeks with or without RF. Brown preadipocytes from the interscapular BAT of mice (age, post-natal days 1–3) were cultured with differentiation media (DM) including isobutylmethylxanthine, dexamethasone, T3, indomethacin and insulin with or without RF.

Results:

In HFD-induced obese C57BL/6 J mice, long-term RF treatment significantly reduced weight gain as well as the weights of the white adipose tissue, liver and spleen. Serum levels of total cholesterol and low-density lipoprotein cholesterol were also reduced in the HFD group which received RF treatment. Furthermore, RF induced thermogenic-, adipogenic- and mitochondria-related gene expressions in BAT. In primary brown adipocytes, RF effectively stimulated the expressions of thermogenic- and mitochondria-related genes. In addition, to examine whether LIPIN1, a regulator of adipocyte differentiation, is regulated by RF, Lipin1 small interfering RNA (siRNA) and RF were pretreated in primary brown adipocytes. Pretreatment with Lipin1 siRNA and RF downregulated the DM-induced expression levels of thermogenic- and mitochondria-related genes. Moreover, RF markedly upregulated AMP-activated protein kinase. Our study shows that RF is capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes.

Conclusions:

This study demonstrates that RF prevents the development of obesity in mice fed with a HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes, which suggests that RF has potential as a therapeutic application for the treatment or prevention of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stumvoll M, Goldstein BJ, van Haeften TW . Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333–1346.

    Article  CAS  PubMed  Google Scholar 

  2. Kim KS, Yang HJ, Choi EK, Shin MH, Kim KH, Um JY et al. The effects of complex herbal medicine composed of Cornus fructus, Dioscoreae rhizoma, Aurantii fructus, and Mori folium in obese type-2 diabetes mice model. Orient Pharm Exp Med 2013; 13: 69–75.

    Article  Google Scholar 

  3. Kopelman PG . Obesity as a medical problem. Nature 2000; 404: 635–643.

    Article  CAS  PubMed  Google Scholar 

  4. Collins S, Cao W, Daniel KW, Dixon TM, Medvedev AV, Onuma H et al. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med (Maywood) 2001; 226: 982–990.

    Article  CAS  Google Scholar 

  5. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B . UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001; 1504: 82–106.

    Article  CAS  PubMed  Google Scholar 

  6. Sell H, Deshaies Y, Richard D . The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 2004; 36: 2098–2104.

    Article  CAS  PubMed  Google Scholar 

  7. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ . BAT: a new target for human obesity? Trends Pharmacol Sci 2009; 30: 387–396.

    Article  PubMed  Google Scholar 

  8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  10. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    CAS  PubMed  Google Scholar 

  11. Ceddia RB . The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol 2013; 366: 194–203.

    Article  CAS  PubMed  Google Scholar 

  12. Peterfy M, Phan J, Xu P, Reue K . Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nature Genet 2001; 27: 121–124.

    Article  CAS  PubMed  Google Scholar 

  13. Peterfy M, Phan J, Reue K . Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem 2005; 280: 32883–32889.

    Article  CAS  PubMed  Google Scholar 

  14. van Harmelen V, Ryden M, Sjolin E, Hoffstedt J . A role of lipin in human obesity and insulin resistance: relation to adipocyte glucose transport and GLUT4 expression. J Lipid Res 2007; 48: 201–206.

    Article  CAS  PubMed  Google Scholar 

  15. Croce MA, Eagon JC, LaRiviere LL, Korenblat KM, Klein S, Finck BN . Hepatic lipin 1 beta expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss. Diabetes 2007; 56: 2395–2399.

    Article  CAS  PubMed  Google Scholar 

  16. Phan J, Reue K . Lipin a lipodystrophy and obesity gene. Cell Metab 2005; 1: 73–83.

    Article  CAS  PubMed  Google Scholar 

  17. Lim JW, Jeong JT, Shin CS . Component analysis and sensory evaluation of Korean black raspberry (Rubus coreanus Mique) wines. Int J Food Sci Tech 2012; 47: 918–926.

    Article  CAS  Google Scholar 

  18. Lim JW, Hwang HJ, Shin CS . Polyphenol compounds and anti-inflammatory activities of Korean black raspberry ( Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed. J Agric Food Chem 2012; 60: 5121–5127.

    Article  CAS  PubMed  Google Scholar 

  19. Choi J, Lee KT, Ha J, Yun SY, Ko CD, Jung HJ et al. Antinociceptive and antiinflammatory effects of Niga-ichigoside F1 and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol Pharm Bull 2003; 26: 1436–1441.

    Article  CAS  PubMed  Google Scholar 

  20. Lee JE, Park E, Auh JH, Choi HK, Lee J, Cho S et al. Effects of a Rubus coreanus Miquel supplement on plasma antioxidant capacity in healthy Korean men. Nutr Res Pract 2011; 5: 429–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong MY, Kim HL, Park J, An HJ, Kim SH, Kim SJ et al. Rubi fructus (rubus coreanus) inhibits differentiation to adipocytesc in 3T3-L1 cells. Evid Based Complement Alternat Med 2013; 2013: 475386.

    PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Dang HX, Li D, Pang W, Hammock BD, Zhu Y . Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS One 2012; 7: e39165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR . beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 1999; 274: 34795–34802.

    Article  CAS  PubMed  Google Scholar 

  24. Tseng YH, Kriauciunas KM, Kokkotou E, Kahn CR . Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol Cell Biol 2004; 24: 1918–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W . Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 1992; 97: 493–497.

    Article  CAS  PubMed  Google Scholar 

  26. Dugani CB, Klip A . Glucose transporter 4: cycling, compartments and controversies. EMBO Rep 2005; 6: 1137–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460: 1154–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kraus D, Fasshauer M, Ott V, Meier B, Jost M, Klein HH et al. Leptin secretion and negative autocrine crosstalk with insulin in brown adipocytes. J Endocrinol 2002; 175: 185–191.

    Article  CAS  PubMed  Google Scholar 

  29. Viengchareun S, Zennaro MC, Pascual-Le Tallec L, Lombes M . Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett 2002; 532: 345–350.

    Article  CAS  PubMed  Google Scholar 

  30. Higashida K, Higuchi M, Terada S . Potential role of lipin-1 in exercise-induced mitochondrial biogenesis. Biochem Biophys Res Commun 2008; 374: 587–591.

    Article  CAS  PubMed  Google Scholar 

  31. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  32. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454: 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Enerback S, Smith U . Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. Obesity Res 2003; 11: 1182–1191.

    Article  CAS  Google Scholar 

  34. Scarpulla RC . Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81–89.

    Article  CAS  PubMed  Google Scholar 

  35. Shi T, Wang F, Stieren E, Tong Q . SIRT3 a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280: 13560–13567.

    Article  CAS  PubMed  Google Scholar 

  36. Glatz JF, Borchers T, Spener F, van der Vusse GJ . Fatty acids in cell signalling: modulation by lipid binding proteins. Prostaglandins Leukot Essent Fatty Acids 1995; 52: 121–127.

    Article  CAS  PubMed  Google Scholar 

  37. Kadowaki T, Yamauchi T . Adiponectin and adiponectin receptors. Endocrine Rev 2005; 26: 439–451.

    Article  CAS  Google Scholar 

  38. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.

    Article  CAS  PubMed  Google Scholar 

  39. Rajala MW, Obici S, Scherer PE, Rossetti L . Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest 2003; 111: 225–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suviolahti E, Reue K, Cantor RM, Phan J, Gentile M, Naukkarinen J et al. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum Mol Genet 2006; 15: 377–386.

    Article  CAS  PubMed  Google Scholar 

  41. Yao-Borengasser A, Rasouli N, Varma V, Miles LM, Phanavanh B, Starks TN et al. Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor gamma activation. Diabetes 2006; 55: 2811–2818.

    Article  CAS  PubMed  Google Scholar 

  42. Nadra K, Medard JJ, Mul JD, Han GS, Gres S, Pende M et al. Cell autonomous lfunction is essential for development and maintenance of white and brown adipose tiipin 1 function is essential for development and maintenance of white and brown adipose tissue. Mol Cell Biol 2012; 32: 4794–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vila-Bedmar R, Lorenzo M, Fernandez-Veledo S . Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 2010; 151: 980–992.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (no. 2011-0030130, no. 2011–0006220, no. 2012M2B2B1055244, no. 2013R1A2A2A03006068, no. 2010-0022450 and 2013R1A1A2059601).

Author information

Authors and Affiliations

Corresponding authors

Correspondence to S-H Hong or J-Y Um.

Ethics declarations

Competing interests

The authors declare no conflict interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, MY., Kim, HL., Park, J. et al. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int J Obes 39, 456–464 (2015). https://doi.org/10.1038/ijo.2014.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ijo.2014.155

This article is cited by

Search

Quick links