Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Studies and Practice

Serum vascular cell adhesion molecule-1 predicts significant liver fibrosis in non-alcoholic fatty liver disease

Abstract

Background:

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and is strongly associated with obesity, dyslipidemia and insulin resistance. NAFLD often presents as simple steatosis (NAFL) but can progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Current non-invasive biomarkers are not tailored to identify significant (F2) fibrosis, although recent guidelines recommend a stringent follow-up of this patient population. We and others have reported on the role of pathological angiogenesis in the pathogenesis of NAFLD, highlighting pro-angiogenic factors as potential diagnostic markers.

Objective:

To investigate the applicability of angiogenic and endothelial dysfunction markers as non-invasive diagnostic tools for NASH or NASH-associated fibrosis in obese patients.

Methods:

In a prospective cross-sectional study, male patients undergoing bariatric surgery (n=61) and control patients (n=35) were recruited. Serum protein levels and visceral adipose tissue gene expression of endothelial dysfunction and angiogenic markers were analyzed by multiplex bead-based assay and quantitative RT-PCR, respectively. For validation, we recruited a second cohort of patients undergoing bariatric surgery (n=40) and a cohort of NAFLD patients from our outpatient clinic (n=30).

Results:

We identified serum vascular cell adhesion molecule-1 (VCAM-1) as an independent predictor for F2 fibrosis (median 14.0 vs 8.7 ng ml−1 in patients with and without significant fibrosis; P<0.0001) with an area under the receiver-operating characteristics (AUROC) curve of 0.80. The cutoff point of 13.2 ng ml−1 showed a sensitivity of 80% and specificity of 83%. In line with these results, VCAM-1 visceral adipose tissue gene expression was also elevated in patients with fibrosis (P=0.030). In the bariatric surgery and clinical validation cohorts, VCAM-1 displayed similar AUROCs of 0.89 and 0.85, respectively.

Conclusions:

VCAM-1 levels are able to accurately predict significant (F2) fibrosis in NAFLD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Yki-Jarvinen H . Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2: 901–910.

    Article  CAS  Google Scholar 

  2. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P . Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 2015; 47: 181–190.

    Article  Google Scholar 

  3. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M . Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73–84.

    Article  Google Scholar 

  4. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015; 61: 1547–1554.

    Article  CAS  Google Scholar 

  5. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149: 389–397.e10.

    Article  Google Scholar 

  6. Vernon G, Baranova A, Younossi ZM . Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34: 274–285.

    Article  CAS  Google Scholar 

  7. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388–1402.

    Google Scholar 

  8. Machado MV, Cortez-Pinto H . Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol 2013; 58: 1007–1019.

    Article  Google Scholar 

  9. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008; 47: 455–460.

    Article  Google Scholar 

  10. McPherson S, Anstee QM, Henderson E, Day CP, Burt AD . Are simple noninvasive scoring systems for fibrosis reliable in patients with NAFLD and normal ALT levels? Eur J Gastroenterol Hepatol 2013; 25: 652–658.

    Article  Google Scholar 

  11. Villanova N, Moscatiello S, Ramilli S, Bugianesi E, Magalotti D, Vanni E et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 2005; 42: 473–480.

    Article  Google Scholar 

  12. Long MT, Wang N, Larson MG, Mitchell GF, Palmisano J, Vasan RS et al. Nonalcoholic fatty liver disease and vascular function: cross-sectional analysis in the Framingham heart study. Arterioscler Thromb Vasc Biol 2015; 35: 1284–1291.

    Article  CAS  Google Scholar 

  13. Kasumov T, Edmison JM, Dasarathy S, Bennett C, Lopez R, Kalhan SC . Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease. Metabolism 2011; 60: 776–781.

    Article  CAS  Google Scholar 

  14. Verrijken A, Francque S, Mertens I, Prawitt J, Caron S, Hubens G et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2014; 59: 121–129.

    Article  CAS  Google Scholar 

  15. Kitade M, Yoshiji H, Noguchi R, Ikenaka Y, Kaji K, Shirai Y et al. Crosstalk between angiogenesis, cytokeratin-18, and insulin resistance in the progression of non-alcoholic steatohepatitis. World J Gastroenterol 2009; 15: 5193–5199.

    Article  CAS  Google Scholar 

  16. Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006; 44: 983–991.

    Article  CAS  Google Scholar 

  17. Coulon S, Legry V, Heindryckx F, Van Steenkiste C, Casteleyn C, Olievier K et al. Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology 2013; 57: 1793–1805.

    Article  CAS  Google Scholar 

  18. Francque S, Laleman W, Verbeke L, Van Steenkiste C, Casteleyn C, Kwanten W et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Invest 2012; 92: 1428–1439.

    Article  CAS  Google Scholar 

  19. Lefere S, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Devisscher L, Geerts A . Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci 2016; 73: 3419–3431.

    Article  CAS  Google Scholar 

  20. Pasarin M, Abraldes JG, Rodriguez-Vilarrupla A, La Mura V, Garcia-Pagan JC, Bosch J . Insulin resistance and liver microcirculation in a rat model of early NAFLD. J Hepatol 2011; 55: 1095–1102.

    Article  CAS  Google Scholar 

  21. Francque SM, van der Graaff D, Kwanten WJ . Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J Hepatol 2016; 65: 425–443.

    Article  CAS  Google Scholar 

  22. Bekaert M, Ouwens DM, Horbelt T, Van de Velde F, Fahlbusch P, Herzfeld de Wiza D et al. Reduced expression of chemerin in visceral adipose tissue associates with hepatic steatosis in patients with obesity. Obesity 2016; 24: 2544–2552.

    Article  CAS  Google Scholar 

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  24. American Diabetes Association. Standards of Medical Care in Diabetes-2016. Diabetes Care 2016; 39 (Suppl 1): S1–112.

    Google Scholar 

  25. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I et al. Liver fibrosis in overweight patients. Gastroenterology 2000; 118: 1117–1123.

    Article  CAS  Google Scholar 

  26. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317–1325.

    Article  CAS  Google Scholar 

  27. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313–1321.

    Article  Google Scholar 

  28. Kleiner DE, Brunt EM . Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 2012; 32: 3–13.

    Article  CAS  Google Scholar 

  29. Bedossa P, Consortium FP . Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 2014; 60: 565–575.

    Article  CAS  Google Scholar 

  30. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012; 56: 943–951.

    Article  Google Scholar 

  31. du Plessis J, van Pelt J, Korf H, Mathieu C, van der Schueren B, Lannoo M et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 2015; 149: 635–648.e14.

    Article  CAS  Google Scholar 

  32. Sung HK, Doh KO, Son JE, Park JG, Bae Y, Choi S et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab 2013; 17: 61–72.

    Article  CAS  Google Scholar 

  33. Ratziu V . Novel pharmacotherapy options for NASH. Dig Dis Sci 2016; 61: 1398–1405.

    Article  CAS  Google Scholar 

  34. Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease—the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther 2014; 39: 254–269.

    Article  CAS  Google Scholar 

  35. Sun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 2012; 109: 5874–5879.

    Article  CAS  Google Scholar 

  36. Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA et al. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 2015; 107: 32–44.

    Article  CAS  Google Scholar 

  37. Galkina E, Ley K . Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2292–2301.

    Article  CAS  Google Scholar 

  38. Coulon S, Francque S, Colle I, Verrijken A, Blomme B, Heindryckx F et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine 2012; 59: 442–449.

    Article  CAS  Google Scholar 

  39. Dewerchin M, Carmeliet P . PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2012; 2: a011056.

    Article  Google Scholar 

  40. Tarantino G, Conca P, Pasanisi F, Ariello M, Mastrolia M, Arena A et al. Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J Gastroenterol Hepatol 2009; 21: 504–511.

    Article  CAS  Google Scholar 

  41. Yilmaz Y, Yonal O, Kurt R, Alahdab YO, Ozdogan O, Celikel CA et al. Circulating levels of vascular endothelial growth factor A and its soluble receptor in patients with biopsy-proven nonalcoholic fatty liver disease. Arch Med Res 2011; 42: 38–43.

    Article  CAS  Google Scholar 

  42. Yilmaz Y, Dolar E, Ulukaya E, Akgoz S, Keskin M, Kiyici M et al. Soluble forms of extracellular cytokeratin 18 may differentiate simple steatosis from nonalcoholic steatohepatitis. World J Gastroenterol 2007; 13: 837–844.

    Article  CAS  Google Scholar 

  43. Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol 2014; 60: 167–174.

    Article  CAS  Google Scholar 

  44. Yoshimura K, Okanoue T, Ebise H, Iwasaki T, Mizuno M, Shima T et al. Identification of novel noninvasive markers for diagnosing nonalcoholic steatohepatitis and related fibrosis by data mining. Hepatology 2016; 63: 462–473.

    Article  CAS  Google Scholar 

  45. Raevens S, Coulon S, Van Steenkiste C, Colman R, Verhelst X, Van Vlierberghe H et al. Role of angiogenic factors/cell adhesion markers in serum of cirrhotic patients with hepatopulmonary syndrome. Liver Int 2015; 35: 1499–1507.

    Article  CAS  Google Scholar 

  46. Lo Iacono O, Rincon D, Hernando A, Ripoll C, Catalina MV, Salcedo M et al. Serum levels of soluble vascular cell adhesion molecule are related to hyperdynamic circulation in patients with liver cirrhosis. Liver Int 2008; 28: 1129–1135.

    Article  Google Scholar 

  47. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012; 185: 67–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Petra van Wassenhove and Hilde Devlies for their excellent technical assistance, Elien Glorieus for her accurate management of the patient database, and Roos Coolman from the Statistics unit for her helpful advice. Guarantor of the article: Anja Geerts. SL, SR and XV received a research grant from the Fund for Scientific Research Flanders (FWO15/ASP/146, FWO14/ASP/200 and 1700214N, respectively). HVV is a senior clinical researcher of the FWO Flanders.

Author contributions

SL, LD, BL and AG conceived and designed the study; SL, FVdV, MB, YVN, MP and AH were involved in data acquisition; SL, LD, SR, CVS, BL and AG were involved in the data analysis and interpretation; SL drafted the paper; LD, XV, HVV, BL and AG critically revised the manuscript for intellectual content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Geerts.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefere, S., Van de Velde, F., Devisscher, L. et al. Serum vascular cell adhesion molecule-1 predicts significant liver fibrosis in non-alcoholic fatty liver disease. Int J Obes 41, 1207–1213 (2017). https://doi.org/10.1038/ijo.2017.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ijo.2017.102

This article is cited by

Search

Quick links