Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Amann RI, Ludwig W, Schleifer KH . (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169.
Bonnet R, Suau A, Dore J, Gibson GR, Collins MD . (2002). Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int J Syst Evol Microbiol 52: 757–763.
Curtis TP, Sloan WT, Scannell JW . (2002). Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99: 10494–10499.
Donachie SP, Bowman JP, Alam M . (2004b). Psychroflexus tropicus, sp. nov., a new, obligately halophilic CFB group bacterium isolated from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 54: 935–940.
Donachie SP, Bowman JP, Alam M . (2006). Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 56: 563–567.
Donachie SP, Bowman JP, On SL, Alam M . (2005). Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55: 1271–1277.
Donachie SP, Hou S, Gregory TS, Malahoff A, Alam M . (2003). Idiomarina loihiensis, sp. nov., a new halophilic γ−Proteobacterium isolated from the Lō‘ihi submarine volcano, Hawai‘i. Int J Syst Evol Microbiol 53: 1873–1879.
Donachie SP, Hou S, Lee K-S, Riley CW, Pikina A, Belisle C et al. (2004a). The Hawaiian Archipelago: a microbial diversity hotspot. Microb Ecol 48: 509–520.
Eilers H, Pernthaler J, Glöckner FO, Amann R . (2000). Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66: 3044–3051.
Fry J . (2000). Bacterial diversity and ‘unculturables’. Microbiol Today 27: 186–188.
Handelsman J . (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68: 669–685.
Hengstmann U, Chin KJ, Janssen PH, Liesack W . (1999). Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65: 5050–5058.
Hill JE, Seipp RP, Betts M, Hawkins L, Van Kessel AG, Crosby WL et al. (2002). Extensive profiling of a complex microbial community by high-throughput sequencing. Appl Environ Microbiol 68: 3055–3066.
Hongoh Y, Yuzawa H, Ohkuma M, Kudo T . (2003). Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221: 299–304.
Kaiser O, Pühler A, Selbitschka W . (2001). Phylogenetic analysis of microbial diversity in the rhizoplane of Oilseed Rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42: 136–149.
Mathieu-Daudé F, Welsh J, Vogt T, McClelland M . (1996). DNA rehybridization during PCR: the ‘Cot effect’ and its consequences. Nucl Acids Res 24: 2080–2086.
Maturrano L, Santos F, Rosselló-Mora R, Antón J . (2006). Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72: 3887–3895.
Munson MA, Banerjee A, Watson TF, Wade WG . (2004). Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42: 3023–3029.
Munson MA, Pitt-Ford T, Chong B, Weightman A, Wade WG . (2002). Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81: 761–766.
Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA . (1986). Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40: 337–365.
Oremland RS, Capone DG, Stolz JF, Fuhrman J . (2005). Whither or wither geomicrobiology in the era of ‘community metagenomics’. Nat Rev Microbiol 3: 572–578.
Pace NR, Stahl DA, Lane DJ, Olsen GJ . (1986). The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9: 1–55.
Pace N . (2006). A time for change. Nature 441: 289.
Polz MF, Cavanaugh CM . (1998). Bias in template-to-product ratios in multi-template PCR. Appl Environ Microbiol 64: 3724–3730.
Shawkey MD, Mills KL, Dale C, Hill GE . (2005). Microbial diversity of wild bird feathers revealed through cultured-based and culture-independent techniques. Microb Ecol 50: 40–47.
Stahl DA, Lane DJ, Olsen GJ, Pace NR . (1984). Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–411.
Staley JT, Konopka A . (1985). Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39: 321–346.
Suzuki MT, Giovannoni SJ . (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625–630.
Ward DM, Weller R, Bateson MM . (1990). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.
Woese C, Fox G . (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Donachie, S., Foster, J. & Brown, M. Culture clash: challenging the dogma of microbial diversity. ISME J 1, 97–99 (2007). https://doi.org/10.1038/ismej.2007.22
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2007.22
This article is cited by
-
The subgingival cultivable bacteria of Albanian subjects with different periodontal status compared to a similar population of Spanish subjects: a case control study
BMC Oral Health (2022)
-
Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya, India
Archives of Microbiology (2022)
-
Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation
Mycorrhiza (2020)
-
Building plant microbiome vault: a future biotechnological resource
Symbiosis (2019)
-
The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacteriumspp. and Staphylococcus spp. with potential plant-growth promoting activities
Plant and Soil (2018)