Abstract
Highly acidic (pH 0–1) biofilms, known as ‘snottites’, form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated ‘G-plasma’ clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide–quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Allen E, Banfield J . (2005). Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3: 489–498.
Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
Baker-Austin C, Dopson M . (2007). Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15: 165–171.
Barreto M, Jedlicki E, Holmes D . (2005). Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71: 2902–2909.
Biddle J, Fitz-Gibbon S, Schuster S, Brenchley J, House C . (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105: 10583–10588.
Bond P, Smriga S, Banfield J . (2000). Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66: 3842–3849.
Cabello P, Roldán M, Moreno-Vivián C . (2004). Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150: 3527–3546.
Case R, Boucher Y, Dahllöf I, Holmström C, Doolittle W, Kjelleberg S . (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73: 278–288.
Chan L, Morgan-Kiss R, Hanson T . (2009). Functional analysis of three sulfide: quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191: 1026–1034.
Chen Z, Liu Y, Wu J, She Q, Jiang C, Liu S . (2007). Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. Appl Microbiol Biotechnol 74: 688–698.
Ciccarelli F, Doerks T, Von Mering C, Creevey C, Snel B, Bork P . (2006). Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–1287.
Clark D, Norris P . (1996). Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142: 785–790.
Cleaver A, Burton N, Norris P . (2007). A novel Acidimicrobium species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. Appl Environ Microbiol 73: 4294–4299.
Collingro A, Toenshoff E, Taylor M, Fritsche T, Wagner M, Horn M . (2005). andidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp. Int J Syst Evol Microbiol 55: 1863–1866.
Cox JC, Nicholls DG, Ingledew WJ . (1979). Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferro-oxidans. Biochem J 178: 195–200.
Davey M, O’toole G . (2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64: 847–867.
DeLong E . (1992). Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685–5689.
Dinsdale E, Edwards R, Hall D, Angly F, Breitbart M, Brulc J et al. (2008). Functional metagenomic profiling of nine biomes. Nature 452: 629–632.
Edwards R, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson D et al. (2006). Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7: 57.
Friedrich C, Bardischewsky F, Rother D, Quentmeier A, Fischer J . (2005). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259.
Friedrich C, Rother D, Bardischewsky F, Quentmeier A, Fischer J . (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882.
Fuchsman C, Rocap G . (2006). Whole-genome reciprocal BLAST analysis reveals that Planctomycetes do not share an unusually large number of genes with Eukarya and Archaea. Appl Environ Microbiol 72: 6841–6884.
Galdenzi S, Maruoka T . (2003). Gypsum deposits in the Frasassi Caves, central Italy. J Cave Karst Stud 65: 111–125.
Griesbeck C, Hauska G, Schütz M . (2000). Biological sulfide oxidation: sulfide-quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent Research Developments in Microbiology. Research Signpost: Trivadrum, India, pp 179–203.
Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N et al. (2002). Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41: 11552–11565.
Hensen D, Sperling D, Trüper H, Brune D, Dahl C . (2006). Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62: 794–810.
Hopmans E, Schouten S, Pancost R, van der Meer M, Damstè J . (2000). Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spec 14: 585–589.
Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR . (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169: 399–423.
Huson D, Auch A, Qi J, Schuster S . (2007). MEGAN analysis of metagenomic data. Genome Res 17: 377–386.
Inskeep W, Rusch D, Jay Z, Herrgard M, Kozubal M, Richardson T et al. (2010). Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5: e9773.
Johnson D, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg K . (2009). Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic Actinobacteria. Int J Syst Evol Microbiol 59: 1082.
Johnson D, Hallberg K . (2003). The microbiology of acidic mine waters. Res Microbiol 154: 466–473.
Jones D, Lyon E, Macalady J . (2008). Geomicrobiology of biovermiculations from the Frasassi cave system, Italy. J Cave Karst Stud 70: 78–93.
Kanao T, Kamimura K, Sugio T . (2007). Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. J Biotechnol 132: 16–22.
Kletzin A . (2007). General characteristics and important model organisms. In: Cavicchioli R (ed). Archaea: Molecular and Cellular Biology. ASM Press: Washington DC, pp 14–92.
Lane DJ . (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematics. Wiley: New York, pp 115–175.
Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, sterâs M et al. (2009). Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266–271.
Levicán G, Ugalde J, Ehrenfeld N, Maass A, Parada P . (2008). Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9: 581–600.
Macalady J, Vestling M, Baumler D, Boekelheide N, Kaspar C, Banfield J . (2004). Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8: 411–419.
Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D . (2008). Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2: 590–601.
Macalady JL, Jones DS, Lyon EH . (2007). Extremely acidic, pendulous microbial biofilms from the Frasassi cave system, Italy. Environ Microbiol 9: 1402–1414.
Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S et al. (2006). Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596–5609.
Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I et al. (2009). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155: 1332–1339.
Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
Markowitz V, Ivanova N, Szeto E, Palaniappan K, Chu K, Dalevi D et al. (2008). IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36: D534–D538.
Müller F, Bandeiras T, Urich T, Teixeira M, Gomes C, Kletzin A . (2004). Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate: quinone oxidoreductase. Mol Microbiol 53: 1147–1160.
Okabe S, Odagiri M, Ito T, Satoh H . (2007). Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73: 971–980.
Pearson A, Leavitt W, Sáenz J, Summons R, Tam M, Close H . (2009). Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ Microbiol 11: 1208–1223.
Pearson A, Page S, Jorgenson T, Fischer W, Higgins M . (2007). Novel hopanoid cyclases from the environment. Environ Microbiol 9: 2175–2188.
Pott A, Dahl C . (1998). Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881–1894.
Qin J, Li R, Raes J, Arumugam M, Burgdorf K, Manichanh C et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
Raskin L, Stromley J, Rittmann B, Stahl D . (1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60: 1232–1240.
Ren Q, Kang K, Paulsen I . (2004). TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32: D284–D288.
Richardson D, Berks B, Russell D, Spiro S, Taylor C . (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58: 165–178.
Rohwerder T, Sand W . (2007). Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng Life Sci 7: 301–309.
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O . (2001). A dual-specific Glu-tRNAGln and Asp-tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Lett 500: 129–131.
Sauvé V, Bruno S, Berks B, Hemmings A . (2007). The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282: 23194–23204.
Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U et al. (1995). Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177: 7050–7059.
Shively J, Van Keulen G, Meijer W . (1998). Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52: 191–230.
Stern L, Engel A, Bennett P . (2003). Nitrogen isotope evidence of ammonia vapor assimilation by cave wall microbial biofilms in a sulfidic cave, a novel mechanism of nutrient acquisition. AGU Fall Meeting Abstracts 84: B42E–B405.
Talbot H, Squier A, Keely B, Farrimond P . (2003). Atmospheric pressure chemical ionisation reversed-phase liquid chromatography/ion trap mass spectrometry of intact bacteriohopanepolyols. Rapid Commun Mass Spec 17: 728–737.
Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E et al. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinform 4: 41.
Teske A, Sørensen K . (2007). Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2: 3–18.
Tyson G, Chapman J, Hugenholtz P, Allen E, Ram R, Richardson P et al. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.
Valdés J, Pedroso I, Quatrini R, Dodson R, Tettelin H, Blake R et al. (2008a). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9: 597.
Valdés J, Pedroso I, Quatrini R, Holmes D . (2008b). Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94: 180–184.
Valdés J, Quatrini R, Hallberg K, Dopson M, Valenzuela P, Holmes D . (2009). Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191: 5877–5878.
van de Vossenberg J, Driessen A, Konings W . (1998). The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2: 163–170.
Videmšek U, Hagn A, Suhadolc M, Radl V, Knicker H, Schloter M et al. (2009). Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microb Ecol 58: 1–9.
Vlasceanu L, Sarbu SM, Engel AS, Kinkle BK . (2000). Acidic cave wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol J 17: 125–139.
Wakai S, Tsujita M, Kikumoto M, Manchur M, Kanao T, Kamimura K . (2007). Purification and characterization of sulfide: quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Biosci, Biotechnol, Biochem 68: 2519–2528.
Welander P, Hunter R, Zhang L, Sessions A, Summons R, Newman D . (2009). Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191: 6145–6156.
Whitaker R, Banfield J . (2006). Population genomics in natural microbial communities. Trends Ecol Evol 21: 508–516.
Acknowledgements
We acknowledge the contributions of two anonymous reviewers whose comments improved the manuscript. This work was supported by grants to JLM from the National Science Foundation (EAR-0527046) and NASA NAI (NNA04CC06A). AP received support from NSF (EAR-0641899) and the David & Lucille Packard Foundation. We thank A Montanari for logistical support and the use of facilities and laboratory space at the Osservatorio Geologico di Coldigioco (Italy), and S Mariani, S Galdenzi and S Cerioni for expert advice and field assistance in Italy. We thank T Sowers for methane analyses, S Schuster, J Biddle, C House and M Rhodes for insightful discussions about metagenomic data analysis, and T Canich and D Futrick for computing support.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supplementary Information accompanies the paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Jones, D., Albrecht, H., Dawson, K. et al. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6, 158–170 (2012). https://doi.org/10.1038/ismej.2011.75
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2011.75
Keywords
This article is cited by
-
Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity
Current Microbiology (2023)
-
Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments
Environmental Microbiome (2022)
-
The Novel Strain Acidomyces acidophilum Isolated from Acidophilic Biofilms (Snottites) Located in the Sheki-Heh Cave (North Caucasus)
Current Microbiology (2022)
-
Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya, India
Archives of Microbiology (2022)
-
Metagenome-assembled genomes infer potential microbial metabolism in alkaline sulphidic tailings
Environmental Microbiome (2021)