Abstract
This study describes reconstruction of two highly unusual archaeal genomes by de novo metagenomic assembly of multiple, deeply sequenced libraries from surface waters of Lake Tyrrell (LT), a hypersaline lake in NW Victoria, Australia. Lineage-specific probes were designed using the assembled genomes to visualize these novel archaea, which were highly abundant in the 0.1–0.8 μm size fraction of lake water samples. Gene content and inferred metabolic capabilities were highly dissimilar to all previously identified hypersaline microbial species. Distinctive characteristics included unique amino acid composition, absence of Gvp gas vesicle proteins, atypical archaeal metabolic pathways and unusually small cell size (approximately 0.6 μm diameter). Multi-locus phylogenetic analyses demonstrated that these organisms belong to a new major euryarchaeal lineage, distantly related to halophilic archaea of class Halobacteria. Consistent with these findings, we propose creation of a new archaeal class, provisionally named ‘Nanohaloarchaea’. In addition to their high abundance in LT surface waters, we report the prevalence of Nanohaloarchaea in other hypersaline environments worldwide. The simultaneous discovery and genome sequencing of a novel yet ubiquitous lineage of uncultivated microorganisms demonstrates that even historically well-characterized environments can reveal unexpected diversity when analyzed by metagenomics, and advances our understanding of the ecology of hypersaline environments and the evolutionary history of the archaea.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Allen EE, Banfield JF . (2005). Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3: 489–498.
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA . (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925.
Amann RI, Ludwig W, Schleifer KH . (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169.
Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD et al. (2010). Enigmatic, ultrasmall, uncultivated archaea. Proc Natl Acad Sci USA 107: 8806–8811.
Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE et al. (2006). Lineages of acidophilic archaea revealed by community genomic analysis. Science 314: 1933–1935.
Baker GC, Smith JJ, Cowan DA . (2003). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55: 541–555.
Benlloch S, Acinas SG, Anton J, Lopez-Lopez A, Luz SP, Rodriguez-Valera F . (2001). Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41: 12–19.
Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF et al. (2010). Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4: 962–974.
Bolhuis A, Kwan D, Thomas JR . (2008). Halophilic adaptations of proteins. In: Siddiqui KS, Thomas T (eds). Protein Adaptation in Extremophiles. Nova Biomedical Books: New York, pp 71–104.
Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F et al. (2006). The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7: 169.
Branciamore S, Gallori E, Di Giulio M . (2008). The basal phylogenetic position of Nanoarchaeum equitans (Nanoarchaeota). Front Biosci 13: 6886–6892.
Brochier C, Bapteste E, Moreira D, Philippe H . (2002). Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18: 1–5.
Brunk CF, Eis N . (1998). Quantitative measure of small-subunit rRNA gene sequences of the kingdom korarchaeota. Appl Environ Microbiol 64: 5064–5066.
Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML . (2004). Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70: 5258–5265.
Casanueva A, Galada N, Baker GC, Grant WD, Heaphy S, Jones B et al. (2008). Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12: 651–656.
Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P . (2006). Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–1287.
Clarke K, Gorley R . (2006). Primer v6: User Manual/Tutorial. PRIMER-E: Plymouth, UK.
Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D'Auria G, Zhaxybayeva O, Papke RT et al. (2007). Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J 1: 235–245.
Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M . (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434–444.
DasSarma S, Fleischman EM . (1995). Archaea: A Laboratory Manual - Halophiles, Vol 1. Cold Spring Harbor Laboratory Press: Plainview, NY.
DeLong EF . (1992). Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685–5689.
Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedros-Alio C . (2004). Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48: 57–69.
Fuchs BM, Glockner FO, Wulf J, Amann R . (2000). Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66: 3603–3607.
Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K . (2003). Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327: 347–357.
Gareeb A, Setani M . (2009). Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8: 259–267.
Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D et al. (2005). Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245.
Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R et al. (2006). A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103: 11240–11245.
Grant S, Grant WD, Jones BE, Kato C, Li L . (1999). Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3: 139–145.
Guindon S, Gascuel O . (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D'Auria G, de Lima Alves F et al. (2007). Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9: 801–813.
Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J et al. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432: 618–622.
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO . (2002). A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.
Hugenholtz P, Tyson GW . (2008). Microbiology: metagenomics. Nature 455: 481–483.
Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y et al. (1999). Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285: 163–174.
Ihara K, Watanabe S, Tamura T . (1997). Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 47: 73–77.
Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW . (2006). Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72: 3832–3845.
Jobb G, von Haeseler A, Strimmer K . (2004). TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4: 18.
Klappenbach JA, Dunbar JM, Schmidt TM . (2000). rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328–1333.
König H, Nusser E, Stetter KO . (1985). Glycogen in methanolobus and methanococcus. FEMS Microbiol Lett 28: 265–269.
König H, Skorko R, Zillig W, Reiter W-D . (1982). Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus, and Thermococcus. Arch Microbiol 132: 297–303.
Lane DJ . (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematics. Wiley: Chichester; New York, pp 115–175.
Lasken RS . (2007). Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10: 510–516.
Liu X, Zhang J, Ni F, Dong X, Han B, Han D et al. (2010). Genome wide exploration of the origin and evolution of amino acids. BMC Evol Biol 10: 77.
Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G et al. (2007). Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446: 537–541.
Lopez-Garcia P, Moreira D, Lopez-Lopez A, Rodriguez-Valera F . (2001). A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3: 72–78.
Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M . (2008). probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol 10: 2894–2898.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371.
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y et al. (2009a). The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38: D382–D390.
Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC . (2009b). IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271–2278.
Matte-Tailliez O, Brochier C, Forterre P, Philippe H . (2002). Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19: 631–639.
Maturrano L, Santos F, Rossello-Mora R, Anton J . (2006). Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72: 3887–3895.
Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC et al. (2007). Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods 4: 495–500.
Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H et al. (2005). The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102: 18147–18152.
Mutlu MB, Martinez-Garcia M, Santos F, Pena A, Guven K, Anton J . (2008). Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65: 474–483.
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ et al. (2000). A whole-genome assembly of Drosophila. Science 287: 2196–2204.
Ochsenreiter T, Pfeifer F, Schleper C . (2002). Diversity of archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6: 267–274.
Oh D, Porter K, Russ B, Burns D, Dyall-Smith M . (2010). Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14: 161–169.
Oren A . (1999). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63: 334–348.
Oren A . (2002a). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28: 56–63.
Oren A . (2002b). Halophilic Microorganisms and Their Environments. Kluwer Academic: Dordrecht; Boston, xxi, 575pp.
Oren A . (2008). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4: 2.
Oren A, Arahal DR, Ventosa A . (2009). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59: 637–642.
Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA et al. (2009). Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75: 5750–5760.
Paul S, Bag SK, Das S, Harvill ET, Dutta C . (2008). Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9: R70.
Pernthaler J, Glockner FO, Schonuber W . (2001). Fluorescence in situ Hybridization with rRNA-targeted oligonucleotide probes. In: Paul JH (ed), Methods in Microbiology, Vol 30. Academic Press: San Diego, pp 207–226.
Podell S, Gaasterland T . (2007). DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8: R16.
Podell S, Gaasterland T, Allen EE . (2008). A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm. BMC Bioinformat 9: 419.
Puigbo P, Wolf YI, Koonin EV . (2009). Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8: 59.
Raes J, Bork P . (2008). Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6: 693–699.
Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake II RC et al. (2005). Community proteomics of a natural microbial biofilm. Science 308: 1915–1920.
Ramette A . (2007). Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62: 142–160.
Rannala B, Yang Z . (2008). Phylogenetic inference using whole genomes. Annu Rev Genomics Hum Genet 9: 217–231.
Rhodes ME, Fitz-Gibbon ST, Oren A, House CH . (2010). Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environ Microbiol 12: 2613–2623.
Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M et al. (2010). Viral and microbial community dynamics in four aquatic environments. ISME J 4: 739–751.
Rokas A, Williams BL, King N, Carroll SB . (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804.
Sabet S, Diallo L, Hays L, Jung W, Dillon JG . (2009). Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 13: 643–656.
Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y et al. (2010). Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol, doi: 10.1111/j.1462-2920.2010.02323.x.
Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, Nikolausz M . (2007). Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60: 341–350.
Susko E, Roger AJ . (2007). On reduced amino acid alphabets for phylogenetic inference. Mol Biol Evol 24: 2139–2150.
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM et al. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.
Verhees CH, Kengen SW, Tuininga JE, Schut GJ, Adams MW, De Vos WM et al. (2003). The unique features of glycolytic pathways in Archaea. Biochem J 375: 231–246.
Wall DP, Deluca T . (2007). Ortholog detection using the reciprocal smallest distance algorithm. Methods Mol Biol 396: 95–110.
Walsby AE . (1994). Gas vesicles. Microbiol Rev 58: 94–144.
Wilmes P, Simmons SL, Denef VJ, Banfield JF . (2009). The dynamic genetic repertoire of microbial communities. FEMS Microbiol Rev 33: 109–132.
Wooley JC, Godzik A, Friedberg I . (2010). A primer on metagenomics. PLoS Comput Biol 6: e1000667.
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H et al. (2009). Assembling the marine metagenome, one cell at a time. PLoS One 4: e5299.
Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462: 1056–1060.
Wu M, Eisen JA . (2008). A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9: R151.
Acknowledgements
We thank Sue Welch and Dawn Cardace for sample collection assistance at Lake Tyrrell; Mike Dyall-Smith for generous access to reagents and laboratory equipment; Cheetham Salt Works (Lake Tyrrell, Australia) and South Bay Salt Works, Chula Vista (San Diego, CA) for permission to collect samples; Brian Collins (USFWS) for help with sample collection at South Bay Salt Works; Matt Lewis and the J Craig Venter Institute for library construction and sequencing; Nerida Wilson for assistance with phylogenetic trees; and the US Department of Energy Joint Genomes Institute for genome annotation support via the Integrated Microbial Genome Expert Review (IMG-ER) resource. We also thank Farooq Azam (SIO/UCSD) for kindly permitting use of the Nikon confocal microscope purchased with support from the Gordon and Betty Moore Foundation. Funding for this work was provided by NSF award number 0626526 (JFB, KBH, EEA) and NIH award R21HG005107-02 (EEA). JAU was supported by a Fulbright-Conicyt fellowship. CBA is supported by an Action Thématique et Incitative sur Programme of the French Centre National de la Recherche Scientifique (CNRS). Work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Narasingarao, P., Podell, S., Ugalde, J. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6, 81–93 (2012). https://doi.org/10.1038/ismej.2011.78
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2011.78
Keywords
This article is cited by
-
Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity
Microbial Cell Factories (2022)
-
Microbial diversity in extreme environments
Nature Reviews Microbiology (2022)
-
Combination of statistical methods for easy analysis and classification of virus–host environmental dynamics in the saltern of Sfax, Tunisia
Euro-Mediterranean Journal for Environmental Integration (2022)
-
Isolation and Characterization of a Novel Lytic Halotolerant Phage from Yuncheng Saline Lake
Indian Journal of Microbiology (2022)
-
The association of group IIB intron with integrons in hypersaline environments
Mobile DNA (2021)