Abstract
Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ . (1990). Basic local alignment search tool. J Mol Biol 215: 403–410.
Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R et al (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69: 5884–5891.
Batchelor B, Lawrence AW . (1978). Autotrophic denitrification using elemental sulfur. J Water Pollut Control Fed 50: 1986–2001.
Benner R, Maccubbin AE, Hodson RE . (1984). Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Environ Microbiol 47: 998–1004.
Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N . (1983). Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136: 222–229.
Callister SJ, Wilkins MJ, Nicora CD, Williams KH, Banfield JF, VerBerkmoes NC et al (2010). Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles. Environ Sci Technol 44: 8897–8903.
Canfield DE . (1989). [Reactive iron in marine sediments]. Geochimica et Cosmochimica Acta 53: 619–632.
Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF et al (2010). A cryptic sulfur cycle in oxygen-minimum-zone water off the Chilean Coast. Science 330: 1375–1378.
Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA . (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotech Bioeng 95: 1148–1157.
Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM et al (2010). Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9: 6615–6622.
Claus G, Kutzner HJ . (1985). Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22: 283–288.
Dale AW, Regnier P, Knab NJ, Jøergensen BB, Van Cappellen P . (2008). [Anaerobic oxidation of methane (AOM) in marine sediments from Skagerrak (Denmark): II. Reaction-transport modeling]. Geochimica et Cosmochimica Acta 72: 2880–2894.
Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D, Duran R et al (2008). Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31: 30–37.
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP et al (2009). Community-wide analysis of microbial genome sequence signatures. Genome Biol 10: R85.
Druhan JL, Steefel CI, Molins S, Williams KH, Conrad ME, DePaolo DJ . (2012). Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. Environ Sci Technol 46: 8895–8902.
Edgar RC . (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
Eng JK, McCormack AL, Yates JR . (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5: 976–989.
Engberg DJ, Schroeder ED . (1975). Kinetics and stoichiometry of bacterial denitrification as a function of cell residence time. Water Res 9: 1051–1054.
Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL et al (2006). Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40: 303–311.
Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J . (2005). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259.
Fuchs G . (1986). CO2 fixation in acetogenic bacteria. FEMS Microbiol Rev 39: 181–213.
Gebhardt NA, Thauer RK, Linder D, Kaulfers P-M, Pfennig N . (1985). Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141: 392–398.
Gibson GR . (1990). Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69: 769–797.
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM . (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–97.
Gregersen LH, Bryant DA, Frigaard N-U . (2011). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2: 116.
Handley KM, Wrighton KC, Piceno YM, Andersen GL, DeSantis TZ, Williams KH et al (2012). High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol Ecol 81: 188–204.
Hansen EJ, Juni E . (1979). Properties of mutants of Escherichia coli lacking malic dehydrogenase and their revertants. J Biol Chem 254: 3570–3575.
Hartog N, Van Bergen PF, De Leeuw JW, Griffioen J . (2004). [Reactivity of organic matter in aquifer sediments: geological and geochemical controls]. Geochimica et Cosmochimica Acta 68: 1281–1292.
Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al (2010). Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204–208.
Helber JT, Johnson TR, Yarbrough LR, Hirschberg R . (1988). Effect of nitrogenous compounds on nitrogenase gene expression in anaerobic cultures of Anabaena variabilis. J Bacteriol 170: 558–563.
Henze M, Gujer W, Mino T, van Loosdrecht M . (2000) Activated Sludge Models ASM1, ASM2, AMS2(d) and ASM3. IWA Scientific and Technical Report Series. IWA Publishing: London, UK.
Holmes DE, Finneran KT, O’Neil RA, Lovley DR . (2002). Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68: 2300–2306.
Holmes DE, Nevin KP, Lovley DR . (2004). In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 70: 7251–7259.
Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR . (2007). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57: 701–707.
Holmes DE, O’Neil RA, Chavan MA, N’Guessan LA, Perpetua LA, Larrahondo MJ et al (2009). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. ISME J 3: 216–230.
Holmes DE, O’Neil RA, Vrionis HA, N’Guessan LA, Ortiz-Bernad I, Larrahondo MJ et al (2007). Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1: 663–677.
Hoor AT-T . (1975). A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344–350.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ . (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K . (2003). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 1801–1805.
Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K . (2004). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the -Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 1477–1482.
Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D et al (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430: 68–71.
Javelle A, Severi E, Thornton J, Merrick M . (2004). Ammonium sensing in Escherichia coli. role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 279: 8530–8538.
Jin QA, Bethke CM . (2005). [Predicting the rate of microbial respiration in geochemical environments]. Geochimica et Cosmochimica Acta 69: 1133–1143.
Karl DM, Church MJ, Dore JE, Letelier RM, Mahaffey C . (2012). Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc Natl Acad Sci 109: 1842–1849.
Klas S, Mozes N, Lahav O . (2006). Development of a single-sludge denitrification method for nitrate removal from RAS effluents: lab-scale results vs. model prediction. Aquaculture 259: 342–353.
Koenig A, Liu LH . (2001). Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35: 1969–1978.
Kulajta C, Thumfart JO, Haid S, Daldal F, Koch H-G . (2006). Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex. J Mol biol 355: 989–1004.
Lane DJ . (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, (eds). Nucleic Acid Techniques in Bacterial Systematics. Wiley: New York, pp 115–148.
Lee D-H, Choi E-K, Moon S-R, Ahn S, Lee YS, Jung JS et al (2010). Wandonia haliotis gen. nov., sp. nov., a marine bacterium of the family Cryomorphaceae, phylum. Int J Syst Evol Microbiol 60: 510–514.
Leschine SB . (1995). Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49: 399–426.
Lovley DL, Holmes DE, Nevin KP . (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49: 219–286.
Letunic I, Bork P . (2006). Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.
Mander GJ, Duin EC, Linder D, Stetter KO, Hedderich R . (2002). Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem 269: 1895–1904.
Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF . (2011). EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12: R44 12.
Mouser PJ, N’Guessan AL, Elifantz H, Holmes DE, Williams KH, Wilkins MJ et al (2009). Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Technol 43: 4386–4392.
Murakami H, Kita K, Anraku Y . (1986). Purification and properties of a diheme cytochrome b561 of the Escherichia coli respiratory chain. J Biol Chem 261: 548–551.
Mussman M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M et al (2005). Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187: 7126–7137.
Müller D, Schauder R, Fuchs G, Thauer RK . (1987). Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148: 202–207.
Müller-Zinkhan D, Thauer RK . (1988). Membrane-bound NADPH dehydrogenase- and ferredoxin:NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei. Arch Microbiol 150: 145–154.
Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K . (2007). Deep-sea vent-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104: 12146–12150.
Pfennig N, Biebl H . (1976). Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12.
Pires RH, Lourenço AI, Morais F, Teixeira M, Xavier AV, Saraiva LM et al (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605: 67–82.
Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J et al (2012). eggnog v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40: D284–D289.
Preisig O, Anthamatten D, Hennecke H . (1993). Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90: 3309–3313.
Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P . (2007). Prediction of effective genome size in metagenomic samples. Genome Biol 8: R10.
Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC et al (2005). Community proteomics of a natural microbial biofilm. Science 308: 1915–1920.
Rother D, Henrich H-J, Quentmeier A, Bardischewsky F, Friedrich CG . (2001). Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183: 4499–4508.
Rowland HAL, Polya DA, Lloyd JR, Pancost RD . (2006). Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 37: 1101–1114.
Sakurai H, Ogawa T, Shiga M, Inoue K . (2010). Inorganic sulfur oxidizing system in green sulfur bacteria. Photosynth Res 104: 163–176.
Sarioglu M, Insel G, Arlan N, Orhon D . (2009). Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. J Membr Sci 337: 17–27.
Sauvé V, Bruno S, Berks BC, Hemmings AM . (2007). The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282: 23194–23204.
Schmehl M, Jahn A, zu Vilsendorf AM, Hennecke S, Masephol B, Schuppler M . (1993). Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241: 602–615.
Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J et al (2008). Genome of the epsilonproteobacterial chemolithoautotroph. Sulfurimonas denitrificans 74: 1145–1156.
Snoeyenbos-West OL, Nevin KP, Anderson RT, Lovley DR . (2000). Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39: 153–167.
Sorokin DY, Banciu H, van Loosdrecht M, Kuenen JG . (2003). Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7: 195–203.
Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH . (2007). UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23: 1282–1288.
Sörensen J . (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43: 319–324.
Tabb DL, McDonald WH, Yates JR . (2002). DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1: 21–26.
Tang KH, Blankenship RE . (2010). Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285: 35848–35854.
Thauer RK, Möller-Zinkhan D, Spormann AM . (1989). Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43: 43–67.
Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G . (2011). Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2: 93.
Thompson JD, Higgins DG, Gibson TJ . (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
Trumpower BL, Gennis RB . (1994). Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem 63: 675–716.
Tugel JB, Hines ME, Jones GE . (1986). Microbial iron reduction by enrichment cultures isolated from estuarine sediments. Appl Environ Microbiol 52: 1167–1172.
Ultsch A, Mörchen F . (2005) ESOM-Maps: tools for clustering, visualization, and classification with Emergent SOM.. Department of Mathematics and Computer Science, University of Marburg: Germany, Technical Report no. 46.
van den Ende FP, Meier J, van Gemerden H . (1997). Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol Ecol 23: 65–80.
VerBerkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J . (2009). Shotgun metaproteomics of the human distal gut microbiota. ISME J 3: 179–189.
Visser JM, de Jong GAH, de Vries S, Robertson LA, Kuenen JG . (1997). cbb3 cytochrome oxidase in the obligately chemolithoautotrophic Thiobacillus sp. W5. FEMS Microbiol Lett 147: 127–132.
Whitman WB, Coleman DC, Wiebe WJ . (1998). Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578–6583.
Widdel F . (1987). New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148: 286–291.
Widdel F, Pfennig N . (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids I. isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129: 395–400.
Widdel F, Rabus R . (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12: 259–276.
Wilkins MJ, VerBerkmoes NC, Williams KH, Callister SJ, Mouser PJ, Elifantz H et al (2009). Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl Environ Microbiol 75: 6591–6599.
Williams KH, Long PE, Davis JA, Wilkins MJ, N’Guessan AL, Steefel CI et al (2011). Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicro J 28: 519–539.
Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P et al (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73: 3536–3546.
Yelton AP, Thomas BC, Simmons SL, Wilmes P, Zemla A, Thelen MP et al (2011). A semi-quantitiative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes. PLoS Comput Biol 7: e1002230.
Zander U, Faust A, Klink BU, de Sanctis D, Panjikar S, Quentmeier A et al (2011). Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD. J Biol Chem 286: 8349–8360.
Zehr JP, Jenkins BD, Short SM, Steward GF . (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5: 539–554.
Zerbino DR, Birney E . (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.
Zhang L, Dai J, Tang Y, Luo X, Wang Y, An H et al (2009). Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 59: 77–82.
Æsøy A, Ødegaard H . (1994). Denitrification in biofilms with biologically hydrolysed sludge as carbon source. Wat Sci 29: 93–100.
Acknowledgements
Funding was provided through the IFRC, Subsurface Biogeochemical Research Program, Office of Science, Biological and Environmental Research, the US Department of Energy (DOE), with equal support for LBNL employees through LBNL’s Sustainable Systems Scientific Focus Area (contract DE-AC02-05CH11231); and an EMBO Long-Term Fellowship (I Sharon). Genomic sequencing was performed at the W M Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign. We thank S Chan (University of California, LA, USA) for help with field implementation, and K Campbell (the US Geological Survey, Menlo Park) and J Bargar (Stanford Synchrotron Radiation Lightsource, Menlo Park, USA) for assistance with column design. We also thank our anonymous reviewer's for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on The ISME Journal website
Rights and permissions
About this article
Cite this article
Handley, K., VerBerkmoes, N., Steefel, C. et al. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J 7, 800–816 (2013). https://doi.org/10.1038/ismej.2012.148
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2012.148
Keywords
This article is cited by
-
Nitrogen fixation and diazotroph diversity in groundwater systems
The ISME Journal (2023)
-
Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community
Scientific Reports (2022)
-
Evidence for substantial acetate presence in cutaneous earthworm mucus
Journal of Soils and Sediments (2020)
-
Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics
Biotechnology for Biofuels (2018)
-
Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture
Biodegradation (2018)