Abstract
Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and β-N-acetyl-glucosaminidase enzymes. We then evaluated the relationship between the genetic potential for enzyme production and 16S rRNA phylogeny using the consenTRAIT algorithm, which calculated the phylogenetic depth and corresponding 16S rRNA sequence identity of clades of potential enzyme producers. Nearly half (49.2%) of the genomes analyzed were found to be capable of extracellular enzyme production, and these were non-randomly distributed across most prokaryotic phyla. On average, clades of potential enzyme-producing organisms had a maximum phylogenetic depth of 0.008004–0.009780, though individual clades varied broadly in both size and depth. These values correspond to a minimum 16S rRNA sequence identity of 98.04–98.40%. The distribution pattern we found is an indication of microdiversity, the occurrence of ecologically or physiologically distinct populations within phylogenetically related groups. Additionally, we found positive correlations among the genes encoding different extracellular enzymes. Our results suggest that the capacity to produce extracellular enzymes varies at relatively fine-scale phylogenetic resolution. This variation is consistent with other traits that require a small number of genes and provides insight into the relationship between taxonomy and traits that may be useful for predicting ecological function.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Alam M, Nikaidou N, Tanaka H, Watanabe T . (1995). Cloning and sequencing of chiC gene of Bacillus circulans WL-12 and relationship of its product to some other chitinases and chitinase-like proteins. J Ferment Bioeng 80: 454–461.
Allison SD . (2012). A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15: 1058–1070.
Allison SD, Gartner TB, Holland K, Weintraub M, Sinsabaugh RL . (2007). Soil enzymes: Linking proteomics and ecological process. In Hurst CJ, Garland JL, Mills AL, (eds). Manual of Environmental Microbiolgy 3rd Edition. ASM Press: Washington, DC, pp 704–711.
Allison SD, Weintraub MN, Gartner TB, Waldrop MP . (2011). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Shukla G, Varma A, (eds). Soil Enzymology. Springer-Verlag: Berlin, Heidelberg, pp 229–243.
Amon RMW, Benner R . (1996). Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41: 41–51.
Arnosti C . (2011). Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci 3: 401–425.
Asgeirsson B, Andrésson OS . (2001). Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence. Biochim Biophys Acta 1549: 99–111.
Au S, Roy KL, von Tigerstrom RG . (1991). Nucleotide sequence and characterization of the gene for secreted alkaline phosphatase from Lysobacter enzymogenes. J Bacteriol 173: 4551–4557.
Bassler BL, Yu C, Lee YC, Roseman S . (1991). Chitin utilization by marine bacteria: degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266: 24276–24286.
Becraft ED, Cohan FM, Kühl M, Jensen SI, Ward DM . (2011). Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park. Appl Environ Microbiol 77: 7689–7697.
Bhaya D, Grossman AR, Steunou A-S, Khuri N, Cohan FM, Hamamura N et al (2007). Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1: 703–713.
Blaak H, Schnellmann J, Walter S, Henrissat B, Schrempf H . (1993). Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214: 659–669.
Blomberg SP, Garland T . (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15: 899–910.
Blomberg SP, Garland T, Ives AR . (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745.
Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbø CL et al (2003). Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37: 283–328.
Bradshaw RA, Cancedda F, Ericsson LH, Neumann PA, Piccoli SP, Schlesinger MJ et al (1981). Amino acid sequence of Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA 78: 3473–3477.
Chang CN, Kuang W-J, Chen EY . (1986). Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Gene 44: 121–125.
Choudhary DK, Johri BN . (2011). Ecological significance of microdiversity: coexistence among casing soil bacterial strains through allocation of nutritional resource. Indian J Microbiol 51: 8–13.
Chrost RJ, Siuda W . (2002). Ecology of microbial enzymes in lake ecosystems. In Enzymes in the Environment: Activity, Ecology, and Applications Burns RG, Dick RP, (eds). Marcel Dekker, Inc.: New York, pp 35–72.
Cohan FM, Koeppel AF . (2008). The origins of ecological diversity in prokaryotes. Curr Biol 18: R1024–R1034.
Delpin MW, Goodman AE . (2009). Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J 3: 1064–1069.
Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V et al (2010). Accessing the SEED genome databases via web services API: tools for programmers. BMC Bioinformatics 11: 319.
Doolittle WF . (1999). Phylogenetic classification and the universal tree. Science 284: 2124–2128.
Ettema TJG, Andersson SGE . (2009). The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5: 429–432.
Felsenstein J . (2005), PHYLIP.
Felsenstein J . (1985). Phylogenies and the comparative method. Am Nat 125: 1–15.
Felsenstein J, Churchill GA . (1996). A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13: 93–104.
Follows MJ, Dutkiewicz S, Grant S, Chisholm SW . (2007). Emergent biogeography of microbial communities in a model ocean. Science 315: 1843–1846.
Fraser CM, Eisen JA, Salzberg SL . (2000). Microbial genome sequencing. Nature 406: 799–803.
Frossard A, Gerull L, Mutz M, Gessner MO . (2012). Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors. ISME J 6: 680–691.
Fujita M, Tsuchida A, Hirata A, Kobayashi N, Goto K, Osumi K et al (2011). Glycoside hydrolase family 89 alpha-N-acetylglucosaminidase from Clostridium perfringens specifically acts on GlcNAc alpha1,4Gal beta1R at the non-reducing terminus of O-glycans in gastric mucin. J Biol Chem 286: 6479–6489.
Garcia-Vallve S, Palau J, Romeu A . (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol Biol Evol 16: 1125–1134.
Garland TheodoreJ, Harvey PH, Ives AR . (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41: 18–32.
Gogarten JP, Doolittle WF, Lawrence JG . (2002). Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19: 2226–2238.
Gomez PF, Ingram LO . (1995). Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis. FEMS Microbiol Lett 125: 237–245.
Gooday GW . (1990). The ecology of chitin degradation. In Marshall KC, (eds). Advances in Microbial Ecology Vol. 11. Springer: New York, pp 387–419.
Harrell FE, with contributions from many other users (2012), Hmisc: Harrell Miscellaneous. R Package version 3.9-3. http://cran.r-project.org/package=Hmisc.
Hauksson JB, Andrésson OS, Ásgeirsson B . (2000). Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb Technol 27: 66–73.
He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007). GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1: 67–77.
Horn M . (2008). Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62: 113–131.
Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW . (2003). Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans Strain 2-40. J Bacteriol 185: 3352–3360.
Hulett FM, Bookstein C, Jensen K . (1990). Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J Bacteriol 172: 735–740.
Hulett FM, Kim EE, Bookstein C, Kapp NV, Edwards CW, Wyckoff HW . (1991). Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J Biol Chem 266: 1077–1084.
Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF . (2008). Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320: 1081–1085.
Jaspers E, Overmann J . (2004). Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70: 4831–4839.
Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW . (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737–1740.
Jolles P, Muzzarelli RAA . (1999). Preface. In Jolles P, Muzzarelli RAA, (eds). Chitin and Chitinases. Birkhauser Verlag: Basel.
Karl DM . (2000). Phosphorus, the staff of life. Nature 406: 31–32.
Keyhani NO, Roseman S . (1999). Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473: 108–122.
Kim J-W, Peterson T, Bee G, Hulett FM . (1998). Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus. FEMS Microbiol Lett 159: 47–58.
Kim Y-J, Park T-S, Kim H-K, Kwon S-T . (1997). Purification and characterization of a thermostable alkaline phosphatase produced by Thermus caldophilus GK24. J Biochem Mol Biol 30: 262–268.
Kless H, Sitrit Y, Chet I, Oppenheim AB . (1989). Cloning of the gene coding for chitobiase of Serratia marcescens. MGG 217: 471–473.
Konstantinidis KT, Ramette A, Tiedje JM . (2006a). The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929–1940.
Konstantinidis KT, Ramette A, Tiedje JM . (2006b). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72: 7286–7293.
Kubota T, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H . (2004). Molecular characterization of an intracellular beta-N-acetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520. Biosci Biotechnol Biochem 68: 1306–1314.
Lan X, Zhang X, Kodaira R, Zhou Z, Shimosaka M . (2008). Gene cloning, expression, and characterization of a second β-N-acetylglucosaminidase from the chitinolytic bacterium Aeromonas hydrophila Strain SUWA-9. Biosci Biotechnol Biochem 72: 492–498.
Larsen MH, Leisner JJ, Ingmer H . (2010). The chitinolytic activity of Listeria monocytogenes EGD is regulated by carbohydrates but also by the virulence regulator PrfA. Appl Environ Microbiol 76: 6470–6476.
Lavorel S, Garnier E . (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16: 545–556.
Letunic I, Bork P . (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.
Letunic I, Bork P . (2011). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475–W478.
Li H, Morimoto K, Katagiri N, Kimura T, Sakka K, Lun S et al (2002). A novel beta-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl Microbiol Biotechnol 60: 420–427.
Li X, Roseman S . (2004). The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101: 627–631.
Lin J, Xiao X, Zeng X, Wang F . (2006). Expression, characterization and mutagenesis of the gene encoding β-N-acetylglucosaminidase from Aeromonas caviae CB101. Enzyme Microb Technol 38: 765–771.
Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT . (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 108: 7200–7205.
Majumdar A, Ghatak A, Ghosh RK . (2005). Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain. Gene 344: 251–258.
Martiny AC, Coleman ML, Chisholm SW . (2006). Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103: 12552–12557.
Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW . (2009). Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ Microbiol 11: 823–832.
Martiny AC, Treseder KK, Pusch GD . (2012). Phylogenetic conservatism of functional traits in microorganisms. ISME J e-pub ahead of print 13 December 2012 10.1038/ismej.2012.160.
Matsuo Y, Kurita M, Park JK, Tanaka K, Nakagawa T, Kawamukai M et al (1999). Purification, characterization and gene analysis of N-acetylglucosaminidase from Enterobacter sp. G-1. Biosci Biotechnol Biochem 63: 1261–1268.
Mayer C, Vocadlo DJ, Mah M, Rupitz K, Stoll D, Warren RAJ et al (2006). Characterization of a beta-N-acetylhexosaminidase and a beta-N-acetylglucosaminidase/beta-glucosidase from Cellulomonas fimi. FEBS J 273: 2929–2941.
Meyer F, Overbeek R, Rodriguez A . (2009). FIGfams: Yet another set of protein families. Nucleic Acids Res 37: 6643–6654.
Moore LR, Rocap G, Chisholm SW . (1998). Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464.
Morimoto Kenji YoshimotoM, Karita S, Tetsuya Kimura, Kunio Ohmiya, Kazuo. Sakka . (2007). Characterization of the third chitinase Chi18C of Clostridium paraputrificum M-21. Appl Microbiol Biotechnol 73: 1106–1113.
van Mourik A, Bleumink-Pluym NMC, van Dijk L, van Putten JPM, Wösten MMSM . (2008). Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery. Microbiology 154: 584–592.
Münster U, Chrost RJ . (1990). Origin, composition and microbial utilization of dissolved organic matter. In Overbeck J, Chrost RJ, (eds). Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag: New York, pp 8–46.
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE et al (2010). Genome characteristics of a generalist marine bacterial lineage. ISME J 4: 784–798.
Nilgiriwala KS, Alahari A, Rao AS, Apte SK . (2008). Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl Environ Microbiol 74: 5516–5523.
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M et al (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33: 5691–5702.
Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH et al (2006). Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103: 13555–13559.
Park T, Lee J-H, Kim H-K, Hoe H-S, Kwon S-T . (1999). Nucleotide sequence of the gene for alkaline phosphatase of Thermus caldophilus GK24 and characteristics of the deduced primary structure of the enzyme. FEMS Microbiol Lett 180: 133–139.
Petti CA . (2007). Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44: 1108–1114.
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J et al (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.
Pruzzo C, Vezzulli L, Colwell RR . (2008). Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10: 1400–1410.
R Core Team. (2012), R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.
Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE . (2012). The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63: 267–281.
Rappé MS, Giovannoni SJ . (2003). The uncultured microbial majority. Annu Rev Microbiol 57: 369–394.
Rashid MH, Mori M, Sekiguchi J . (1995). Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141: 2391–2404.
Rastogi R, Wu M, DasGupta I, Fox GE . (2009). Visualization of ribosomal RNA operon copy number distribution. BMC Microbiol 9: 208.
Ray JM, Bhaya D, Block MA, Grossman AR . (1991). Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173: 4297–4309.
Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V . (2000). Alkaline phosphatase from the Antarctic strain TAB5: properties and psychrophilic adaptations. Eur J Biochem 267: 1230–1238.
Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA et al (2003). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042–1047.
Roy NK, Ghosh RK, Das J . (1982). Monomeric alkaline phosphatase of Vibrio cholerae. J Bacteriol 150: 1033–1039.
Sebastian M, Ammerman JW . (2011). Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium Ruegeria pomeroyi DSS-3. Environ Microbiol Rep 3: 535–542.
Sebastian M, Ammerman JW . (2009). The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3: 563–572.
Senba M, Kashige N, Nakashima Y, Miake F, Watanabe K . (2000). Cloning of the gene of beta-N-acetylglucosaminidase from Lactobacillus casei ATCC 27092 and characterization of the enzyme expressed in Escherichia coli. Biol Pharm Bull 23: 527–531.
Sitrit Y, Vorgias CE, Chet I, Oppenheim AB . (1995). Cloning and primary structure of the chiA gene from Aeromonas caviae. J Bacteriol 177: 4187–4189.
Snel B, Bork P, Huynen MA . (2002). Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res 12: 17–25.
Sokal RR, Rohlf FJ . (1995) Biometry: The Principles and Practice of Statistics in Biological Research 3rd Edition WH Freeman and Company: New York.
Stackebrandt E, Goebel BM . (1994). Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species befinition in Bacteriology. Int J Syst Bacteriol 44: 846–849.
Suginta W, Chuenark D, Mizuhara M, Fukamizo T . (2010). Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: cloning, expression, enzymatic properties, and subsite identification. BMC Biochem 11: 40.
Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T . (1999). The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343: 587–596.
Svitil AL, Kirchman DL . (1998). A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-beta-glycanases. Microbiology 144: 1299–1308.
Techkarnjanaruk S, Pongpattanakitshote S, Goodman AE . (1997). Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9. Appl Environ Microbiol 63: 2989–2996.
Tews I, Vincentelli R, Vorgias CE . (1996). N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170: 63–67.
Tirumalai PS, Prakash S . (2011). Expression of chitinase and chitin binding proteins (CBP’s) by Listeria monocytogenes J0161 in biofilm and co-culture broths. African J Microbiol Res 5: 5188–5193.
Torriani A . (1960). Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 38: 460–469.
Tsujibo H, Hatano N, Mikami T, Izumizawa Y, Miyamoto K, Inamori Y . (1998). Cloning, characterization and expression of beta-N-acetylglucosaminidase gene from Streptomyces thermoviolaceus OPC-520(1). Biochim Biophys Acta 1425: 437–440.
Tsujibo Hiroshi, Orikoshi H, Baba N, Miyahara M, Katsushiro Miyamoto, Yasuda M et al (2002). Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol 68: 263–270.
Ueda M, Kawaguchi T, Arai M . (1994). Molecular cloning and nucleotide sequence of the gene encoding chitinase II from Aeromonas sp. no. 10S-24. J Ferment Bioeng 78: 205–211.
Vaaje-Kolstad G, Bunaes AC, Mathiesen G, Eijsink VGH . (2009). The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of α- and β-chitin. FEBS J 276: 2402–2415.
Ward NL, Klota MG . (2011). Harnessing the power of microbial genomics for exploring exceptions and shifting perceptions. Front Microbiol 1: 1–3.
Watanabe T, Suzuki K, Oyanagi W, Ohnishi K, Tanaka H . (1990). Gene cloning of chitinase Al from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the Type III homology units of fibronectin. J Biol Chem 265: 15659–15665.
Webb CO, Ackerly DD, Kembel S . (2011), Phylocom manual: Software for the analysis of phylogenetic community structure and character evolution..
Webb CO, Ackerly DD, Kembel SW . (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100.
Welch RA, Burlandt V, Plunkett G, Redford P, Roesch P, Rasko D et al (2002). Extensive mosaic revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99: 17020–17024.
West NJ, Scanlan DJ . (1999). Niche-partitioning of Prochlorococcus populations in a stratified water column in the Eastern North Atlantic Ocean. Appl Environ Microbiol 65: 2585–2591.
Wiedenbeck J, Cohan FM . (2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35: 957–976.
Wu J-R, Shien J-H, Shieh HK, Hu C-C, Gong S-R, Chen L-Y et al (2007). Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett 267: 113–120.
Yilmaz P, Gilbert JA, Knight R, Amaral-Zettler L, Karsch-Mizrachi I, Cochrane G et al (2011). The genomic standards consortium: bringing standards to life for microbial ecology. ISME J 5: 1565–1567.
Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM . (2009). Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Environ Microbiol 11: 1572–1587.
Zappa B, Rolland J, Flament D, Gueguen Y, Boudrant J, Dietrich J . (2001). Characterization of a highly thermostable alkaline phosphatase from the Euryarchaeon Pyrococcus abyssi. Appl Environ Microbiol 67: 4504–4511.
Acknowledgements
We thank three reviewers, Kevin Thornton, Kathleen Treseder and the UC Irvine Microbial Ecology group for many helpful comments on the manuscript. This work was supported in part by the National Science Foundation Dimensions of Biodiversity program and Graduate STEM Fellows in K-12 Education program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Rights and permissions
About this article
Cite this article
Zimmerman, A., Martiny, A. & Allison, S. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7, 1187–1199 (2013). https://doi.org/10.1038/ismej.2012.176
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2012.176
Keywords
This article is cited by
-
Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils
Nature Food (2023)
-
Bioaugmentation potential of inoculum derived from anaerobic digestion feedstock for enhanced methane production using water hyacinth
World Journal of Microbiology and Biotechnology (2023)
-
Strategies and Structure Feature of the Aboveground and Belowground Microbial Community Respond to Drought in Wild Rice (Oryza longistaminata)
Rice (2021)
-
Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils
ISME Communications (2021)
-
Effects of different long-term cropping systems on phoD-harboring bacterial community in red soils
Journal of Soils and Sediments (2021)