Abstract
Bacteria of the class Dehalococcoidia (DEH), phylum Chloroflexi, are widely distributed in the marine subsurface, yet metabolic properties of the many uncultivated lineages are completely unknown. This study therefore analysed genomic content from a single DEH cell designated ‘DEH-J10’ obtained from the sediments of Aarhus Bay, Denmark. Real-time PCR showed the DEH-J10 phylotype was abundant in upper sediments but was absent below 160 cm below sea floor. A 1.44 Mbp assembly was obtained and was estimated to represent up to 60.8% of the full genome. The predicted genome is much larger than genomes of cultivated DEH and appears to confer metabolic versatility. Numerous genes encoding enzymes of core and auxiliary beta-oxidation pathways were identified, suggesting that this organism is capable of oxidising various fatty acids and/or structurally related substrates. Additional substrate versatility was indicated by genes, which may enable the bacterium to oxidise aromatic compounds. Genes encoding enzymes of the reductive acetyl-CoA pathway were identified, which may also enable the fixation of CO2 or oxidation of organics completely to CO2. Genes encoding a putative dimethylsulphoxide reductase were the only evidence for a respiratory terminal reductase. No evidence for reductive dehalogenase genes was found. Genetic evidence also suggests that the organism could synthesise ATP by converting acetyl-CoA to acetate by substrate-level phosphorylation. Other encoded enzymes putatively conferring marine adaptations such as salt tolerance and organo-sulphate sulfohydrolysis were identified. Together, these analyses provide the first insights into the potential metabolic traits that may enable members of the DEH to occupy an ecological niche in marine sediments.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Adrian L, Szewzyk U, Wecke J, Görisch H . (2000). Bacterial dehalorespiration with chlorinated benzenes. Nature 408: 580–583.
Adrian L . (2009). ERC-group microflex: microbiology of Dehalococcoides-like Chloroflexi. Rev Environ Sci Biotechnol 8: 225–229.
Anderson I, Risso C, Holmes D, Lucas S, Copeland A, Lapidus A et al (2011). Complete genome sequence of Ferroglobus placidus AEDII12DO. Stand Genomic Sci 5: 50–60.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477.
Batzke A, Engelen B, Sass H, Cypionka H . (2007). Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24: 261–273.
Beckmann JD, Frerman FE . (1985). Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry 24: 3922–3925.
Bedard DL, Ritalahti KM, Löffler FE . (2007). The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 73: 2513–2521.
Benjdia A, Martens EC, Gordon JI, Berteau O . (2011). Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J Biol Chem 286: 25973–25982.
Berg IA . (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77: 1925–1936.
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH . (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105: 10583–10588.
Biddle JF, White JR, Teske AP, House CH . (2011). Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes. ISME J 5: 1038–1047.
Blazejak A, Schippers A . (2010). High abundance of JS-1- and Chloroflexi-related bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol 72: 198–207.
Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM . (2012). Dehalogenimonas alkenigignens sp. nov., a chlorinated alkane dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 63: 1492–1498.
Bräsen C, Schmidt M, Grötzinger J, Schönheit P . (2008). Reaction mechanism and structural model of ADP-forming Acetyl-CoA synthetase from the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a second active site histidine residue. J Biol Chem 283: 15409–15418.
Buckel W, Thauer RK . (2012). Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827: 94–113.
Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT et al (2012). The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14: 101–113.
Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ et al (2008). Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322: 275–278.
Chow WL, Cheng D, Wang S, He J . (2010). Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. ISME J 4: 1020–1030.
D'Hondt S, Rutherford S, Spivack AJ . (2002). Metabolic activity of subsurface life in deep-sea sediments. Science 295: 2067–2070.
D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA et al (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306: 2216–2221.
Durbin AM, Teske A . (2011). Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13: 3219–3234.
Empadinhas N, Albuquerque L, Costa J, Zinder SH, Santos MA, Santos H et al (2004). A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase. J Bacteriol 186: 4075–4084.
Fagervold SK, Watts JE, May HD, Sowers KR . (2005). Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71: 8085–8090.
Fagervold SK, May HD, Sowers KR . (2007). Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73: 3009–3018.
Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G . (2008). Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66: 181–196.
Fuchs G . (2011). Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65: 631–658.
Futagami T, Morono Y, Terada T, Kaksonen AH, Inagaki F . (2009). Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. Appl Environ Microbiol 75: 6905–6909.
Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W et al (2003). Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100: 8298–8303.
Grein F, Ramos AR, Venceslau SS, Pereira IA . (2012). Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochim Biophys Acta 1827: 145–160.
Hatton AD . (2002). DMSP removal and DMSO production in sedimenting particulate matter in the northern North Sea. Deep-Sea Res II 49: 3053–3065.
Hattori S, Galushko AS, Kamagata Y, Schink B . (2005). Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187: 3471–3476.
Heider J . (2001). A new family of CoA-transferases. FEBS Lett 509: 345–349.
Hölscher T, Krajmalnik-Brown R, Ritalahti KM, Von Wintzingerode F, Görisch H, Löffler FE et al (2004). Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70: 5290–5297.
Husain M, Steenkamp DJ . (1985). Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans. J Bacteriol 163: 709–715.
Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K et al (2003). Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Ohkotsk. Appl Environ Microbiol 69: 7224–7235.
Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A et al (2006). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103: 2815–2820.
Jensen JB, Bennike O . (2009). Geological setting as background for methane distribution in Holocene mud deposits, Aarhus Bay, Denmark. Continental Shelf Research 29: 775–784.
Kallmeyer J, Pockalny R, Adhikaria AA, Smith DC, D’Hondt S . (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109: 16213–16216.
Kaster AK, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G et al (2011a). More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011: 973848.
Kaster AK, Moll J, Parey K, Thauer RK . (2011b). Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 108: 2981–2986.
Kertesz MA . (2000). Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24: 135–175.
Kiene RP, Capone DG . (1988). Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments. Microb Ecol 15: 275–291.
Kittelmann S, Friedrich MW . (2008a). Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol 10: 31–46.
Kittelmann S, Friedrich MW . (2008b). Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ Microbiol 10: 1557–1570.
Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA et al (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364–370.
Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y et al (2006). Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188: 202–210.
Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L . (2005). Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23: 1269–1273.
Lane DJ . (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons: Chichester, UK, pp 115–175.
Langmead B, Salzberg SL . (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.
Lindahl PA, Chang B . (2001). The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31: 403–434.
Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Stepanauskas R et al (2013). Predominant archaea in marine sediments degrade detrital proteins. Nature 496: 215–218.
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A et al (2011). Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 13: 696–709.
Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT et al (2012). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63: 625–635.
López NI, Duarte CM . (2004). Dimethyl sulfoxide (DMSO) reduction potential in Mediterranean seagrass (Posidonia oceanica) sediments. J Sea Res 51: 11–20.
Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL et al (2007). Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3: 1702–1708.
Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC . (2009). IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271–2278.
Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME et al (2012). High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6: 113–123.
May HD, Miller GS, Kjellerup BV, Sowers KR . (2008). Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74: 2089–2094.
Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH . (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568–1571.
McEwan AG, Ridge JP, McDevitt CA, Hugenholtz P . (2002). The DMSO Reductase family of microbial molybdenum enzymes; molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol J 19: 3–21.
McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L et al (2007). The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 104: 7600–7605.
McMurdie PJ, Behrens SF, Muller JA, Goke J, Ritalahti KM, Wagner R et al (2009). Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5: e1000714.
Medlin L, Elwood HJ, Stickel S, Sogin ML . (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499.
Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA . (2009). Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59: 2692–2697.
Niu B, Fu L, Sun S, Li W . (2010). Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics 11: 187.
Nunoura T, Soffientino B, Blazejak A, Kakuta J, Oida H, Schippers A et al (2009). Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69: 410–424.
Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG et al (2005). Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390–394.
Quaiser A, Zivanovic Y, Moreira D, Lopez-Garcia P . (2011). Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 5: 285–304.
Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS . (2005). Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 71: 3342–3347.
Roberts MF . (2004). Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9: 1999–2019.
Rothery RA, Workun GJ, Weiner JH . (2008). The prokaryotic complex iron-sulfur molybdoenzyme family. Biochim Biophys Acta 1778: 1897–1929.
Sakai Y, Takahashi H, Wakasa Y, Kotani T, Yurimoto H, Miyachi N et al (2004). Role of alpha-methylacyl coenzyme A racemase in the degradation of methyl-branched alkanes by Mycobacterium sp. strain P101. J Bacteriol 186: 7214–7220.
Say RF, Fuchs G . (2010). Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464: 1077–1081.
Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G . (1986). Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145: 162–172.
Schmidt F, Elvert M, Koch BP, Witt M, Hinrichs K-U . (2009). Molecular characterization of dissolved organic matter in pore water of continental shelf sediments. Geochim Cosmochim Acta 73: 3337–3358.
Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P et al (2010). Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192: 295–306.
Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA et al (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307: 105–108.
Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D et al (2012). Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to "Dehalococcoides" strains. Stand Genomic Sci 6: 251–264.
Stepanauskas R, Sieracki ME . (2007). Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104: 9052–9057.
Stojanowic A, Mander GJ, Duin EC, Hedderich R . (2003). Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch Microbiol 180: 194–203.
Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S et al (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 11: 1038–1055.
Styrvold OB, Strom AR . (1991). Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J Bacteriol 173: 1187–1192.
Sutcliffe IC . (2011). Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol 13: 279–282.
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D et al (2011). Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333: 1296–1300.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S . (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
Tas N, van Eekert MH, de Vos WM, Smidt H . (2010). The little bacteria that can—diversity, genomics and ecophysiology of 'Dehalococcoides' spp. in contaminated environments. Microb Biotechnol 3: 389–402.
Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP et al (2002). Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68: 1994–2007.
Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D . (2004). Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48: 357–367.
Valentine DL . (2010). Emerging topics in marine methane biogeochemistry. Annu Rev Mar Sci 3: 147–171.
Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A et al (2013). MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41: D636–D647.
Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L . (2012). Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ Sci Technol 46: 8960–8968.
Wang Y, Qian PY . (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4: e7401.
Watts JE, Fagervold SK, May HD, Sowers KR . (2005). A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiol 151: 2039–2046.
Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC . (2006). Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58: 65–85.
Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ et al (2011). Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 77: 248–263.
Wellsbury P, Mather I, Parkes RJ . (2002). Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42: 59–70.
Woebken D, Teeling H, Wecker P, Dumitriu A, Kostadinov I, Delong EF et al (2007). Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1: 419–435.
Wood PM . (1981). The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide: evaluation and biochemical implications. FEBS Lett 124: 11–14.
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H et al (2009). Assembling the marine metagenome, one cell at a time. PLoS One 4: e5299.
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S et al (2011). Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6: e26161.
Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L et al (2012). Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol 78: 7745–7752.
Zhang C, Liu X, Dong X . (2004). Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54: 969–973.
Acknowledgements
We thank the captain and crew of the R/V Tyra for assisting with sampling and the Laboratory of Bioinformatics Analyses for Genomics and Metabolism (LABGeM) of France Genomique for hosting the MaGe genome annotation platform. The project was funded by the European Research Council (ERC), Project Microflex (to LA), the Danish National Research Foundation, the German Max Planck Society, The Danish Council for Independent Research – Natural Sciences (DGP), the Villum Kann Rasmussen Foundation, and the US National Science Foundation (RS).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Rights and permissions
About this article
Cite this article
Wasmund, K., Schreiber, L., Lloyd, K. et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J 8, 383–397 (2014). https://doi.org/10.1038/ismej.2013.143
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2013.143
Keywords
This article is cited by
-
Assessment of prokaryotic communities in Southwestern Atlantic deep-sea sediments reveals prevalent methanol-oxidising Methylomirabilales
Scientific Reports (2023)
-
Phylogenetically and metabolically diverse autotrophs in the world’s deepest blue hole
ISME Communications (2023)
-
Refractory humic-like dissolved organic matter fuels microbial communities in deep energy-limiting marine sediments
Science China Earth Sciences (2023)
-
Community composition and functional prediction of prokaryotes associated with sympatric sponge species of southwestern Atlantic coast
Scientific Reports (2021)
-
High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water
Communications Biology (2021)